Partial Differential Equation Toolbox ${ }^{\text {TM }}$

User's Guide
®

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
Phone:

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
Partial Differential Equation Toolbox ${ }^{\text {TM }}$ User's Guide
© COPYRIGHT 1995-2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014 Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

August 1995	First printing	New for Version 1.0
February 1996	Second printing	Revised for Version 1.0.1 (Release 13)
July 2002	Online only	Revised for Version 1.0.4 (Relea
September 2002	Third printing	Minor Revision for Version 1.0.4
June 2004	Online only	Revised for Version 1.0.5 (Release 14)
October 2004	Online only	Revised for Version 1.0.6 (Release 14SP1)
March 2005	Online only	Revised for Version 1.0.6 (Release 14SP2)
August 2005	Fourth printing	Minor Revision for Version 1.0.6
September 2005	Online only	Revised for Version 1.0.7 (Release 14SP3)
March 2006	Online only	Revised for Version 1.0.8 (Release 2006a)
March 2007	Online only	Revised for Version 1.0.10 (Release 2007a)
September 2007	Online only	Revised for Version 1.0.11 (Release 2007b)
March 2008	Online only	Revised for Version 1.0.12 (Release 2008a)
October 2008	Online only	Revised for Version 1.0.13 (Release 2008b)
March 2009	Online only	Revised for Version 1.0.14 (Release 2009a)
September 2009	Online only	Revised for Version 1.0.15 (Release 2009b)
March 2010	Online only	Revised for Version 1.0.16 (Release 2010a)
September 2010	Online only	Revised for Version 1.0.17 (Release 2010b)
April 2011	Online only	Revised for Version 1.0.18 (Release 2011a)
September 2011	Online only	Revised for Version 1.0.19 (Release 2011b)
March 2012	Online only	Revised for Version 1.0.20 (Release 2012a)
September 2012	Online only	Revised for Version 1.1 (Release 2012b)
March 2013	Online only	Revised for Version 1.2 (Release 2013a)
September 2013	Online only	Revised for Version 1.3 (Release 2013b)
March 2014	Online only	Revised for Version 1.4 (Release 2014a)
October 2014	Online only	Revised for Version 1.5 (Release 2014b)
March 2015	Online only	Revised for Version 2.0 (Release 2015a)
September 2015	Online only	Revised for Version 2.1 (Release 2015b)
March 2016	Online only	Revised for Version 2.2 (Release 2016a)
September 2016	Online only	Revised for Version 2.3 (Release 2016b)
March 2017	Online only	Revised for Version 2.4 (Release 2017a)
September 2017	Online only	Online only

Getting Started
1
Partial Differential Equation Toolbox Product Description 1-2
Key Features 1-2
Equations You Can Solve Using PDE Toolbox 1-3
Solve 2-D PDEs Using the PDE Modeler App 1-5
Tips 1-5
Poisson's Equation with Complex 2-D Geometry: PDE Modeler App 1-7
Finite Element Method Basics 1-11
Deflection Analysis of Bracket 1-14
Heat Transfer in Block with Cavity 1-21
Setting Up Your PDE
2
Solve Problems Using PDEModel Objects 2-2
2-D Geometry Creation at Command Line 2-4
Three Elements of Geometry 2-4
Create Basic Shapes 2-4
Create Names for the Basic Shapes 2-6
Set Formula 2-6
Create Geometry and Remove Face Boundaries 2-6
Decomposed Geometry Data Structure 2-8
Parametrized Function for 2-D Geometry Creation 2-10
Required Syntax 2-10
Relation Between Parametrization and Region Labels 2-10
Geometry Function for a Circle 2-11
Arc Length Calculations for a Geometry Function 2-12
Geometry Function Example with Subdomains and a Hole 2-21
Nested Function for Geometry with Additional Parameters 2-23
Geometry from polyshape 2-27
STL File Import 2-31
Geometry from Triangulated Mesh 2-47
3-D Geometry from a Finite Element Mesh 2-47
2-D Multidomain Geometry 2-48
Geometry from alphaShape 2-50
Cuboids, Cylinders, and Spheres 2-52
Sphere in Cube 2-59
3-D Multidomain Geometry from 2-D Geometry 2-63
Multidomain Geometry Reconstructed from Mesh 2-67
Put Equations in Divergence Form 2-71
Coefficient Matching for Divergence Form 2-71
Boundary Conditions Can Affect the c Coefficient 2-72
Coefficient Conversion with Symbolic Math Toolbox 2-72
Some Equations Cannot Be Converted 2-73
f Coefficient for specifyCoefficients 2-74
c Coefficient for specifyCoefficients 2-76
Overview of the c Coefficient 2-76
Definition of the c Tensor Elements 2-76
Some c Vectors Can Be Short 2-78
Functional Form 2-88
m, d, or a Coefficient for specifyCoefficients 2-91
Coefficients m, d, or a 2-91
Short m, d, or a vectors 2-91
Nonconstant m, d, or a 2-92
View, Edit, and Delete PDE Coefficients 2-95
View Coefficients 2-95
Delete Existing Coefficients 2-96
Change a Coefficient Assignment 2-97
Set Initial Conditions 2-98
What Are Initial Conditions? 2-98
Constant Initial Conditions 2-98
Nonconstant Initial Conditions 2-98
Nodal Initial Conditions 2-99
Nonlinear System with Cross-Coupling Between Components 2-101
Set Initial Condition for Model with Fine Mesh Using Solution Obtained with Coarser Mesh 2-105
View, Edit, and Delete Initial Conditions 2-107
View Initial Conditions 2-107
Delete Existing Initial Conditions 2-108
Change an Initial Conditions Assignment 2-108
No Boundary Conditions Between Subdomains 2-110
Identify Boundary Labels 2-112
Specify Boundary Conditions 2-113
Dirichlet Boundary Conditions 2-113
Neumann Boundary Conditions 2-114
Mixed Boundary Conditions 2-116
Nonconstant Boundary Conditions 2-116
Solve PDEs with Constant Boundary Conditions 2-119
Solve PDEs with Nonconstant Boundary Conditions 2-123
View, Edit, and Delete Boundary Conditions 2-128
View Boundary Conditions 2-128
Delete Existing Boundary Conditions 2-129
Change a Boundary Conditions Assignment 2-130
Generate Mesh 2-132
Find Mesh Elements and Nodes by Location 2-140
Assess Quality of Mesh Elements 2-146
Mesh Data as [p,e,t] Triples 2-150
Mesh Data 2-153
Solving PDEs
3
von Mises Effective Stress and Displacements: PDE Modeler App 3-3
Clamped Square Isotropic Plate with Uniform Pressure Load 3-7
Deflection of Piezoelectric Actuator 3-11
Dynamics of Damped Cantilever Beam 3-21
Dynamic Analysis of Clamped Beam 3-28
Reduced-Order Modeling Technique for Beam with Point Load 3-33
Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm 3-40
Thermal Stress Analysis of Jet Engine Turbine Blade 3-50
Finite Element Analysis of Electrostatically Actuated MEMS Device 3-58
Deflection Analysis of Bracket 3-71
Vibration of Square Plate 3-78
Structural Dynamics of Tuning Fork 3-82
Modal Superposition Method for Structural Dynamics Problem 3-91
Stress Concentration in Plate with Circular Hole 3-95
Thermal Deflection of Bimetallic Beam 3-103
Axisymmetric Thermal and Structural Analysis of Disc Brake 3-110
Electrostatic Potential in Air-Filled Frame 3-121
Electrostatic Potential in Air-Filled Frame: PDE Modeler App 3-123
Linear Elasticity Equations 3-125
Summary of the Equations of Linear Elasticity 3-125
3D Linear Elasticity Problem 3-126
Plane Stress 3-128
Plane Strain 3-129
Magnetic Field in Two-Pole Electric Motor 3-130
Magnetic Field in Two-Pole Electric Motor: PDE Modeler App 3-135
Scattering Problem 3-140
Electrostatics and Magnetostatics 3-145
Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App 3-146
Current Density Between Two Metallic Conductors: PDE Modeler App 3-154
Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App 3-157
Temperature Distribution in Heat Sink 3-161
Create 2-D Geometry in the PDE Modeler App 3-161
Extrude 2-D Geometry into 3-D Geometry of Heat Sink 3-162
Perform Thermal Analysis 3-165
Nonlinear Heat Transfer in Thin Plate 3-170
Poisson's Equation on Unit Disk: PDE Modeler App 3-178
Poisson's Equation on Unit Disk 3-184
Scattering Problem: PDE Modeler App 3-192
Minimal Electric Potential 3-196
Minimal Surface Problem: PDE Modeler App 3-200
Poisson's Equation with Point Source and Adaptive Mesh Refinement 3-202
Heat Transfer in Block with Cavity: PDE Modeler App 3-207
Heat Transfer in Block with Cavity 3-211
Heat Transfer Problem with Temperature-Dependent Properties 3-215
Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux3-223
Inhomogeneous Heat Equation on Square Domain 3-230
Heat Distribution in Circular Cylindrical Rod 3-234
Thermal Analysis of Disc Brake 3-240
Heat Distribution in Circular Cylindrical Rod: PDE Modeler App 3-248
Wave Equation on Square Domain 3-251
Wave Equation on Square Domain: PDE Modeler App 3-255
Eigenvalues and Eigenmodes of L-Shaped Membrane 3-258
Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App 3-264
L-Shaped Membrane with Rounded Corner: PDE Modeler App 3-267
Eigenvalues and Eigenmodes of Square 3-270
Eigenvalues and Eigenmodes of Square: PDE Modeler App 3-275
Vibration of Circular Membrane 3-278
Solution and Gradient Plots with pdeplot and pdeplot3D 3-282
2-D Solution and Gradient Plots with MATLAB® Functions 3-291
3-D Solution and Gradient Plots with MATLAB® Functions 3-297
Types of 3-D Solution Plots Available in MATLAB 3-297
2-D Slices Through 3-D Geometry 3-297
Contour Slices Through 3-D Solution 3-300
Plots of Gradients and Streamlines 3-304
Dimensions of Solutions, Gradients, and Fluxes 3-309
Open the PDE Modeler App 4-2
2-D Geometry Creation in PDE Modeler App 4-3
Create Basic Shapes 4-3
Select Several Shapes 4-4
Rotate Shapes 4-4
Create Complex Geometries 4-4
Adjust Axes Limits and Grid 4-5
Create Geometry with Rounded Corners 4-8
Specify Boundary Conditions in the PDE Modeler App 4-12
Specify Coefficients in PDE Modeler App 4-14
Coefficients for Scalar PDEs 4-14
Coefficients for Systems of PDEs 4-16
Coefficients That Depend on Time and Space 4-18
Specify Mesh Parameters in the PDE Modeler App 4-24
Adjust Solve Parameters in the PDE Modeler App 4-26
Elliptic Equations 4-26
Parabolic Equations 4-28
Hyperbolic Equations 4-29
Eigenvalue Equations 4-29
Nonlinear Equations 4-30
Plot the Solution in the PDE Modeler App 4-31
Additional Plot Control Options 4-33
Tooltip Displays for Mesh and Plots 4-35
Functions

Getting Started

- "Partial Differential Equation Toolbox Product Description" on page 1-2
- "Equations You Can Solve Using PDE Toolbox" on page 1-3
- "Solve 2-D PDEs Using the PDE Modeler App" on page 1-5
- "Poisson's Equation with Complex 2-D Geometry: PDE Modeler App" on page 1-7
- "Finite Element Method Basics" on page 1-11
- "Deflection Analysis of Bracket" on page 1-14
- "Heat Transfer in Block with Cavity" on page 1-21

Partial Differential Equation Toolbox Product Description
 Solve partial differential equations using finite element analysis

Partial Differential Equation Toolbox provides functions for solving structural mechanics, heat transfer, and general partial differential equations (PDEs) using finite element analysis.

You can perform linear static analysis to compute deformation, stress, and strain. For modeling structural dynamics and vibration, the toolbox provides a direct time integration solver. You can analyze a component's structural characteristics by performing modal analysis to find natural frequencies and mode shapes. You can model conduction-dominant heat transfer problems to calculate temperature distributions, heat fluxes, and heat flow rates through surfaces. You can also solve standard problems such as diffusion, electrostatics, and magnetostatics, as well as custom PDEs.

Partial Differential Equation Toolbox lets you import 2D and 3D geometries from STL or mesh data. You can automatically generate meshes with triangular and tetrahedral elements. You can solve PDEs by using the finite element method, and postprocess results to explore and analyze them.

Key Features

- Structural analysis, including linear static, dynamic, and modal analysis
- Heat transfer analysis for conduction-dominant problems
- General linear and nonlinear PDEs for stationary, time-dependent, and eigenvalue problems
- 2D and 3D geometry import from STL files and mesh data
- Automatic meshing using triangular and tetrahedral elements with linear or quadratic basis functions
- User-defined functions for specifying PDE coefficients, boundary conditions, and initial conditions
- Plotting and animating results, as well as derived and interpolated values

Equations You Can Solve Using PDE Toolbox

Partial Differential Equation Toolbox solves scalar equations of the form

$$
m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

and eigenvalue equations of the form
$-\nabla \cdot(c \nabla u)+a u=\lambda d u$
or
$-\nabla \cdot(c \nabla u)+a u=\lambda^{2} m u$
For scalar PDEs, there are two choices of boundary conditions for each edge or face:

- Dirichlet - On the edge or face, the solution u satisfies the equation
$h u=r$,
where h and r can be functions of space (x, y, and, in 3-D case, z), the solution u, and time. Often, you take $h=1$, and set r to the appropriate value.
- Generalized Neumann boundary conditions - On the edge or face the solution u satisfies the equation

$$
\vec{n} \cdot(c \nabla u)+q u=g
$$

\vec{n} is the outward unit normal. q and g are functions defined on $\partial \Omega$, and can be functions of x, y, and, in 3-D case, z, the solution u, and, for time-dependent equations, time.

The toolbox also solves systems of equations of the form

$$
\mathbf{m} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}+\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

and eigenvalue systems of the form

$$
-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\lambda \mathbf{d} \mathbf{u}
$$

or
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\lambda^{2} \mathbf{m u}$
A system of PDEs with N components is N coupled PDEs with coupled boundary conditions. Scalar PDEs are those with $N=1$, meaning just one PDE. Systems of PDEs generally means $N>1$. The documentation sometimes refers to systems as multidimensional PDEs or as PDEs with a vector solution u. In all cases, PDE systems have a single geometry and mesh. It is only N, the number of equations, that can vary.

The coefficients m, d, c, a, and f can be functions of location (x, y, and, in $3-\mathrm{D}, z$), and, except for eigenvalue problems, they also can be functions of the solution u or its gradient. For eigenvalue problems, the coefficients cannot depend on the solution u or its gradient.

For scalar equations, all the coefficients except c are scalar. The coefficient c represents a 2 -by- 2 matrix in 2-D geometry, or a 3-by-3 matrix in 3-D geometry. For systems of N equations, the
coefficients \mathbf{m}, \mathbf{d}, and a are N-by- N matrices, \mathbf{f} is an N-by- 1 vector, and \mathbf{c} is a $2 N$-by- $2 N$ tensor (2-D geometry) or a $3 N$-by- $3 N$ tensor (3-D geometry). For the meaning of $\mathbf{c} \otimes \mathbf{u}$, see "c Coefficient for specifyCoefficients" on page 2-76.

When both m and d are 0 , the PDE is stationary. When either m or d are nonzero, the problem is timedependent. When any coefficient depends on the solution u or its gradient, the problem is called nonlinear.

For systems of PDEs, there are generalized versions of the Dirichlet and Neumann boundary conditions:

- $\mathbf{h u}=\mathbf{r}$ represents a matrix \mathbf{h} multiplying the solution vector \mathbf{u}, and equaling the vector \mathbf{r}.
- $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{q u}=\mathbf{g}$. For 2-D systems, the notation $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ means the N-by-1 matrix with (i,1)-component

$$
\sum_{j=1}^{N}\left(\cos (\alpha) c_{i, j, 1,1} \frac{\partial}{\partial x}+\cos (\alpha) c_{i, j, 1,2} \frac{\partial}{\partial y}+\sin (\alpha) c_{i, j, 2,1} \frac{\partial}{\partial x}+\sin (\alpha) c_{i, j, 2,2} \frac{\partial}{\partial y}\right) u_{j}
$$

where the outward normal vector of the boundary $\mathbf{n}=(\cos (\alpha), \sin (\alpha))$.
For 3-D systems, the notation $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ means the N-by-1 vector with (i,1)-component

$$
\begin{aligned}
& \sum_{j=1}^{N}\left(\sin (\varphi) \cos (\theta) c_{i, j, 1,1} \frac{\partial}{\partial x}+\sin (\varphi) \cos (\theta) c_{i, j, 1,2} \frac{\partial}{\partial y}+\sin (\varphi) \cos (\theta) c_{i, j, 1,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\sin (\varphi) \sin (\theta) c_{i, j, 2,1} \frac{\partial}{\partial x}+\sin (\varphi) \sin (\theta) c_{i, j, 2,2} \frac{\partial}{\partial y}+\sin (\varphi) \sin (\theta) c_{i, j, 2,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\cos (\theta) c_{i, j, 3,1} \frac{\partial}{\partial x}+\cos (\theta) c_{i, j, 3,2} \frac{\partial}{\partial y}+\cos (\theta) c_{i, j, 3,3} \frac{\partial}{\partial z}\right) u_{j}
\end{aligned}
$$

where the outward normal vector of the boundary $\mathbf{n}=(\sin (\varphi) \cos (\theta), \sin (\varphi) \sin (\theta), \cos (\varphi))$.
For each edge or face segment, there are a total of N boundary conditions.

See Also

Related Examples

- "Put Equations in Divergence Form" on page 2-71
- "Solve Problems Using PDEModel Objects" on page 2-2
- "f Coefficient for specifyCoefficients" on page 2-74
- "c Coefficient for specifyCoefficients" on page 2-76
- "m, d, or a Coefficient for specifyCoefficients" on page 2-91

Solve 2-D PDEs Using the PDE Modeler App

To solve 2-D PDE problems using the PDE Modeler app follow these steps:
1 Start the PDE Modeler app by using the Apps tab or typing pdeModeler in the MATLAB ${ }^{\circledR}$ Command Window. For details, see "Open the PDE Modeler App" on page 4-2.
2 Choose the application mode by selecting Application from the Options menu.
3 Create a 2-D geometry by drawing, rotating, and combining the basic shapes: circles, ellipses, rectangles, and polygons. To draw and rotate shapes, use the Draw menu or the corresponding toolbar buttons. To combine shapes, use the Set formula field. See "2-D Geometry Creation in PDE Modeler App" on page 4-3.
4 Specify boundary conditions for each boundary segment. To do this, first switch to the Boundary Mode by using the Boundary menu. Click the boundary to select it, then specify the boundary condition for that boundary. You can have different types of boundary conditions on different boundary segments. The default boundary condition is the Dirichlet condition $h u=r$ with $h=1$ and $r=0$. You can remove unnecessary subdomain borders by selecting Remove Subdomain Border or Remove All Subdomain Borders from the Boundary menu. For details, see "Specify Boundary Conditions in the PDE Modeler App" on page 4-12.
5 Specify PDE coefficients by selecting PDE Mode from the PDE menu. Then select a region or multiple regions for which you are specifying the coefficients. Select PDE Specification from the PDE menu or click the PDE button on the toolbar. Type the coefficients in the resulting dialog box. For details, see "Coefficients for Scalar PDEs" on page 4-14 and "Coefficients for Systems of PDEs" on page 4-16.

You can specify the coefficients at any time before solving the PDE because the coefficients are independent of the geometry and the boundaries. If the PDE coefficients are material-dependent, specify them by double-clicking each particular region.
6 Generate a triangular mesh by selecting Initialize Mesh from the Mesh menu. Using the same menu, you can also refine mesh, display node and triangle labels, and control mesh parameters, letting you generate a mesh that is fine enough to adequately resolve the important features in the geometry, but is coarse enough to run in a reasonable amount of time and memory. See "Specify Mesh Parameters in the PDE Modeler App" on page 4-24.
7 Solve the PDE by clicking the = button or by selecting Solve PDE from the Solve menu. To use a solver with non-default parameters, select Parameters from the Solve menu to. The resulting dialog box lets you:

- Invoke and control the nonlinear and adaptive solvers for elliptic problems.
- Specify the initial values, and the times for which to generate the output for parabolic and hyperbolic problems.
- Specify the interval in which to search for eigenvalues for eigenvalue problems.

See "Adjust Solve Parameters in the PDE Modeler App" on page 4-26.
8 When you solve the PDE, the app automatically plots the solution using the default settings. To customize the plot or plot other physical properties calculated using the solution, select Parameters from the Plot menu. See "Plot the Solution in the PDE Modeler App" on page 4-31.

Tips

After solving the problem, you can:

- Export the solution or the mesh or both to the MATLAB workspace for further analysis.
- Visualize other properties of the solution.
- Change the PDE and recompute the solution.
- Change the mesh and recompute the solution. If you select Initialize Mesh, the mesh is initialized; if you select Refine Mesh, the current mesh is refined. From the Mesh menu, you can also jiggle the mesh and undo previous mesh changes. You also can use the adaptive mesh refiner and solver, adaptmesh. This option tries to find a mesh that fits the solution.
- Change the boundary conditions. To return to the mode where you can select boundaries, use the $\partial \Omega$ button or the Boundary Mode option from the Boundary menu.
- Change the geometry. You can switch to the draw mode again by selecting Draw Mode from the Draw menu or by clicking one of the Draw Mode icons to add another shape.

The following are the shortcuts that you can use to skip one or more steps. In general, the PDE Modeler app adds the necessary steps automatically.

- If you do not create a geometry, the PDE Modeler app uses an L-shaped geometry with the default boundary conditions.
- If you initialize the mesh while in the draw mode, the PDE Modeler app first decomposes the geometry using the current set formula and assigns the default boundary condition to the outer boundaries. After that, it generate the mesh.
- If you refine the mesh before initializing it, the PDE Modeler app first initializes the mesh.
- If you solve the PDE without generating a mesh, the PDE Modeler app initializes a mesh before solving the PDE.
- If you select a plot type and choose to plot the solution, the PDE Modeler app checks if the solution to the current PDE is available. If not, the PDE Modeler app first solves the current PDE. The app displays the solution using the selected plot options.
- If do not specify the coefficients and use the default Generic Scalar application mode, the PDE Modeler app solves the default PDE, which is Poisson's equation:
$-\Delta u=10$.
This corresponds to the generic elliptic PDE with $c=1, a=0$, and $f=10$. The default PDE settings depend on the application mode.

See Also

Related Examples

- "Poisson's Equation with Complex 2-D Geometry: PDE Modeler App" on page 1-7
- "Poisson's Equation on Unit Disk" on page 3-184
- "Current Density Between Two Metallic Conductors: PDE Modeler App" on page 3-154
- "Minimal Electric Potential" on page 3-196

Poisson's Equation with Complex 2-D Geometry: PDE Modeler App

This example shows how to solve the Poisson's equation, $-\Delta u=f$ on a 2-D geometry created as a combination of two rectangles and two circles.

To solve this problem in the PDE Modeler app, follow these steps:
1 Open the PDE Modeler app by using the pdeModeler command.
2 Display grid lines. To do this, select Options > Grid Spacing and clear the Auto checkbox for the x -axis linear spacing. Enter \mathbf{X}-axis linear spacing as -1.5:0.25:1.5. Then select Options $>$ Grid.
3 Align new shapes to the grid lines by selecting Options > Snap.
4 Draw two circles: one with the radius 0.4 and the center at $(-0.5,0)$ and another with the radius
0.2 and the center at $(0.5,0.2)$. To draw a circle, first click the \pm button. Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape you draw so that it is a circle rather than an ellipse.
5 Draw two rectangles: one with corners ($-1,0.2$), ($1,0.2$), ($1,-0.2$), and ($-1,-0.2$) and another with corners $(0.5,1),(1,1),(1,-0.6)$, and $(0.5,-0.6)$. To draw a rectangle, first click the \square button. Then click any corner and drag to draw the rectangle.
6 Model the geometry by entering (R1+C1+R2)-C2 in the Set formula field.
7 Save the model to a file by selecting FileSave As.
8 Remove the subdomain borders. To do this, switch to the boundary mode by selecting Boundary > Boundary Mode. Then select Boundary > Remove All Subdomain Borders.
9 Specify the boundary conditions for all circle arcs. Using Shift+click, select these borders. Then select Boundary > Specify Boundary Conditions and specify the Neumann boundary condition with $g=-5$ and $q=0$. This boundary condition means that the solution has a slope of 5 in the normal direction for these boundary segments.
10 For all other boundaries, keep the default Dirichlet boundary condition: $h=1, r=0$.
11 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. Specify $c=1$, $a=0$, and $f=10$.
12 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh > Refine Mesh.

13 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar. The toolbox assembles the PDE problem, solves it, and plots the solution.

14 Plot the solution as a 3-D plot:
a Select Plot > Parameters.
b In the resulting dialog box, select Height (3-D plot).
c Click Plot.

Color: u Height: u

Finite Element Method Basics

The core Partial Differential Equation Toolbox algorithm uses the Finite Element Method (FEM) for problems defined on bounded domains in 2-D or 3-D space. In most cases, elementary functions cannot express the solutions of even simple PDEs on complicated geometries. The finite element method describes a complicated geometry as a collection of subdomains by generating a mesh on the geometry. For example, you can approximate the computational domain Ω with a union of triangles (2-D geometry) or tetrahedra (3-D geometry). The subdomains form a mesh, and each vertex is called a node. The next step is to approximate the original PDE problem on each subdomain by using simpler equations.

For example, consider the basic elliptic equation.
$-\nabla \cdot(c \nabla u)+a u=f$ on domain Ω
Suppose that this equation is a subject to the Dirichlet boundary condition $u=r$ on $\partial \Omega_{D}$ and Neumann boundary conditions on $\partial \Omega_{N}$. Here, $\partial \Omega=\partial \Omega_{D} \cup \partial \Omega_{N}$ is the boundary of Ω.

The first step in FEM is to convert the original differential (strong) form of the PDE into an integral (weak) form by multiplying with test function v and integrating over the domain Ω.

$$
\int_{\Omega}(-\nabla \cdot(c \nabla u)+a u-f) v d \Omega=0 \quad \forall v
$$

The test functions are chosen from a collection of functions (functional space) that vanish on the Dirichlet portion of the boundary, $v=0$ on $\partial \Omega_{D}$. Above equation can be thought of as weighted averaging of the residue using all possible weighting functions v. The collection of functions that are admissible solutions, u, of the weak form of PDE are chosen so that they satisfy the Dirichlet BC, $u=r$ on $\partial \Omega_{D}$.

Integrating by parts (Green's formula) the second-order term results in:

$$
\int_{\Omega}(c \nabla u \nabla v+a u v) d \Omega-\int_{\partial \Omega_{N}} \vec{n} \cdot(c \nabla u) v d \partial \Omega_{N}+\int_{\partial \Omega_{D}} \vec{n} \cdot(c \nabla u) v d \partial \Omega_{D}=\int_{\Omega} f v d \Omega \quad \forall v
$$

Use the Neumann boundary condition to substitute for second term on the left side of the equation. Also, note that $v=0$ on $\partial \Omega_{D}$ nullifies the third term. The resulting equation is:

$$
\int_{\Omega}(c \nabla u \nabla v+a u v) d \Omega+\int_{\partial \Omega_{N}} q u v d \partial \Omega_{N}=\int_{\partial \Omega_{N}} g v d \partial \Omega_{N}+\int_{\Omega} f v d \Omega \quad \forall v
$$

Note that all manipulations up to this stage are performed on continuum Ω, the global domain of the problem. Therefore, the collection of admissible functions and trial functions span infinitedimensional functional spaces. Next step is to discretize the weak form by subdividing Ω into smaller subdomains or elements Ω^{e}, where $\Omega=\cup \Omega^{e}$. This step is equivalent to projection of the weak form of PDEs onto a finite-dimensional subspace. Using the notations u_{h} and v_{h} to represent the finitedimensional equivalent of admissible and trial functions defined on Ω^{e}, you can write the discretized weak form of the PDE as:

$$
\int_{\Omega^{e}}\left(c \nabla u_{h} \nabla v_{h}+a u_{h} v_{h}\right) d \Omega^{e}+\int_{\partial \Omega_{N}^{e}} q u_{h} v_{h} d \partial \Omega_{N}^{e}=\int_{\partial \Omega_{N}^{e}} g v_{h} d \partial \Omega_{N}^{e}+\int_{\Omega^{e}} f v_{h} d \Omega^{e} \quad \forall v_{h}
$$

Next, let ϕ_{i}, with $i=1,2, \ldots, N_{p}$, be the piecewise polynomial basis functions for the subspace containing the collections u_{h} and v_{h}, then any particular u_{h} can be expressed as a linear combination of basis functions:

$$
u_{h}=\sum_{1}^{N_{p}} U_{i} \phi_{i}
$$

Here U_{i} are yet undetermined scalar coefficients. Substituting u_{h} into to the discretized weak form of PDE and using each $v_{h}=\varphi_{i}$ as test functions and performing integration over element yields a system of N_{p} equations in terms of N_{p} unknowns U_{i}.

Note that finite element method approximates a solution by minimizing the associated error function. The minimizing process automatically finds the linear combination of basis functions which is closest to the solution u.

FEM yields a system $K U=F$ where the matrix K and the right side F contain integrals in terms of the test functions ϕ_{i}, ϕ_{j}, and the coefficients c, a, f, q, and g defining the problem. The solution vector U contains the expansion coefficients of u_{h}, which are also the values of u_{h} at each node $x_{k}(k=1,2$ for a 2-D problem or $k=1,2,3$ for a 3-D problem) since $u_{h}\left(x_{k}\right)=U_{i}$.

FEM techniques are also used to solve more general problems, such as:

- Time-dependent problems. The solution $u(x, t)$ of the equation

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

can be approximated by

$$
u_{h}(x, t)=\sum_{i=1}^{N} U_{i}(t) \phi_{i}(x)
$$

The result is a system of ordinary differential equations (ODEs)

$$
M \frac{d U}{d t}+K U=F
$$

Two time derivatives result in a second-order ODE

$$
M \frac{d^{2} U}{d t^{2}}+K U=F
$$

- Eigenvalue problems. Solve

$$
-\nabla \cdot(c \nabla u)+a u=\lambda d u
$$

for the unknowns u and λ, where λ is a complex number. Using the FEM discretization, you solve the algebraic eigenvalue problem $K U=\lambda M U$ to find u_{h} as an approximation to u. To solve eigenvalue problems, use solvepdeeig.

- Nonlinear problems. If the coefficients c, a, f, q, or g are functions of u or ∇u, the PDE is called nonlinear and FEM yields a nonlinear system $K(U) U=F(U)$.

To summarize, the FEM approach:

1 Represents the original domain of the problem as a collection of elements.
2 For each element, substitutes the original PDE problem by a set of simple equations that locally approximate the original equations. Applies boundary conditions for boundaries of each element. For stationary linear problems where the coefficients do not depend on the solution or its gradient, the result is a linear system of equations. For stationary problems where the coefficients depend on the solution or its gradient, the result is a system of nonlinear equations. For time-dependent problems, the result is a set of ODEs.

3 Assembles the resulting equations and boundary conditions into a global system of equations that models the entire problem.
4 Solves the resulting system of algebraic equations or ODEs using linear solvers or numerical integration, respectively. The toolbox internally calls appropriate MATLAB solvers for this task.

References

[1] Cook, Robert D., David S. Malkus, and Michael E. Plesha. Concepts and Applications of Finite Element Analysis. 3rd edition. New York, NY: John Wiley \& Sons, 1989.
[2] Gilbert Strang and George Fix. An Analysis of the Finite Element Method. 2nd edition. Wellesley, MA: Wellesley-Cambridge Press, 2008.

See Also
 assembleFEMatrices | solvepde | solvepdeeig

Deflection Analysis of Bracket

This example shows how to analyze a 3-D mechanical part under an applied load using finite element analysis (FEA) and determine the maximal deflection.

Create Structural Analysis Model

The first step in solving a linear elasticity problem is to create a structural analysis model. This is a container that holds the geometry, structural material properties, damping parameters, body loads, boundary loads, boundary constraints, superelement interfaces, initial displacement and velocity, and mesh.

```
model = createpde('structural','static-solid');
```


Import Geometry

Import an STL file of a simple bracket model using the importGeometry function. This function reconstructs the faces, edges and vertices of the model. It can merge some faces and edges, so the numbers can differ from those of the parent CAD model.

```
importGeometry(model,'BracketWithHole.stl');
```

Plot the geometry, displaying face labels.
figure

```
pdegplot(model,'FaceLabels','on')
```

view(30,30) ;
title('Bracket with Face Labels')

Bracket with Face Labels


```
figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')
```


Specify Structural Properties of Material

Specify Young's modulus and Poisson's ratio of the material.

```
structuralProperties(model,'YoungsModulus',200e9, ...
```


Apply Boundary Conditions and Loads

The problem has two boundary conditions: the back face (face 4) is fixed, and the front face has an applied load. All other boundary conditions, by default, are free boundaries.
structuralBC(model,'Face',4,'Constraint','fixed');
Apply a distributed load in the negative z-direction to the front face (face 8).
structuralBoundaryLoad (model,'Face',8,'SurfaceTraction',[0;0;-1e4]);

Generate Mesh

Generate and plot a mesh.
generateMesh(model);
figure

```
pdeplot3D(model)
title('Mesh with Quadratic Tetrahedral Elements');
```


Mesh with Quadratic Tetrahedral Elements

Calculate Solution

Use the solve function to calculate the solution.

```
result = solve(model)
result =
    StaticStructuralResults with properties:
            Displacement: [1x1 FEStruct]
            Strain: [1x1 FEStruct]
            Stress: [1x1 FEStruct]
        VonMisesStress: [5993x1 double]
                Mesh: [1x1 FEMesh]
```


Examine Solution

Find the maximal deflection of the bracket in the z-direction.

```
minUz = min(result.Displacement.uz);
fprintf('Maximal deflection in the z-direction is %g meters.', minUz)
Maximal deflection in the z-direction is -4.43075e-05 meters.
```


Plot Displacement Components

Plot the components of the solution vector. The maximal deflections are in the z-direction. Because the part and the loading are symmetric, the x-displacement and z-displacement are symmetric, and the y-displacement is antisymmetric with respect to the center line.

Here, the plotting routine uses the ' jet ' colormap, which has blue as the color representing the lowest value and red representing the highest value. The bracket loading causes face 8 to dip down, so the maximum z-displacement appears blue

```
figure
pdeplot3D(model,'ColorMapData',result.Displacement.ux)
title('x-displacement')
colormap('jet')
```



```
figure
pdeplot3D(model,'ColorMapData',result.Displacement.uy)
title('y-displacement')
colormap('jet')
```


figure
pdeplot3D(model,'ColorMapData',result.Displacement.uz)
title('z-displacement')
colormap('jet')

Plot von Mises Stress

Plot values of the von Mises stress at nodal locations. Use the same jet colormap.
figure
pdeplot3D(model,'ColorMapData', result.VonMisesStress)
title('von Mises stress')
colormap('jet')

Heat Transfer in Block with Cavity

This example shows how to solve for the heat distribution in a block with cavity.
Consider a block containing a rectangular crack or cavity. The left side of the block is heated to 100 degrees centigrade. At the right side of the block, heat flows from the block to the surrounding air at a constant rate, for example $-10 \mathrm{~W} / \mathrm{m}^{2}$. All the other boundaries are insulated. The temperature in the block at the starting time $t_{0}=0$ is 0 degrees. The goal is to model the heat distribution during the first five seconds.

Create Thermal Analysis Model

The first step in solving a heat transfer problem is to create a thermal analysis model. This is a container that holds the geometry, thermal material properties, internal heat sources, temperature on the boundaries, heat fluxes through the boundaries, mesh, and initial conditions.

```
thermalmodel = createpde('thermal','transient');
Import Geometry
```

Add the block geometry to the thermal model by using the geometryFromEdges function. The geometry description file for this problem is called crackg.m.
geometryFromEdges (thermalmodel,@crackg) ;
Plot the geometry, displaying edge labels.
pdegplot(thermalmodel,'EdgeLabels','on')
ylim([-1,1])
axis equal

Specify Thermal Properties of Material

Specify the thermal conductivity, mass density, and specific heat of the material.

```
thermalProperties(thermalmodel,'ThermalConductivity',1,...
    'MassDensity',1,...
    'SpecificHeat',1);
```


Apply Boundary Conditions

Specify the temperature on the left edge as 100, and constant heat flow to the exterior through the right edge as -10 . The toolbox uses the default insulating boundary condition for all other boundaries.
thermalBC(thermalmodel,'Edge',6,'Temperature',100);
thermalBC(thermalmodel,'Edge',1,'HeatFlux',-10);

Set Initial Conditions

Set an initial value of 0 for the temperature.
thermalIC(thermalmodel,0);

Generate Mesh

Create and plot a mesh.
generateMesh(thermalmodel);
figure
pdemesh(thermalmodel)
title('Mesh with Quadratic Triangular Elements')

Specify Solution Times

Set solution times to be 0 to 5 seconds in steps of $1 / 2$.
tlist = 0:0.5:5;

Calculate Solution

Use the solve function to calculate the solution.

```
thermalresults = solve(thermalmodel,tlist)
```

thermalresults =
TransientThermalResults with properties:

```
    Temperature: [1320x11 double]
SolutionTimes: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4 4.5000 5]
            XGradients: [1320x11 double]
    YGradients: [1320x11 double]
    ZGradients: []
            Mesh: [1x1 FEMesh]
```


Evaluate Heat Flux

Compute the heat flux density.
[qx,qy] = evaluateHeatFlux(thermalresults);

Plot Temperature Distribution and Heat Flux

Plot the solution at the final time step, $\mathrm{t}=5.0$ seconds, with isothermal lines using a contour plot, and plot the heat flux vector field using arrows.
pdeplot(thermalmodel,'XYData',thermalresults.Temperature(:,end), ...
'Contour','on',...
'FlowData',[qx(:,end), qy(:,end)], ...
'ColorMap','hot')

Setting Up Your PDE

- "Solve Problems Using PDEModel Objects" on page 2-2
- "2-D Geometry Creation at Command Line" on page 2-4
- "Parametrized Function for 2-D Geometry Creation" on page 2-10
- "Geometry from polyshape" on page 2-27
- "STL File Import" on page 2-31
- "Geometry from Triangulated Mesh" on page 2-47
- "Geometry from alphaShape" on page 2-50
- "Cuboids, Cylinders, and Spheres" on page 2-52
- "Sphere in Cube" on page 2-59
- "3-D Multidomain Geometry from 2-D Geometry" on page 2-63
- "Multidomain Geometry Reconstructed from Mesh" on page 2-67
- "Put Equations in Divergence Form" on page 2-71
- "f Coefficient for specifyCoefficients" on page 2-74
- "c Coefficient for specifyCoefficients" on page 2-76
- "m, d, or a Coefficient for specifyCoefficients" on page 2-91
- "View, Edit, and Delete PDE Coefficients" on page 2-95
- "Set Initial Conditions" on page 2-98
- "Nonlinear System with Cross-Coupling Between Components" on page 2-101
- "Set Initial Condition for Model with Fine Mesh Using Solution Obtained with Coarser Mesh" on page 2-105
- "View, Edit, and Delete Initial Conditions" on page 2-107
- "No Boundary Conditions Between Subdomains" on page 2-110
- "Identify Boundary Labels" on page 2-112
- "Specify Boundary Conditions" on page 2-113
- "Solve PDEs with Constant Boundary Conditions" on page 2-119
- "Solve PDEs with Nonconstant Boundary Conditions" on page 2-123
- "View, Edit, and Delete Boundary Conditions" on page 2-128
- "Generate Mesh" on page 2-132
- "Find Mesh Elements and Nodes by Location" on page 2-140
- "Assess Quality of Mesh Elements" on page 2-146
- "Mesh Data as [p,e,t] Triples" on page 2-150
- "Mesh Data" on page 2-153

Solve Problems Using PDEModel Objects

1 Put your problem in the correct form for Partial Differential Equation Toolbox solvers. For details, see "Equations You Can Solve Using PDE Toolbox" on page 1-3. If you need to convert your problem to divergence form, see "Put Equations in Divergence Form" on page 2-71.
2 Create a PDEModel model container. For scalar PDEs, use createpde with no arguments.

```
model = createpde();
```

If N is the number of equations in your system, use createpde with input argument N.

```
model = createpde(N);
```

3 Import or create the geometry. For details, see "Geometry and Mesh".

```
importGeometry(model,'geometry.stl'); % importGeometry for 3-D
geometryFromEdges(model,g); % geometryFromEdges for 2-D
```

4 View the geometry so that you know the labels of the boundaries.

```
pdegplot(model,'FaceLabels','on') % 'FaceLabels' for 3-D
pdegplot(model,'EdgeLabels','on') % 'EdgeLabels' for 2-D
```

To see labels of a 3-D model, you might need to rotate the model, or make it transparent, or zoom in on it. See "STL File Import" on page 2-31.
5 Create the boundary conditions. For details, see "Specify Boundary Conditions" on page 2-113.

```
% 'face' for 3-D
applyBoundaryCondition(model,'dirichlet','face',[2,3,5],'u',[0,0]);
% 'edge' for 2-D
applyBoundaryCondition(model,'neumann','edge',[1,4],'g',1,'q',eye(2));
```

6 Create the PDE coefficients.

```
f = [1;2];
a = 0;
c = [1;3;5];
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
```

- You can specify coefficients as numeric or as functions.
- Each coefficient m, d, c, a, and f, has a specific format. See "f Coefficient for specifyCoefficients" on page 2-74, "c Coefficient for specifyCoefficients" on page 2-76, and " m , d, or a Coefficient for specifyCoefficients" on page 2-91.
7 For time-dependent equations, or optionally for nonlinear stationary equations, create an initial condition. See "Set Initial Conditions" on page 2-98.
8 Create the mesh.

```
generateMesh(model);
```

9 Call the appropriate solver. For all problems except for eigenvalue problems, call solvepde.

```
result = solvepde(model); % for stationary problems
result = solvepde(model,tlist); % for time-dependent problems
```

For eigenvalue problems, use solvepdeeig:

```
result = solvepdeeig(model);
```

10 Examine the solution. See "Solution and Gradient Plots with pdeplot and pdeplot3D" on page 3282, "2-D Solution and Gradient Plots with MATLAB® Functions" on page 3-291, and "3-D Solution and Gradient Plots with MATLAB® Functions" on page 3-297.

See Also

applyBoundaryCondition |createpde | generateMesh | geometryFromEdges |
importGeometry|pdegplot | pdeplot | pdeplot3D

2-D Geometry Creation at Command Line

Three Elements of Geometry

To describe your geometry through Constructive Solid Geometry (CSG) modeling, use three data structures.

1 A matrix whose columns describe the basic shapes. When you export geometry from the PDE Modeler app, this matrix has the default name gd (geometry description). See "Create Basic Shapes" on page 2-4.
2 A matrix whose columns contain names for the basic shapes. Pad the columns with zeros or 32 (blanks) so that every column has the same length. See "Create Names for the Basic Shapes" on page 2-6.
3 A set of characters describing the unions, intersections, and set differences of the basic shapes that make the geometry. See "Set Formula" on page 2-6.

Create Basic Shapes

To create basic shapes at the command line, create a matrix whose columns each describe a basic shape. If necessary, add extra zeros to some columns so that all columns have the same length. Write each column using the following encoding.

Circle

Row	Value
1	1 (indicates a circle)
2	x-coordinate of circle center
3	y-coordinate of circle center
4	Radius (strictly positive)

Polygon

Row	Value
1	2 (indicates a polygon)
2	Number of line segments n
3 through $3+n-1$	x-coordinate of edge starting points
$3+\mathrm{n}$ through $2 * \mathrm{n}+2$	y-coordinate of edge starting points

$\overline{\text { Note Your polygon cannot contain any self-intersections. To check whether your polygon satisfies this }}$ restriction, use the csgchk function.

Rectangle

Row	Value
1	3 (indicates a rectangle)
2	4 (number of line segments)
3 through 6	x-coordinate of edge starting points
7 through 10	y-coordinate of edge starting points

The encoding of a rectangle is the same as that of a polygon, except that the first row is 3 instead of 2.

Ellipse

Row	Value
1	4 (indicates an ellipse)
2	x-coordinate of ellipse center
3	y-coordinate of ellipse center
4	First semiaxis length (strictly positive)
5	Second semiaxis length (strictly positive)
6	Angle in radians from x axis to first semiaxis

For example, specify a matrix that has a rectangle with a circular end cap and another circular excision. First, create a rectangle and two adjoining circles.

```
rect1 = [3
    4
    -1
    1
    1
    -1
    0
    0
    -0.5
    -0.5];
C1 = [1
        1
        -0.25
        0.25];
```

C2 $=$ [1
- 1
-0.25
0.25];

Append extra zeros to the circles so they have the same number of rows as the rectangle.

```
C1 = [C1;zeros(length(rect1) - length(C1),1)];
C2 = [C2;zeros(length(rect1) - length(C2),1)];
```

Combine the shapes into one matrix.
gd $=[$ rect1, C1, C2];

Create Names for the Basic Shapes

In order to create a formula describing the unions and intersections of basic shapes, you need a name for each basic shape. Give the names as a matrix whose columns contain the names of the corresponding columns in the basic shape matrix. Pad the columns with 0 or 32 if necessary so that each has the same length.

One easy way to create the names is by specifying a character array whose rows contain the names, and then taking the transpose. Use the char function to create the array. char pads the rows as needed so all have the same length. Continuing the example, give names for the three shapes.

```
ns = char('rect1','C1','C2');
ns = ns';
```


Set Formula

Obtain the final geometry by writing a set of characters that describes the unions and intersections of basic shapes. Use + for union, * for intersection, - for set difference, and parentheses for grouping. + and * have the same grouping precedence. - has higher grouping precedence.

Continuing the example, specify the union of the rectangle and C 1 , and subtract C 2 .
sf = '(rect1+C1)-C2';

Create Geometry and Remove Face Boundaries

After you have created the basic shapes, given them names, and specified a set formula, create the geometry using decsg. Often, you also remove some or all of the resulting face boundaries. Completing the example, combine the basic shapes using the set formula.

```
[dl,bt] = decsg(gd,sf,ns);
```

View the geometry with and without boundary removal.

```
pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5,1.5])
axis equal
```


Remove the face boundaries.
[dl2,bt2] = csgdel(dl,bt); \% removes face boundaries
figure
pdegplot(dl2,'EdgeLabels','on','FaceLabels','on')
$x \lim ([-1.5,1.5])$
axis equal

Decomposed Geometry Data Structure

A decomposed geometry matrix has the following encoding. Each column of the matrix corresponds to one boundary segment. Any 0 entry means no encoding is necessary for this row. So, for example, if only line segments appear in the matrix, then the matrix has 7 rows. But if there is also a circular segment, then the matrix has 10 rows. The extra three rows of the line columns are filled with 0 .

Row	Circle	Line	Ellipse
1	1	2	4
2	Starting x coordinate	Starting x coordinate	Starting x coordinate
3	Ending x coordinate	Ending x coordinate	Ending x coordinate
4	Starting y coordinate	Starting y coordinate	Starting y coordinate
5	Ending y coordinate	Ending y coordinate	Ending y coordinate
6	Region label to left of segment, with direction induced by start and end points (0 is exterior label)	Region label to left of segment, with direction induced by start and end points (0 is exterior label)	Region label to left of segment, with direction induced by start and end points (0 is exterior label)
7	Region label to right of segment, with direction induced by start and end points (0 is exterior label)	Region label to right of segment, with direction induced by start and end points (0 is exterior label)	Region label to right of segment, with direction induced by start and end points (0 is exterior label)

Row	Circle	Line	Ellipse
8	x coordinate of circle center	0	x coordinate of ellipse center
9	y coordinate of circle center	0	y coordinate of ellipse center
10	Radius	0	Length of first semiaxis
11	0	0	Length of second semiaxis
12	0	0	Angle in radians between x axis and first semiaxis

Parametrized Function for 2-D Geometry Creation

Required Syntax

A geometry function describes the curves that bound the geometry regions. A curve is a parametrized function $(x(t), y(t))$. The variable t ranges over a fixed interval. For best results, t must be proportional to the arc length plus a constant.

You must specify at least two curves for each geometric region. For example, the 'circleg' geometry function, which is available in Partial Differential Equation Toolbox, uses four curves to describe a circle. Curves can intersect only at the beginning or end of parameter intervals.

Toolbox functions query your geometry function by passing in 0,1 , or 2 arguments. Conditionalize your geometry function based on the number of input arguments to return the data described in this table.

Number of Input Arguments	Returned Data
0 (ne = pdegeom)	ne is the number of edges in the geometry.
1 (d = pdegeom(bs)	bs is a vector of edge segments. Your function returns d as a matrix with one column for each edge segment specified in bs. The rows of d are: 1 Start parameter value 2 End parameter value 3 Left region label, where "left" is with respect to the direction from the start to the end parameter value 4 Right region label A region label is the same as a subdomain number. The region label of the exterior of the geometry is 0 .
$2([x, y]=$ pdegeom(bs, s)	s is an array of arc lengths, and bs is a scalar or an array of the same size as s that gives the edge numbers. If $b s$ is a scalar, then it applies to every element in s. Your function returns x and y, which are the x and y coordinates of the edge segments specified in bs at the parameter value s. The x and y arrays have the same size as s.

Relation Between Parametrization and Region Labels

The following figure shows how the direction of parameter increase relates to label numbering. The arrows in the figure show the directions of increasing parameter values. The black dots indicate curve beginning and end points. The red numbers indicate region labels. The red 0 in the center of the figure indicates that the center square is a hole.

- The arrows by curves 1 and 2 show region 1 to the left and region 0 to the right.
- The arrows by curves 3 and 4 show region 0 to the left and region 1 to the right.
- The arrows by curves 5 and 6 show region 0 to the left and region 1 to the right.
- The arrows by curves 7 and 8 show region 1 to the left and region 0 to the right.

Geometry Function for a Circle

This example shows how to write a geometry function for creating a circular region. Parametrize a circle with radius 1 centered at the origin (0,0), as follows:

$$
\begin{aligned}
& x=\cos (t), \\
& y=\sin (t), \\
& 0 \leq t \leq 2 \pi .
\end{aligned}
$$

A geometry function must have at least two segments. To satisfy this requirement, break up the circle into four segments.

- $0 \leq t \leq \pi / 2$
- $\Pi / 2 \leq t \leq \pi$
- $\Pi \leq t \leq 3 \pi / 2$
- $3 \Pi / 2 \leq t \leq 2 \pi$

Now that you have a parametrization, write the geometry function. Save this function file as circlefunction.m on your MATLAB® path. This geometry is simple to create because the parametrization does not change depending on the segment number.

```
function [x,y] = circlefunction(bs,s)
% Create a unit circle centered at (0,0) using four segments.
switch nargin
    case 0
```

```
        x = 4; % four edge segments
        return
    case 1
        A = [0,pi/2,pi,3*pi/2; % start parameter values
        pi/2,pi,3*pi/2,2*pi; % end parameter values
            1,1,1,1; % region label to left
            0,0,0,0]; % region label to right
        X = A(:,bs); % return requested columns
        return
case 2
        x = cos(s);
        y = sin(s);
end
```

Plot the geometry displaying the edge numbers and the face label.

```
pdegplot(@circlefunction,'EdgeLabels','on','FaceLabels','on')
axis equal
```


Arc Length Calculations for a Geometry Function

This example shows how to create a cardioid geometry using four distinct techniques. The techniques are ways to parametrize your geometry using arc length calculations. The cardioid satisfies the equation $r=2(1+\cos (\Phi))$.

```
ezpolar('2*(1+cos(Phi))')
```


The following are the four ways to parametrize the cardioid as a function of the arc length:

- Use the pdearcl function with a polygonal approximation to the geometry. This approach is general, accurate enough, and computationally fast.
- Use the integral and fzero functions to compute the arc length. This approach is more computationally costly, but can be accurate without requiring you to choose an arbitrary polygon.
- Use an analytic calculation of the arc length. This approach is the best when it applies, but there are many cases where it does not apply.
- Use a parametrization that is not proportional to the arc length plus a constant. This approach is the simplest, but can yield a distorted mesh that does not give the most accurate solution to your PDE problem.

Polygonal Approximation

The finite element method uses a triangular mesh to approximate the solution to a PDE numerically. You can avoid loss in accuracy by taking a sufficiently fine polygonal approximation to the geometry. The pdearcl function maps between parametrization and arc length in a form well suited to a geometry function. Write the following geometry function for the cardioid.

```
function [x,y] = cardioid1(bs,s)
% CARDIOID1 Geometry file defining the geometry of a cardioid.
if nargin == 0
    x = 4; % four segments in boundary
    return
end
```

```
if nargin == 1
    dl = [0 pi/2 pi 3*pi/2
            pi/2 pi 3*pi/2 2*pi
            1 1
            0 0 0 0];
    x = dl(:,bs);
    return
end
x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % bs might need scalar expansion
    bs = bs*ones(size(s)); % expand bs
end
nth = 400; % fine polygon, 100 segments per quadrant
th = linspace(0,2*pi,nth); % parametrization
r = 2*(1 + cos(th));
xt = r.*cos(th); % Points for interpolation of arc lengths
yt = r.*sin(th);
% Compute parameters corresponding to the arc length values in s
th = pdearcl(th,[xt;yt],s,0,2*pi); % th contains the parameters
% Now compute x and y for the parameters th
r = 2*(1 + cos(th));
x(:) = r.*cos(th);
y(:) = r.*sin(th);
end
```

Plot the geometry function.

```
pdegplot('cardioid1','EdgeLabels','on')
```

axis equal

With 400 line segments, the geometry looks smooth.
The built-in cardg function gives a slightly different version of this technique.

Integral for Arc Length

You can write an integral for the arc length of a curve. If the parametrization is in terms of $x(u)$ and $y(u)$, then the arc length $s(t)$ is

$$
s(t)=\int_{0}^{t} \sqrt{\left(\frac{d x}{d u}\right)^{2}+\left(\frac{d y}{d u}\right)^{2}} d u .
$$

For a given value $s 0$, you can find t as the root of the equation $s(t)=s 0$. The fzero function solves this type of nonlinear equation.

Write the following geometry function for the cardioid example.

```
function [x,y] = cardioid2(bs,s)
% CARDIOID2 Geometry file defining the geometry of a cardioid.
if nargin == 0
    x = 4; % four segments in boundary
    return
end
if nargin == 1
    dl = [lllll}
```

```
                pi/2 pi 3*pi/2 2*pi
            1 1 1 1 1 
            0 0 0 0];
    x = dl(:,bs);
    return
end
x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % bs might need scalar expansion
    bs = bs*ones(size(s)); % expand bs
end
cbs = find(bs < 3); % upper half of cardioid
fun = @(ss)integral(@(t)sqrt(4*(1 + cos(t)).^2 + 4*sin(t).^2),0,ss);
sscale = fun(pi);
for ii = cbs(:)' % ensure a row vector
    myfun = @(rr)fun(rr)-s(ii)*sscale/pi;
    theta = fzero(myfun,[0,pi]);
        r = 2*(1 + cos(theta));
        x(ii) = r*
        y(ii) = r*sin(theta);
end
cbs = find(bs >= 3); % lower half of cardioid
s(cbs) = 2*pi - s(cbs);
for ii = cbs(:)'
    theta = fzero(@(rr)fun(rr)-s(ii)*sscale/pi,[0,pi]);
    r = 2*(1 + cos(theta));
    x(ii) = r*cos(theta);
    y(ii) = -r*sin(theta);
end
end
```

Plot the geometry function displaying the edge labels.

```
pdegplot('cardioid2','EdgeLabels','on')
axis equal
```


The geometry looks identical to the polygonal approximation. This integral version takes much longer to calculate than the polygonal version.

Analytic Arc Length

You also can find an analytic expression for the arc length as a function of the parametrization. Then you can give the parametrization in terms of arc length. For example, find an analytic expression for the arc length by using Symbolic Math Toolbox ${ }^{\mathrm{TM}}$.

```
syms t real
r = 2*(1+cos(t));
x = r*
y = r*sin(t);
arcl = simplify(sqrt(diff(x)^2+diff(y)^2));
s = int(arcl,t,0,t,'IgnoreAnalyticConstraints',true)
S =
    8 sin}(\frac{t}{2}
```

In terms of the arc length s, the parameter t is $t=2 * \operatorname{asin}(s / 8)$, where s ranges from 0 to 8 , corresponding to t ranging from 0 to Π. For s between 8 and 16, by symmetry of the cardioid, $\mathrm{t}=$ pi $+2 *$ asin ((16-s)/8). Furthermore, you can express x and y in terms of s by these analytic calculations.
syms s real
th $=2 * \operatorname{asin}(\mathrm{~s} / 8)$;

```
r = 2*(1 + cos(th));
r = expand(r)
r =
    4-\frac{s}{16}
x = r*}\operatorname{cos(th);
x = simplify(expand(x))
x =
    s}\frac{\mp@subsup{s}{}{4}}{512}-\frac{3\mp@subsup{s}{}{2}}{16}+
y = r*sin(th);
y = simplify(expand(y))
y =
    s(64-\mp@subsup{s}{}{2}\mp@subsup{)}{}{3/2}
```

Now that you have analytic expressions for x and y in terms of the arc length s, write the geometry function.

```
function [x,y] = cardioid3(bs,s)
% CARDIOID3 Geometry file defining the geometry of a cardioid.
if nargin == 0
    x = 4; % four segments in boundary
    return
end
if nargin == 1
dl = [0 [4 4 8 12
            4
            1
            0 0 0 0];
    x = dl(:,bs);
    return
end
x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % bs might need scalar expansion
    bs = bs*ones(size(s)); % expand bs
end
cbs = find(bs < 3); % upper half of cardioid
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs >= 3); % lower half
s(cbs) = 16 - s(cbs); % take the reflection
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).^2).^(3/2)/512; % negate y
end
```

Plot the geometry function displaying the edge labels.

```
pdegplot('cardioid3','EdgeLabels','on')
```

axis equal

This analytic geometry looks slightly smoother than the previous versions. However, the difference is inconsequential in terms of calculations.

Geometry Not Proportional to Arc Length

You also can write a geometry function where the parameter is not proportional to the arc length. This approach can yield a distorted mesh.

```
function [x,y] = cardioid4(bs,s)
% CARDIOID4 Geometry file defining the geometry of a cardioid.
if nargin == 0
    x = 4; % four segments in boundary
    return
end
if nargin == 1
    dl = [0 0 pi/2 pi 
                pi/2 pi 3*pi/2 2*pi
            lllll
    x = dl(:,bs);
    return
end
```

```
r = 2*(1 + cos(s)); % s is not proportional to arc length
x = r.*
y = r.*sin(s);
end
```

Plot the geometry function displaying the edge labels.

```
pdegplot('cardioid4','EdgeLabels','on')
```

axis equal

The labels are not evenly spaced on the edges because the parameter is not proportional to the arc length.

Examine the default mesh for each of the four methods of creating a geometry.

```
subplot(2,2,1)
model = createpde;
geometryFromEdges(model,@cardioid1);
generateMesh(model);
pdeplot(model)
title('Polygons')
axis equal
subplot(2,2,2)
model = createpde;
geometryFromEdges(model,@cardioid2);
generateMesh(model);
pdeplot(model)
```

```
title('Integral')
axis equal
subplot(2,2,3)
model = createpde;
geometryFromEdges(model,@cardioid3);
generateMesh(model);
pdeplot(model)
title('Analytic')
axis equal
subplot(2,2,4)
model = createpde;
geometryFromEdges(model,@cardioid4);
generateMesh(model);
pdeplot(model)
title('Distorted')
axis equal
```


The distorted mesh looks a bit less regular than the other meshes. It has some very narrow triangles near the cusp of the cardioid. Nevertheless, all of the meshes appear to be usable.

Geometry Function Example with Subdomains and a Hole

This example shows how to create a geometry file for a region with subdomains and a hole. It uses the "Analytic Arc Length" section of the "Arc Length Calculations for a Geometry Function" example
and a variant of the circle function from "Geometry Function for a Circle". The geometry consists of an outer cardioid that is divided into an upper half called subdomain 1 and a lower half called subdomain 2 . Also, the lower half has a circular hole centered at $(1,-1)$ and of radius $1 / 2$. The following is the code of the geometry function.

```
function [x,y] = cardg3(bs,s)
% CARDG3 Geometry File defining the geometry of a cardioid with two
% subregions and a hole.
if nargin == 0
    x = 9; % 9 segments
    return
end
if nargin == 1
    % Outer cardioid
        dl = [0 [4 4 8 12
                4 8 8 12 16
                1
        % Dividing line between top and bottom
        dl2 = [0
            4
            1% Region 1 to the left
            2]; % Region 2 to the right
        % Inner circular hole
        dl3 = [lllll}
            pi/2 pi 3*pi/2 2*pi
            0}00000% To the left is empty
            2 2 2 2]; % To the right is region 2
        % Combine the three edge matrices
        dl = [dl,dl2,dl3];
        x = dl(:,bs);
        return
end
x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % Does bs need scalar expansion?
        bs = bs*ones(size(s)); % Expand bs
end
cbs = find(bs < 3); % Upper half of cardioid
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs >= 3 & bs <= 4); % Lower half of cardioid
s(cbs) = 16 - s(cbs);
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs == 5); % Index of straight line
x(cbs) = s(cbs);
y(cbs) = zeros(size(cbs));
cbs = find(bs > 5); % Inner circle radius 0.25 center (1,-1)
x(cbs) = 1 + 0.25*cos(s(cbs));
y(cbs) = -1 + 0.25*sin(s(cbs));
end
```

Plot the geometry, including edge labels and subdomain labels.

```
pdegplot(@cardg3,'EdgeLabels','on','FaceLabels','on')
axis equal
```


Nested Function for Geometry with Additional Parameters

This example shows how to include additional parameters into a function for creating a 2-D geometry.
When a 2-D geometry function requires additional parameters, you cannot use a standard anonymous function approach because geometry functions return a varying number of arguments. Instead, you can use global variables or nested functions. In most cases, the recommended approach is to use nested functions.

The example solves a Poisson's equation with zero Dirichlet boundary conditions on all boundaries. The geometry is a cardioid with an elliptic hole that has a center at ($1,-1$) and variable semiaxes. To set up and solve the PDE model with this geometry, use a nested function. Here, the parent function accepts the lengths of the semiaxes, rr and ss, as input parameters. The reason to nest cardioidWithEllipseGeom within cardioidWithEllipseModel is that nested functions share the workspace of their parent functions. Therefore, the cardioidWithEllipseGeom function can access the values of $r r$ and ss that you pass to cardioidWithEllipseModel.

```
function cardioidWithEllipseModel(rr,ss)
if (rr > 0) & (ss > 0)
    model = createpde();
    geometryFromEdges(model,@cardioidWithEllipseGeom);
    pdegplot(model,'EdgeLabels','on','FaceLabels','on')
    axis equal
```

```
    applyBoundaryCondition(model,'dirichlet','Edge',1:8,'u',0);
    specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);
    generateMesh(model);
    u = solvepde(model);
    figure
    pdeplot(model,'XYData',u.NodalSolution)
    axis equal
else
    display('Semiaxes values must be positive numbers.')
end
function [x,y] = cardioidWithEllipseGeom(bs,s)
if nargin == 0
    x = 8; % eight segments in boundary
    return
end
if nargin == 1
        % Cardioid
        dlc = [ 0 0rrrre
            1
            0 0 0 0];
        % Ellipse
        dle = [0 pi/2 pi 
            pi/2 pi 3*pi/2 2*pi
            0 0 0 0
            1 1 1 1];
        % Combine the edge matrices
        dl = [dlc,dle];
        x = dl(:,bs);
        return
end
x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % Does bs need scalar expansion?
    bs = bs*ones(size(s)); % Expand bs
end
cbs = find(bs < 3); % Upper half of cardioid
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs >= 3 & bs <= 4); % Lower half of cardioid
s(cbs) = 16 - s(cbs);
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs > 4); % Inner ellipse center (1,-1) axes rr and ss
x(cbs) = 1 + rr*cos(s(cbs));
y(cbs) = -1 + ss*sin(s(cbs));
end
end
```

When calling cardioidWithEllipseModel, ensure that the semiaxes values are small enough, so that the elliptic hole appears entirely within the outer cardioid. Otherwise, the geometry becomes invalid.

For example, call the function for the ellipse with the major semiaxis $r r=0.5$ and the minor semiaxis $s s=0.25$. This function call returns the following geometry and the solution.
cardioidWithEllipseModel(0.5,0.25)

Geometry from polyshape

This example shows how to create a polygonal geometry using the MATLAB polyshape function. Then use the triangulated representation of the geometry as an input mesh for the geometryFromMesh function.

Create and plot a polyshape object of a square with a hole.

```
t = pi/12:pi/12:2*pi;
pgon = polyshape({[-0.5 -0.5 0.5 0.5], 0.25*\operatorname{cos(t)}, ...}
    {[0.5 -0.5 -0.5 0.5], 0.25*sin(t)})
pgon =
    polyshape with properties:
        Vertices: [29x2 double]
        NumRegions: 1
            NumHoles: 1
plot(pgon)
axis equal
```


Create a triangulation representation of this object.

```
tr = triangulation(pgon);
```

Create a PDE model.
model = createpde;
With the triangulation data as a mesh, use the geomet ryFromMesh function to create a geometry. Plot the geometry.
tnodes $=$ tr. Points';
telements = tr.ConnectivityList';
geometryFromMesh(model,tnodes,telements);
pdegplot(model)

Plot the mesh.
figure
pdemesh(model)

Because the triangulation data resulted in a low-quality mesh, generate a new finer mesh for further analysis.
generateMesh(model)
ans =
FEMesh with properties:
Nodes: [2×1259 double]
Elements: [6x579 double]
MaxElementSize: 0.0566
MinElementSize: 0.0283
MeshGradation: 1.5000
GeometricOrder: 'quadratic'

Plot the mesh.
figure
pdemesh(model)

STL File Import

This example shows how to import a geometry from an STL file, and then plot the geometry. Generally, you create the STL file by exporting from a CAD system, such as SolidWorks®. For best results, export a fine (not coarse) STL file in binary (not ASCII) format. After importing, view the geometry using the pdegplot function. To see the face IDs, set the FaceLabels name-value pair to 'on'.

View the geometry examples included with Partial Differential Equation Toolbox ${ }^{\mathrm{TM}}$.
figure
gm = importGeometry('Torus.stl');
pdegplot(gm)

figure
gm = importGeometry('Block.stl');
pdegplot(gm,'FaceLabels','on')

figure
gm = importGeometry('Plate10x10x1.stl');
pdegplot(gm,'FaceLabels','on')

figure
gm = importGeometry('Tetrahedron.stl');
pdegplot(gm,'FaceLabels','on')

figure
gm = importGeometry('BracketWithHole.stl'); pdegplot(gm,'FaceLabels','on')

figure
gm = importGeometry('DampingMounts.stl');
pdegplot(gm,'CellLabels','on')

figure
gm = importGeometry('MotherboardFragment1.STL');
pdegplot(gm)

figure
gm = importGeometry('PlateHoleSolid.stl');
pdegplot(gm, 'FaceLabels', 'on')

figure
gm = importGeometry('PlateSquareHoleSolid.stl');
pdegplot(gm)

figure
gm = importGeometry('SquareBeam.STL');
pdegplot(gm,'FaceLabels','on')

figure
gm = importGeometry('BracketTwoHoles.stl');
pdegplot(gm,'FaceLabels','on')

To see hidden portions of the geometry, rotate the figure using Rotate 3D button or the view function. You can rotate the angle bracket to obtain the following view.

```
figure
pdegplot(gm,'FaceLabels','on')
view([-24 -19])
```


figure
gm = importGeometry('ForearmLink.stl'); pdegplot(gm,'FaceLabels','on');

figure
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.5)

When you import a planar STL geometry, the toolbox converts it to a 2-D geometry by mapping it to the X-Y plane.
figure
gm = importGeometry('PlateHolePlanar.stl');
pdegplot(gm,'EdgeLabels','on')

figure
gm = importGeometry('PlateSquareHolePlanar.stl'); pdegplot(gm);

Geometry from Triangulated Mesh

3-D Geometry from a Finite Element Mesh

This example shows how to import a 3-D mesh into a PDE model. Importing a mesh creates the corresponding geometry in the model.

The tetmesh file that ships with your software contains a 3-D mesh. Load the data into your Workspace.
load tetmesh
Examine the node and element sizes.
size(tet)
ans $=1 \times 2$
$4969 \quad 4$
size(X)
ans $=1 \times 2$
1456
3

The data is transposed from the required form as described in geomet ryFromMesh.
Create data matrices of the appropriate sizes.

```
nodes = X';
elements = tet';
```

Create a PDE model and import the mesh.
model = createpde();
geometryFromMesh(model, nodes, elements) ;
The model contains the imported mesh.

```
model.Mesh
ans =
    FEMesh with properties:
                    Nodes: [3x1456 double]
            Elements: [4x4969 double]
        MaxElementSize: 8.2971
        MinElementSize: 1.9044
            MeshGradation: []
        GeometricOrder: 'linear'
```

View the geometry and face numbers.

```
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
```


2-D Multidomain Geometry

Create a 2-D multidomain geometry from a mesh.
Load information about nodes, elements, and element-to-domain correspondence into your workspace. The file MultidomainMesh2D ships with your software.
load MultidomainMesh2D
Create a PDE model.
model = createpde;
Import the mesh into the model.
geometryFromMesh(model, nodes, elements, ElementIdToRegionId);
View the geometry and face numbers.
pdegplot(model,'FaceLabels','on')

Geometry from alphaShape

Create a 3-D geometry using the MATLAB alphaShape function. First, create an alphaShape object of a block with a cylindrical hole. Then import the geometry into a PDE model from the alphaShape boundary.

Create a 2-D mesh grid.

```
[xg,yg] = meshgrid(-3:0.25:3);
xg = xg(:);
yg = yg(:);
```

Create a unit disk. Remove all the mesh grid points that fall inside the unit disk, and include the unit disk points.

```
t = (pi/24:pi/24:2*pi)';
x = cos(t);
y = sin(t);
circShp = alphaShape(x,y,2);
in = inShape(circShp,xg,yg);
xg = [xg(~in); cos(t)];
yg = [yg(~in); sin(t)];
```

Create 3-D copies of the remaining mesh grid points, with the z-coordinates ranging from 0 through 1. Combine the points into an alphaShape object.

```
zg = ones(numel(xg),1);
xg = repmat(xg,5,1);
yg = repmat(yg,5,1);
zg = zg*(0:.25:1);
zg = zg(:);
shp = alphaShape(xg,yg,zg);
```

Obtain a surface mesh of the alphaShape object.

```
[elements,nodes] = boundaryFacets(shp);
```

Put the data in the correct shape for geometryFromMesh.

```
nodes = nodes';
elements = elements';
```

Create a PDE model and import the surface mesh.

```
model = createpde();
```

geometryFromMesh(model, nodes, elements);

View the geometry and face numbers.

```
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
```


To use the geometry in an analysis, create a volume mesh.
generateMesh(model);

Cuboids, Cylinders, and Spheres

This example shows how to create 3-D geometries formed by one or more cubic, cylindrical, and spherical cells by using the multicuboid, multicylinder, and multisphere functions, respectively. With these functions, you can create stacked or nested geometries. You also can create geometries where some cells are empty; for example, hollow cylinders, cubes, or spheres.

All cells in a geometry must be of the same type: either cuboids, or cylinders, or spheres. These functions do not combine cells of different types in one geometry.

Single Sphere

Create a geometry that consists of a single sphere and include this geometry in a PDE model.
Use the multisphere function to create a single sphere. The resulting geometry consists of one cell.

```
gm = multisphere(5)
gm =
    DiscreteGeometry with properties:
```

 NumCells: 1
 NumFaces: 1
 NumEdges: 0
 NumVertices: 0
 Vertices: []
 Create a PDE model.

```
model = createpde
model =
    PDEModel with properties:
            PDESystemSize: 1
            IsTimeDependent: 0
                    Geometry: []
        EquationCoefficients: []
            BoundaryConditions: []
            InitialConditions: []
                            Mesh: []
                            SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
model =
    PDEModel with properties:
            PDESystemSize: 1
            IsTimeDependent: 0
                            Geometry: [1x1 DiscreteGeometry]
        EquationCoefficients: []
            BoundaryConditions: []
            InitialConditions: []
```

Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.
pdegplot(model,'CellLabels','on')

Nested Cuboids of Same Height

Create a geometry that consists of three nested cuboids of the same height and include this geometry in a PDE model.

Create the geometry by using the multicuboid function. The resulting geometry consists of three cells.

```
gm = multicuboid([2 3 5],[4 6 10],3)
gm =
    DiscreteGeometry with properties:
```

 NumCells: 3
 NumFaces: 18
 NumEdges: 36
 NumVertices: 24
 Vertices: [24×3 double]
 Create a PDE model.

```
model = createpde
model =
    PDEModel with properties:
            PDESystemSize: 1
            IsTimeDependent: 0
                Geometry: []
            EquationCoefficients: []
                BoundaryConditions: []
                InitialConditions: []
                    Mesh: []
                    SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
model =
    PDEModel with properties:
            PDESystemSize: 1
            IsTimeDependent: 0
                Geometry: [1x1 DiscreteGeometry]
        EquationCoefficients: []
            BoundaryConditions: []
                InitialConditions: []
                    Mesh: []
                SolverOptions: [1x1 pde.PDESolverOptions]
```

Plot the geometry.
pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

Stacked Cylinders

Create a geometry that consists of three stacked cylinders and include this geometry in a PDE model.
Create the geometry by using the multicylinder function with the ZOffset argument. The resulting geometry consists of four cells stacked on top of each other.

```
gm = multicylinder(10,[1 2 3 4],'ZOffset',[0 1 3 6])
gm =
    DiscreteGeometry with properties:
        NumCells: 4
        NumFaces: 9
        NumEdges: 5
        NumVertices: 5
            Vertices: [5x3 double]
```

Create a PDE model.

```
model = createpde
```

model =
PDEModel with properties:

Geometry: []
EquationCoefficients: [] BoundaryConditions: [] InitialConditions: []

Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

```
model.Geometry = gm
model =
    PDEModel with properties:
            PDESystemSize: 1
            IsTimeDependent: 0
                Geometry: [1x1 DiscreteGeometry]
EquationCoefficients: []
        BoundaryConditions: []
            InitialConditions: []
                        Mesh: []
            SolverOptions: [1x1 pde.PDESolverOptions]
```

Plot the geometry.

```
pdegplot(model,'CellLabels','on','FaceAlpha',0.5)
```


Hollow Cylinder

Create a hollow cylinder and include it as a geometry in a PDE model.
Create a hollow cylinder by using the multicylinder function with the Void argument. The resulting geometry consists of one cell.

```
gm = multicylinder([9 10],10,'Void',[true,false])
gm =
    DiscreteGeometry with properties:
        NumCells: 1
        NumFaces: 4
            NumEdges: 4
        NumVertices: 4
            Vertices: [4x3 double]
```

Create a PDE model.

```
model = createpde
model =
    PDEModel with properties:
            PDESystemSize: 1
                IsTimeDependent: 0
                    Geometry: []
        EquationCoefficients: []
            BoundaryConditions: []
            InitialConditions: []
                    Mesh: []
                    SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
model =
    PDEModel with properties:
            PDESystemSize: 1
            IsTimeDependent: 0
                            Geometry: [1x1 DiscreteGeometry]
        EquationCoefficients: []
            BoundaryConditions: []
            InitialConditions: []
                            Mesh: []
                            SolverOptions: [1x1 pde.PDESolverOptions]
```

Plot the geometry.

```
pdegplot(model,'CellLabels','on','FaceAlpha',0.5)
```


Sphere in Cube

This example shows how to create a nested multidomain geometry consisting of a unit sphere and a cube. The first part of the example creates a cube with a spherical cavity by using alphaShape. The second part creates a solid sphere using tetrahedral elements, and then combines all tetrahedral elements to obtain a solid sphere embedded in a cube.

Cube with Spherical Cavity

First, create a geometry consisting of a cube with a spherical cavity. This geometry has one cell.
Create a 3-D rectangular mesh grid.
$[x g, y g, z g]=$ meshgrid(-2:0.25:2);
Pcube = [xg(:) yg(:), zg(:)];
Extract the grid points located outside of the unit spherical region.

```
Pcavitycube = Pcube(vecnorm(Pcube') > 1,:);
```

Create points on the unit sphere.

```
[x1,y1,z1] = sphere(24);
Psphere = [x1(:) y1(:) z1(:)];
Psphere = unique(Psphere,'rows');
```

Combine the coordinates of the rectangular grid (without the points inside the sphere) and the surface coordinates of the unit sphere.

Pcombined = [Pcavitycube;Psphere];
Create an alphaShape object representing the cube with the spherical cavity.

```
shpCubeWithSphericalCavity = alphaShape(Pcombined(:,1), ...
                                    Pcombined(:,2), ...
                                    Pcombined(:,3));
```

figure
plot(shpCubeWithSphericalCavity, 'FaceAlpha', 0.4)
title('alphaShape: Cube with Spherical Cavity')

Recover the triangulation that defines the domain of the alphaShape object.
[tri,loc] = alphaTriangulation(shpCubeWithSphericalCavity);
Create a PDE model.
modelCube = createpde;
Create a geometry from the mesh and import the geometry and the mesh into the model.
[gCube,mshCube] = geometryFromMesh(modelCube,loc',tri');
Plot the resulting geometry.
figure
pdegplot(modelCube,' FaceAlpha',0.5,'CellLabels','on')
title('PDEModel: Cube with Spherical Cavity')

PDEModel: Cube with Spherical Cavity

Solid Sphere Nested in Cube

Create tetrahedral elements to form a solid sphere by using the spherical shell and adding a new node at the center. First, obtain the spherical shell by extracting facets of the spherical boundary.
sphereFacets = boundaryFacets(mshCube,'Face',3);
sphereNodes = findNodes(mshCube,'region','Face',3);
Add a new node at the center.
newNodeID = size(mshCube.Nodes, 2) + 1;
Construct the tetrahedral elements by using each of the three nodes on the spherical boundary facets and the new node at the origin.
sphereTets $=$ [sphereFacets; newNodeID*ones(1,size(sphereFacets,2))];
Create a model that combines the cube with the spherical cavity and a sphere.
model = createpde;
Create a vector that maps all mshCube elements to cell 1, and all elements of the solid sphere to cell 2.
e2c = [ones(1,size(mshCube.Elements,2)), 2*ones(1,size(sphereTets,2))];
Add a new node at the center $[0 ; 0 ; 0]$ to the nodes of the cube with the cavity.

```
combinedNodes = [mshCube.Nodes,[0;0;0]];
```

Combine the element connectivity matrices.

```
combinedElements = [mshCube.Elements,sphereTets];
```

Create a two-cell geometry from the mesh.
[g,msh] = geometryFromMesh(model,combinedNodes,combinedElements,e2c);
figure
pdegplot(model,'FaceAlpha', 0.5,'CellLabels','on')
title('Solid Sphere in Cube')

Solid Sphere in Cube

3-D Multidomain Geometry from 2-D Geometry

This example shows how to create a 3-D multidomain geometry by extruding a 2-D geometry imported from STL data. The original 2-D geometry represents a cooled turbine blade section defined by a 2-D profile.

Before extruding the geometry, this example modifies the original 2-D profile as follows:

- Translates the geometry to move the tip to the origin
- Aligns the chord with the x-axis
- Changes the dimensions from inches to millimeters

First, create a PDE model.
model $=$ createpde;
Import the geometry into the model.
$\mathrm{g}=$ importGeometry(model,'CooledBlade2D.STL');
Plot the geometry with the face labels.
figure
pdegplot(model,'FaceLabels','on')

Translate the geometry to align the tip of the blade with the origin.

```
tip = [1.802091,-127.98192215];
translate(g,tip);
```

Rotate the geometry to align the chord with the x-axis.
angle $=-36.26005 ;$
rotate(g, angle);
Scale the geometry to convert from inches to millimeters.
scale(g,[25.4-25.4]);
Plot the resulting geometry with the face labels.
figure
pdegplot(model,'FaceLabels','on')

Fill the void regions with faces and plot the resulting geometry.
$\mathrm{g}=\operatorname{addFace}(\mathrm{g},\{3,4,5,6,7\})$;
figure
pdegplot(model,'FaceLabels','on')

Extrude the geometry to create a stacked multilayer 3-D model of the blade. The thickness of each layer is 200 mm .
$g=$ extrude(g,[200 200 200]);
Plot the geometry with the cell labels.
figure
pdegplot(model,'CellLabels','on','FaceAlpha', 0.5)

Multidomain Geometry Reconstructed from Mesh

This example shows how to split a single-domain block geometry into two domains. The first part of the example generates a mesh and divides the mesh elements into two groups. The second part of the example creates a two-domain geometry based on this division.

Generate Mesh and Split Its Elements into Two Groups
Create a PDE model.
modelSingleDomain = createpde;
Import the geometry.
importGeometry(modelSingleDomain, 'Block.stl');
Generate and plot a mesh.
msh = generateMesh(modelSingleDomain);
figure
pdemesh(modelSingleDomain)

Obtain the nodes and elements of the mesh.

```
nodes = msh.Nodes;
elements = msh.Elements;
```

Find the x-coordinates of the geometric centers of all elements of the mesh. First, create an array of the same size as elements that contains the x-coordinates of the nodes forming the mesh elements. Each column of this vector contains the x-coordinates of 10 nodes that form an element.

```
elemXCoords = reshape(nodes(1,elements),10,[]);
```

Compute the mean of each column of this array to get a vector of the x-coordinates of the element geometric centers.
elemXCoordsGeometricCenter = mean(elemXCoords);
Assume that all elements have the same region ID and create a matrix ElementIdToRegionId.

```
ElementIdToRegionId = ones(1,size(elements,2));
```

Find IDs of all elements for which the x-coordinate of the geometric center exceeds 30 .

```
idx = mean(elemXCoords) > 30;
```

For the elements with centers located beyond $x=30$, change the region IDs to 2 .
ElementIdToRegionId(idx) $=2$;

Create Geometry with Two Cells

Create a new PDE model.
modelTwoDomain = createpde;
Using geomet ryFromMesh, import the mesh. Assign the elements to two cells based on their IDs.
geometryFromMesh(modelTwoDomain, nodes, elements,ElementIdToRegionId)
ans =
DiscreteGeometry with properties:
NumCells: 2
NumFaces: 108
NumEdges: 205
NumVertices: 100
Vertices: [100x3 double]

Plot the geometry, displaying the cell labels.

```
pdegplot(modelTwoDomain,'CellLabels','on','FaceAlpha',0.5)
```


Highlight the elements from cell 1 in red and the elements from cell 2 in green.
elementIDsCell1 = findElements(modelTwoDomain.Mesh,'region','Cell',1); elementIDsCell2 = findElements(modelTwoDomain.Mesh,'region','Cell',2);
figure
pdemesh(modelTwoDomain.Mesh.Nodes, ...
modelTwoDomain.Mesh.Elements(:,elementIDsCell1), ... 'FaceColor','red')
hold on
pdemesh(modelTwoDomain.Mesh.Nodes, ...
modelTwoDomain.Mesh.Elements(:,elementIDsCell2), ...
'FaceColor','green')

Put Equations in Divergence Form

In this section...

"Coefficient Matching for Divergence Form" on page 2-71
"Boundary Conditions Can Affect the c Coefficient" on page 2-72
"Coefficient Conversion with Symbolic Math Toolbox" on page 2-72
"Some Equations Cannot Be Converted" on page 2-73

Coefficient Matching for Divergence Form

As explained in "Equations You Can Solve Using PDE Toolbox" on page 1-3, Partial Differential Equation Toolbox solvers address equations of the form

$$
-\nabla \cdot(c \nabla u)+a u=f
$$

or variants that have derivatives with respect to time, or that have eigenvalues, or are systems of equations. These equations are in divergence form, where the differential operator begins $\nabla \cdot$. The coefficients a, c, and f are functions of position (x, y, z) and possibly of the solution u.

However, you can have equations in a form with all the derivatives explicitly expanded, such as

$$
\left(1+x^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}-3 x y \frac{\partial^{2} u}{\partial x \partial y}+\frac{\left(1+y^{2}\right)}{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

In order to transform this expanded equation into the required form, you can try to match the coefficients of the equation in divergence form to the expanded form. In divergence form, if

$$
c=\left(\begin{array}{ll}
c_{1} & c_{3} \\
c_{2} & c_{4}
\end{array}\right)
$$

then

$$
\begin{aligned}
\nabla \cdot & (c \nabla u)=c_{1} u_{x x}+\left(c_{2}+c_{3}\right) u_{x y}+c_{4} u_{y y} \\
& +\left(\frac{\partial c_{1}}{\partial x}+\frac{\partial c_{2}}{\partial y}\right) u_{x}+\left(\frac{\partial c_{3}}{\partial x}+\frac{\partial c_{4}}{\partial y}\right) u_{y}
\end{aligned}
$$

Matching coefficients in the $u_{x x}$ and $u_{y y}$ terms in $-\nabla \cdot(c \nabla u)$ to the equation, you get

$$
\begin{aligned}
& c_{1}=-\left(1+x^{2}\right) \\
& c_{4}=-\left(1+y^{2}\right) / 2
\end{aligned}
$$

Then looking at the coefficients of u_{x} and u_{y}, which should be zero, you get

$$
\begin{aligned}
& \left(\frac{\partial c_{1}}{\partial x}+\frac{\partial C_{2}}{\partial y}\right)=-2 x+\frac{\partial C_{2}}{\partial y} \\
& \text { so } \\
& c_{2}=2 x y . \\
& \left(\frac{\partial c_{3}}{\partial x}+\frac{\partial C_{4}}{\partial y}\right)=\frac{\partial C_{3}}{\partial x}-y \\
& \text { so } \\
& c_{3}=x y
\end{aligned}
$$

This completes the conversion of the equation to the divergence form
$-\nabla \cdot(c \nabla u)=0$

Boundary Conditions Can Affect the c Coefficient

The c coefficient appears in the generalized Neumann condition

$$
\vec{n} \cdot(c \nabla u)+q u=g
$$

So when you derive a divergence form of the c coefficient, keep in mind that this coefficient appears elsewhere.

For example, consider the 2-D Poisson equation $-u_{x x}-u_{y y}=f$. Obviously, you can take $c=1$. But there are other c matrices that lead to the same equation: any that have $c(2)+c(3)=0$.

$$
\begin{gathered}
\nabla \cdot(c \nabla u)=\nabla \cdot\left(\left(\begin{array}{ll}
c_{1} & c_{3} \\
c_{2} & c_{4}
\end{array}\right)\binom{u_{x}}{u_{y}}\right) \\
=\frac{\partial}{\partial x}\left(c_{1} u_{x}+c_{3} u_{y}\right)+\frac{\partial}{\partial y}\left(c_{2} u_{x}+c_{4} u_{y}\right) \\
=c_{1} u_{x x}+c_{4} u_{y y}+\left(c_{2}+c_{3}\right) u_{x y}
\end{gathered}
$$

So there is freedom in choosing a c matrix. If you have a Neumann boundary condition such as

$$
\vec{n} \cdot(c \nabla u)=2
$$

the boundary condition depends on which version of c you use. In this case, make sure that you take a version of c that is compatible with both the equation and the boundary condition.

Coefficient Conversion with Symbolic Math Toolbox

You can transform a partial differential equation into the required form by using Symbolic Math Toolbox ${ }^{\mathrm{TM}}$. The toolbox offers these two functions to help with the conversion:

- pdeCoefficients converts a PDE into the required form and extracts the coefficients into a structure of double-precision numbers and function handles, which can be used by specifyCoefficients. The pdeCoefficients function also can return a structure of symbolic expressions, in which case you need to convert these expressions to double format before passing them to specifyCoefficients.
- pdeCoefficientsToDouble converts symbolic PDE coefficients to double format.
"Solve Partial Differential Equation of Nonlinear Heat Transfer" (Symbolic Math Toolbox) shows how the Symbolic Math Toolbox functions can help you convert a PDE to the required form. "Nonlinear Heat Transfer in Thin Plate" on page 3-170 shows the same example without the use of Symbolic Math Toolbox.

Some Equations Cannot Be Converted

Sometimes it is not possible to find a conversion to a divergence form such as

$$
-\nabla \cdot(c \nabla u)+a u=f
$$

For example, consider the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\cos (x+y)}{4} \frac{\partial^{2} u}{\partial x \partial y}+\frac{1}{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

By simple coefficient matching, you see that the coefficients c_{1} and c_{4} are -1 and $-1 / 2$ respectively. However, there are no c_{2} and c_{3} that satisfy the remaining equations,

$$
\begin{aligned}
& c_{2}+c_{3}=\frac{-\cos (x+y)}{4} \\
& \frac{\partial c_{1}}{\partial x}+\frac{\partial c_{2}}{\partial y}=\frac{\partial c_{2}}{\partial y}=0 \\
& \frac{\partial c_{3}}{\partial x}+\frac{\partial c_{4}}{\partial y}=\frac{\partial c_{3}}{\partial x}=0
\end{aligned}
$$

See Also

Related Examples

- "Equations You Can Solve Using PDE Toolbox" on page 1-3
- "Solve Problems Using PDEModel Objects" on page 2-2
- "Solve Partial Differential Equation of Nonlinear Heat Transfer" (Symbolic Math Toolbox)

f Coefficient for specifyCoefficients

This section describes how to write the coefficient f in the equation

$$
m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

or in similar equations. The question is how to write the coefficient f for inclusion in the PDE model via specifyCoefficients.
N is the number of equations, see "Equations You Can Solve Using PDE Toolbox" on page 1-3. Give f as either of the following:

- If f is constant, give a column vector with N components. For example, if $N=3, \mathrm{f}$ could be:
$\mathrm{f}=[3 ; 4 ; 10] ;$
- If f is not constant, give a function handle. The function must be of the form
fcoeffunction(location, state)
solvepde passes the location and state structures to fcoeffunction. The function must return a matrix of size N-by- $N r$, where $N r$ is the number of points in the location that solvepde passes. $N r$ is equal to the length of the location.x or any other location field. The function should evaluate f at these points.

Pass the coefficient to specifyCoefficients as a function handle, such as

```
specifyCoefficients(model,'f',@fcoeffunction,...)
```

- location is a structure with these fields:
- location.x
- location.y
- location.z
- location.subdomain

The fields x, y, and z represent the $x-, y$-, and z-coordinates of points for which your function calculates coefficient values. The subdomain field represents the subdomain numbers, which currently apply only to 2-D models. The location fields are row vectors.

- state is a structure with these fields:
- state.u
- state.ux
- state.uy
- state.uz
- state.time

The state.u field represents the current value of the solution u. The state.ux, state.uy, and state. uz fields are estimates of the solution's partial derivatives ($\partial u / \partial x, \partial u / \partial y$, and $\partial u / \partial z$) at the corresponding points of the location structure. The solution and gradient estimates are N-by- Nr matrices. The state. time field is a scalar representing time for time-dependent models.

For example, if $N=3$, f could be:

```
function f = fcoeffunction(location,state)
N = 3; % Number of equations
nr = length(location.x); % Number of columns
f = zeros(N,nr); % Allocate f
% Now the particular functional form of f
f(1,:) = location.x - location.y + state.u(1,:);
f(2,:) = 1 + tanh(state.ux(1,:)) + tanh(state.uy(3,:));
f(3,:) = (5 + state.u(3,:)).*sqrt(location.x.^2 + location.y.^2);
```

This represents the coefficient function

$$
\mathbf{f}=\left[\begin{array}{c}
x-y+u(1) \\
1+\tanh (\partial u(1) / \partial x)+\tanh (\partial u(3) / \partial y) \\
(5+u(3)) \sqrt{x^{2}+y^{2}}
\end{array}\right]
$$

See Also

Related Examples

- "Put Equations in Divergence Form" on page 2-71
- "Solve Problems Using PDEModel Objects" on page 2-2
- "m, d, or a Coefficient for specifyCoefficients" on page 2-91
- "c Coefficient for specifyCoefficients" on page 2-76

c Coefficient for specifyCoefficients

```
In this section...
"Overview of the c Coefficient" on page 2-76
"Definition of the c Tensor Elements" on page 2-76
"Some c Vectors Can Be Short" on page 2-78
"Functional Form" on page 2-88
```


Overview of the coefficient

This topic describes how to write the coefficient c in equations such as

$$
m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

The topic applies to the recommended workflow for including coefficients in your model using specifyCoefficients.

For 2-D systems, c is a tensor with $4 N^{2}$ elements. For 3-D systems, C is a tensor with $9 N^{2}$ elements. For a definition of the tensor elements, see "Definition of the c Tensor Elements" on page 2-76. N is the number of equations, see "Equations You Can Solve Using PDE Toolbox" on page 1-3.

To write the coefficient c for inclusion in the PDE model via specifyCoefficients, give c as either of the following:

- If c is constant, give a column vector representing the elements in the tensor.
- If c is not constant, give a function handle. The function must be of the form

```
ccoeffunction(location,state)
```

solvepde or solvepdeeig pass the location and state structures to ccoeffunction. The function must return a matrix of size $N 1$-by- Nr , where:

- $N 1$ is the length of the vector representing the c coefficient. There are several possible values of $N 1$, detailed in "Some c Vectors Can Be Short" on page 2-78. For 2-D geometry, $1 \leq N 1 \leq 4 N^{2}$, and for 3-D geometry, $1 \leq N 1 \leq 9 N^{2}$.
- $N r$ is the number of points in the location that the solver passes. $N r$ is equal to the length of the location. x or any other location field. The function should evaluate c at these points.

Definition of the c Tensor Elements

For 2-D systems, the notation $\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an N-by-1 matrix with an (i,1)-component

$$
\sum_{j=1}^{N}\left(\frac{\partial}{\partial x} c_{i, j, 1,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial x} c_{i, j, 1,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial y} c_{i, j, 2,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial y} c_{i, j, 2,2} \frac{\partial}{\partial y}\right) u_{j}
$$

For 3-D systems, the notation $\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an N-by-1 matrix with an (i,1)-component

$$
\begin{aligned}
& \sum_{j=1}^{N}\left(\frac{\partial}{\partial x} c_{i, j, 1,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial x} c_{i, j, 1,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial x} c_{i, j, 1,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\frac{\partial}{\partial y} c_{i, j, 2,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial y} c_{i, j, 2,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial y} c_{i, j, 2,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\frac{\partial}{\partial z} c_{i, j, 3,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial z} c_{i, j, 3,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial z} c_{i, j, 3,3} \frac{\partial}{\partial z}\right) u_{j}
\end{aligned}
$$

All representations of the c coefficient begin with a "flattening" of the tensor to a matrix. For 2-D systems, the N-by- N-by-2-by-2 tensor flattens to a $2 N$-by- $2 N$ matrix, where the matrix is logically an N-by- N matrix of 2-by-2 blocks.
$\left(\begin{array}{ccccccc}c(1,1,1,1) & c(1,1,1,2) & c(1,2,1,1) & c(1,2,1,2) & \cdots & c(1, N, 1,1) & c(1, N, 1,2) \\ c(1,1,2,1) & c(1,1,2,2) & c(1,2,2,1) & c(1,2,2,2) & \cdots & c(1, N, 2,1) & c(1, N, 2,2) \\ c(2,1,1,1) & c(2,1,1,2) & c(2,2,1,1) & c(2,2,1,2) & \cdots & c(2, N, 1,1) & c(2, N, 1,2) \\ c(2,1,2,1) & c(2,1,2,2) & c(2,2,2,1) & c(2,2,2,2) & \cdots & c(2, N, 2,1) & c(2, N, 2,2) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ c(N, 1,1,1) & c(N, 1,1,2) & c(N, 2,1,1) & c(N, 2,1,2) & \cdots & c(N, N, 1,1) & c(N, N, 1,2) \\ c(N, 1,2,1) & c(N, 1,2,2) & c(N, 2,2,1) & c(N, 2,2,2) & \cdots & c(N, N, 2,1) & c(N, N, 2,2)\end{array}\right)$

For 3-D systems, the N-by- N-by-3-by-3 tensor flattens to a $3 N$-by- $3 N$ matrix, where the matrix is logically an N-by- N matrix of 3-by-3 blocks.

$$
\begin{aligned}
& (c(1,1,1,1) \quad c(1,1,1,2) c(1,1,1,3) \quad c(1,2,1,1) c(1,2,1,2) \quad c(1,2,1,3) \cdots c(1, N, 1,1) c(1, N, 1,2) c(1, N, 1,3) \\
& c(1,1,2,1) \quad c(1,1,2,2) c(1,1,2,3) \quad c(1,2,2,1) \quad c(1,2,2,2) \quad c(1,2,2,3) \quad \cdots c(1, N, 2,1) c(1, N, 2,2) c(1, N, 2,3) \\
& c(1,1,3,1) \quad c(1,1,3,2) \quad c(1,1,3,3) \quad c(1,2,3,1) \quad c(1,2,3,2) \quad c(1,2,3,3) \quad \cdots c(1, N, 3,1) \quad c(1, N, 3,2) c(1, N, 3,3) \\
& c(2,1,1,1) \quad c(2,1,1,2) c(2,1,1,3) \quad c(2,2,1,1) \quad c(2,2,1,2) \quad c(2,2,1,3) \cdots c(2, N, 1,1) c(2, N, 1,2) c(2, N, 1,3) \\
& c(2,1,2,1) c(2,1,2,2) c(2,1,2,3) \quad c(2,2,2,1) \quad c(2,2,2,2) \quad c(2,2,2,3) \cdots c(2, N, 2,1) c(2, N, 2,2) c(2, N, 2,3) \\
& c(2,1,3,1) \quad c(2,1,3,2) \quad c(2,1,3,3) \quad c(2,2,3,1) \quad c(2,2,3,2) \quad c(2,2,3,3) \quad \cdots c(2, N, 3,1) \quad c(2, N, 3,2) c(2, N, 3,3) \\
& c(N, 1,1,1) c(N, 1,1,2) c(N, 1,1,3) c(N, 2,1,1) c(N, 2,1,2) c(N, 2,1,3) \cdots c(N, N, 1,1) c(N, N, 1,2) c(N, N, 1,3) \\
& c(N, 1,2,1) c(N, 1,2,2) c(N, 1,2,3) c(N, 2,2,1) c(N, 2,2,2) c(N, 2,2,3) \cdots c(N, N, 2,1) c(N, N, 2,2) c(N, N, 2,3) \\
& c(N, 1,3,1) c(N, 1,3,2) c(N, 1,3,3) \quad c(N, 2,3,1) c(N, 2,3,2) c(N, 2,3,3) \cdots c(N, N, 3,1) c(N, N, 3,2) c(N, N, 3,3)
\end{aligned}
$$

These matrices further get flattened into a column vector. First the N-by- N matrices of 2-by-2 and 3-by-3 blocks are transformed into "vectors" of 2-by-2 and 3-by-3 blocks. Then the blocks are turned into vectors in the usual column-wise way.

The coefficient vector c relates to the tensor \mathbf{c} as follows. For 2-D systems,

$$
\left.\left(\begin{array}{cccccc}
c(1) & c(3) & c(4 N+1) c(4 N+3) & \cdots & c(4 N(N-1)+1) & c(4 N(N-1)+3) \\
c(2) & c(4) & c(4 N+2) & c(4 N+4) & \cdots & c(4 N(N-1)+2) \\
c(4 N(N-1)+4) \\
c(5) & c(7) & c(4 N+5) & c(4 N+7) & \cdots & c(4 N(N-1)+5) \\
c(4 N(N-1)+7) \\
c(6) & c(8) & c(4 N+6) & c(4 N+8) & \cdots & c(4 N(N-1)+6) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots N(N-1)+8) \\
c(4 N-3) & c(4 N-1) & c(8 N-3) & c(8 N-1) & \cdots & c\left(4 N^{2}-3\right)
\end{array}\right] c\left(4 N^{2}-1\right)\right\}
$$

Coefficient $c(i, j, k, l)$ is in row $(4 N(j-1)+4 i+2 l+k-6)$ of the vector c.
For 3-D systems,

$c(1)$	$c(4)$	$c(7)$	$c(9 N+1)$	$c(9 N+4)$	$c(9 N+7)$	\cdots	$c(9 N(N-1)+1)$	$c(9 N(N-1)+4)$	$c(9 N(N-1)+7)$
$c(2)$	$c(5)$	$c(8)$	$c(9 N+2)$	$c(9 N+5)$	$c(9 N+8)$	\cdots	$c(9 N(N-1)+2)$	$c(9 N(N-1)+5)$	$c(9 N(N-1)+8)$
$c(3)$	$c(6)$	$c(9)$	$c(9 N+3)$	$c(9 N+6)$	$c(9 N+9)$	\cdots	$c(9 N(N-1)+3)$	$c(9 N(N-1)+6)$	$c(9 N(N-1)+9)$
$c(10)$	$c(13)$	$c(16)$	$c(9 N+10)$	$c(9 N+13)$	$c(9 N+16)$	\cdots	$c(9 N(N-1)+10)$	$c(9 N(N-1)+13)$	$c(9 N(N-1)+16)$
$c(11)$	$c(14)$	$c(17)$	$c(9 N+11)$	$c(9 N+14)$	$c(9 N+17)$	\cdots	$c(9 N(N-1)+11)$	$c(9 N(N-1)+14)$	$c(9 N(N-1)+17)$
$c(12)$	$c(15)$	$c(18)$	$c(9 N+12)$	$c(9 N+15)$	$c(9 N+18)$	\cdots	$c(9 N(N-1)+12)$	$c(9 N(N-1)+15)$	$c(9 N(N-1)+18)$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
$c(9 N-8)$	$c(9 N-5)$	$c(9 N-2)$	$c(18 N-8)$	$c(18 N-5)$	$c(18 N-2)$	\cdots	$c\left(9 N^{2}-8\right)$	$c\left(9 N^{2}-5\right)$	$c\left(9 N^{2}-2\right)$
$c(9 N-7)$	$c(9 N-4)$	$c(9 N-1)$	$c(18 N-7)$	$c(18 N-4)$	$c(18 N-1)$	\cdots	$c\left(9 N^{2}-7\right)$	$c\left(9 N^{2}-4\right)$	$c\left(9 N^{2}-1\right)$
$c(9 N-6)$	$c(9 N-3)$	$c(9 N)$	$c(18 N-6)$	$c(18 N-3)$	$c(18 N)$	\cdots	$c\left(9 N^{2}-6\right)$	$c\left(9 N^{2}-3\right)$	$c\left(9 N^{2}\right)$

Coefficient $c(i, j, k, l)$ is in row $(9 N(j-1)+9 i+3 l+k-12)$ of the vector c.

Some c Vectors Can Be Short

Often, your tensor chas structure, such as symmetric or block diagonal. In many cases, you can represent \mathbf{c} using a smaller vector than one with $4 N^{2}$ components for 2-D or $9 N^{2}$ components for 3-D. The following sections give the possibilities.

- "2-D Systems" on page 2-78
- "3-D Systems" on page 2-82

2-D Systems

- "Scalar c, 2-D Systems" on page 2-79
- "Two-Element Column Vector c, 2-D Systems" on page 2-79
- "Three-Element Column Vector c, 2-D Systems" on page 2-79
- "Four-Element Column Vector c, 2-D Systems" on page 2-79
- "N-Element Column Vector c, 2-D Systems" on page 2-80
- "2N-Element Column Vector c, 2-D Systems" on page 2-80
- "3N-Element Column Vector c, 2-D Systems" on page 2-81
- "4N-Element Column Vector c, 2-D Systems" on page 2-81
- " $2 \mathrm{~N}(2 \mathrm{~N}+1) / 2$-Element Column Vector c, 2-D Systems" on page 2-82
- "4N2-Element Column Vector c, 2-D Systems" on page 2-82

Scalar c, 2-D Systems

The software interprets a scalar c as a diagonal matrix, with $c(i, i, 1,1)$ and $c(i, i, 2,2)$ equal to the scalar, and all other entries 0 .

$$
\left(\begin{array}{ccccccc}
c & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & c & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & c & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & c & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & c
\end{array}\right)
$$

Two-Element Column Vector c, 2-D Systems

The software interprets a two-element column vector c as a diagonal matrix, with $c(i, i, 1,1)$ and $c(i, i, 2,2)$ as the two entries, and all other entries 0 .

$$
\left(\begin{array}{ccccccc}
c(1) & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & c(2) & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & c(1) & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & c(2) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c(1) & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & c(2)
\end{array}\right)
$$

Three-Element Column Vector c, 2-D Systems

The software interprets a three-element column vector c as a symmetric block diagonal matrix, with $c(i, i, 1,1)=c(1), c(i, i, 2,2)=c(3)$, and $c(i, i, 1,2)=c(i, i, 2,1)=c(2)$.

$$
\left(\begin{array}{ccccccc}
c(1) & c(2) & 0 & 0 & \cdots & 0 & 0 \\
c(2) & c(3) & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & c(1) & c(2) & \cdots & 0 & 0 \\
0 & 0 & c(2) & c(3) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c(1) & c(2) \\
0 & 0 & 0 & 0 & \cdots & c(2) & c(3)
\end{array}\right)
$$

Four-Element Column Vector c, 2-D Systems

The software interprets a four-element column vector c as a block diagonal matrix.

$$
\left(\begin{array}{ccccccc}
c(1) & c(3) & 0 & 0 & \cdots & 0 & 0 \\
c(2) & c(4) & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & c(1) & c(3) & \cdots & 0 & 0 \\
0 & 0 & c(2) & c(4) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c(1) & c(3) \\
0 & 0 & 0 & 0 & \cdots & c(2) & c(4)
\end{array}\right)
$$

N-Element Column Vector c, 2-D Systems

The software interprets an N-element column vector c as a diagonal matrix.

$$
\left(\begin{array}{ccccccc}
c(1) & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & c(1) & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & c(2) & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & c(2) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c(N) & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & c(N)
\end{array}\right)
$$

Caution If $N=2,3$, or 4, the 2-, $3-$, or 4 -element column vector form takes precedence over the N element form. For example, if $N=3$, and you have a c matrix of the form

$$
\left(\begin{array}{cccccc}
c 1 & 0 & 0 & 0 & 0 & 0 \\
0 & c 1 & 0 & 0 & 0 & 0 \\
0 & 0 & c 2 & 0 & 0 & 0 \\
0 & 0 & 0 & c 2 & 0 & 0 \\
0 & 0 & 0 & 0 & c 3 & 0 \\
0 & 0 & 0 & 0 & 0 & c 3
\end{array}\right)
$$

you cannot use the N-element form of c. Instead, you must use the $2 N$-element form. If you give c as the vector [$\mathrm{c} 1 ; \mathrm{c} 2 ; \mathrm{c} 3$], the software interprets c as a 3 -element form:

$$
\left(\begin{array}{cccccc}
c 1 & c 2 & 0 & 0 & 0 & 0 \\
c 2 & c 3 & 0 & 0 & 0 & 0 \\
0 & 0 & c 1 & c 2 & 0 & 0 \\
0 & 0 & c 2 & c 3 & 0 & 0 \\
0 & 0 & 0 & 0 & c 1 & c 2 \\
0 & 0 & 0 & 0 & c 2 & c 3
\end{array}\right)
$$

Instead, use the $2 N$-element form [c1;c1;c2;c2;c3;c3].

2N-Element Column Vector c, 2-D Systems

The software interprets a $2 N$-element column vector c as a diagonal matrix.

$$
\left(\begin{array}{ccccccc}
c(1) & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & c(2) & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & c(3) & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & c(4) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c(2 N-1) & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & c(2 N)
\end{array}\right)
$$

Caution If $N=2$, the 4 -element form takes precedence over the $2 N$-element form. For example, if your c matrix is

$$
\left(\begin{array}{cccc}
c 1 & 0 & 0 & 0 \\
0 & c 2 & 0 & 0 \\
0 & 0 & c 3 & 0 \\
0 & 0 & 0 & c 4
\end{array}\right)
$$

you cannot give c as $[c 1 ; c 2 ; c 3 ; c 4]$, because the software interprets this vector as the 4 -element form

$$
\left(\begin{array}{cccc}
c 1 & c 3 & 0 & 0 \\
c 2 & c 4 & 0 & 0 \\
0 & 0 & c 1 & c 3 \\
0 & 0 & c 2 & c 4
\end{array}\right)
$$

Instead, use the $3 N$-element form [c1;0;c2;c3;0;c4] or the $4 N$-element form [c1;0;0;c2;c3;0;0;c4].

3N-Element Column Vector c, 2-D Systems

The software interprets a 3 N -element column vector c as a symmetric block diagonal matrix.

$$
\left(\begin{array}{ccccccc}
c(1) & c(2) & 0 & 0 & \cdots & 0 & 0 \\
c(2) & c(3) & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & c(4) & c(5) & \cdots & 0 & 0 \\
0 & 0 & c(5) & c(6) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c(3 N-2) & c(3 N-1) \\
0 & 0 & 0 & 0 & \cdots & c(3 N-1) & c(3 N)
\end{array}\right)
$$

Coefficient $c(i, j, k, l)$ is in row ($3 i+k+l-4$) of the vector c .

4N-Element Column Vector c, 2-D Systems

The software interprets a $4 N$-element column vector c as a block diagonal matrix.

$$
\left(\begin{array}{ccccccc}
c(1) & c(3) & 0 & 0 & \cdots & 0 & 0 \\
c(2) & c(4) & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & c(5) & c(7) & \cdots & 0 & 0 \\
0 & 0 & c(6) & c(8) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c(4 N-3) & c(4 N-1) \\
0 & 0 & 0 & 0 & \cdots & c(4 N-2) & c(4 N)
\end{array}\right)
$$

Coefficient $c(i, j, k, l)$ is in row ($4 i+2 l+k-6$) of the vector c .

2N(2N+1)/2-Element Column Vector c, 2-D Systems

The software interprets a $2 N(2 N+1) / 2$-element column vector c as a symmetric matrix. In the following diagram, \cdot means the entry is symmetric.

Coefficient $c(i, j, k, l)$, for $i<j$, is in row $\left(2 j^{2}-3 j+4 i+2 l+k-5\right)$ of the vector c. For $i=j$, coefficient $c(i, j, k, l)$ is in row $\left(2 i^{2}+i+l+k-4\right)$ of the vector c.

4N2-Element Column Vector c, 2-D Systems

The software interprets a $4 N^{2}$-element column vector c as a matrix.

$$
\left(\begin{array}{cccccc}
c(1) & c(3) & c(4 N+1) c(4 N+3) & \cdots & c(4 N(N-1)+1) & c(4 N(N-1)+3) \\
c(2) & c(4) & c(4 N+2) & c(4 N+4) & \cdots & c(4 N(N-1)+2) \\
c(4 N(N-1)+4) \\
c(5) & c(7) & c(4 N+5) & c(4 N+7) & \cdots & c(4 N(N-1)+5) \\
c(4 N(N-1)+7) \\
c(6) & c(8) & c(4 N+6) & c(4 N+8) & \cdots & c(4 N(N-1)+6) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots N(N-1)+8) \\
c(4 N-3) & c(4 N-1) & c(8 N-3) c(8 N-1) & \cdots & c\left(4 N^{2}-3\right) & c\left(4 N^{2}-1\right) \\
c(4 N-2) & c(4 N) & c(8 N-2) & c(8 N) & \cdots & c\left(4 N^{2}-2\right)
\end{array} c c\left(4 N^{2}\right) .\right\}
$$

Coefficient $c(i, j, k, l)$ is in row $(4 N(j-1)+4 i+2 l+k-6)$ of the vector c.

3-D Systems

- "Scalar c, 3-D Systems" on page 2-83
- "Three-Element Column Vector c, 3-D Systems" on page 2-83
- "Six-Element Column Vector c, 3-D Systems" on page 2-83
- "Nine-Element Column Vector c, 3-D Systems" on page 2-84
- "N-Element Column Vector c, 3-D Systems" on page 2-84
- "3N-Element Column Vector c, 3-D Systems" on page 2-85
- " 6 N -Element Column Vector c, 3-D Systems" on page 2-87
- "9N-Element Column Vector c, 3-D Systems" on page 2-87
- "3N(3N+1)/2-Element Column Vector c, 3-D Systems" on page 2-87
- "9N2-Element Column Vector c, 3-D Systems" on page 2-88

Scalar c, 3-D Systems

The software interprets a scalar c as a diagonal matrix, with $c(i, i, 1,1), c(i, i, 2,2)$, and $c(i, i, 3,3)$ equal to the scalar, and all other entries 0 .

$$
\left(\begin{array}{cccccccccc}
c & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & c & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & c & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & c & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & c
\end{array}\right)
$$

Three-Element Column Vector c, 3-D Systems

The software interprets a three-element column vector c as a diagonal matrix, with $c(i, i, 1,1), c(i, i, 2,2)$, and $c(i, i, 3,3)$ as the three entries, and all other entries 0 .

$$
\left(\begin{array}{cccccccccc}
c(1) & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & c(2) & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & c(3) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(1) & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c(2) & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c(3) & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(1) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & c(2) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & c(3)
\end{array}\right)
$$

Six-Element Column Vector c, 3-D Systems

The software interprets a six-element column vector c as a symmetric block diagonal matrix, with

```
c(i,i,1,1)=c(1)
c(i,i,2,2)=c(3)
c(i,i,1,2)=c(i,i,2,1)=c(2)
c(i,i,1,3)=c(i,i,3,1)=c(4)
```

```
\(c(i, i, 2,3)=c(i, i, 3,2)=c(5)\)
\(c(i, i, 3,3)=c(6)\).
```

In the following diagram, • means the entry is symmetric.

$$
\left(\begin{array}{cccccccccc}
c(1) & c(2) & c(4) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\bullet & c(3) & c(5) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\bullet & \bullet & c(6) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(1) & c(2) & c(4) & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \bullet & c(3) & c(5) & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \bullet & \bullet & c(6) & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(1) & c(2) & c(4) \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & \bullet & c(3) & c(5) \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & \bullet & \bullet & c(6)
\end{array}\right)
$$

Nine-Element Column Vector c, 3-D Systems

The software interprets a nine-element column vector c as a block diagonal matrix.

$$
\left(\begin{array}{cccccccccc}
c(1) & c(4) & c(7) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
c(2) & c(5) & c(8) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
c(3) & c(6) & c(9) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(1) & c(4) & c(7) & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(2) & c(5) & c(8) & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(3) & c(6) & c(9) & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(1) & c(4) & c(7) \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(2) & c(5) & c(8) \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(3) & c(6) & c(3)
\end{array}\right)
$$

N-Element Column Vector c, 3-D Systems

The software interprets an N-element column vector c as a diagonal matrix.

$$
\left(\begin{array}{cccccccccc}
c(1) & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & c(1) & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & c(1) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(2) & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c(2) & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c(2) & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(N) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & c(N) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & c(N)
\end{array}\right)
$$

Caution If $N=3,6$, or 9 , the $3-6$-, or 9 -element column vector form takes precedence over the N element form. For example, if $N=3$, and you have a c matrix of the form

$$
\left(\begin{array}{ccccccccc}
c(1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & c(1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & c(1) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c(2) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c(2) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c(2) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & c(3) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & c(3) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c(3)
\end{array}\right)
$$

you cannot use the N-element form of c. If you give c as the vector [c1;c2;c3], the software interprets c as a 3-element form:

$$
\left(\begin{array}{ccccccccc}
c(1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & c(2) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & c(3) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c(1) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c(2) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c(3) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & c(1) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & c(2) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c(3)
\end{array}\right)
$$

Instead, use one of these forms:

- $6 N$-element form $-[c 1 ; 0 ; c 1 ; 0 ; 0 ; c 1 ; c 2 ; 0 ; c 2 ; 0 ; 0 ; c 2 ; c 3 ; 0 ; c 3 ; 0 ; 0 ; c 3]$
- 9 N -element form -
[c1;0;0;0;c1;0;0;0;c1;c2;0;0;0;c2;0;0;0;c2;c3;0;0;0;c3;0;0;0;c3]

3N-Element Column Vector c, 3-D Systems

The software interprets a $3 N$-element column vector c as a diagonal matrix.

$$
\left(\begin{array}{cccccccccc}
c(1) & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & c(2) & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & c(3) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(4) & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c(5) & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c(6) & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(3 N-2) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & c(3 N-1) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & c(3 N)
\end{array}\right)
$$

Caution If $N=3$, the 9 -element form takes precedence over the $3 N$-element form. For example, if your c matrix is

$$
\left(\begin{array}{ccccccccc}
c(1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & c(2) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & c(3) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c(4) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c(5) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c(6) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & c(7) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & c(8) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c(9)
\end{array}\right)
$$

you cannot give c as $[\mathrm{c} 1 ; \mathrm{c} 2 ; \mathrm{c} 3 ; \mathrm{c4} ; \mathrm{c5} ; \mathrm{c6} ; \mathrm{c} 7 ; \mathrm{c} 8 ; \mathrm{c} 9]$, because the software interprets this vector as the 9 -element form

$$
\left(\begin{array}{ccccccccc}
c(1) & c(4) & c(7) & 0 & 0 & 0 & 0 & 0 & 0 \\
c(2) & c(5) & c(8) & 0 & 0 & 0 & 0 & 0 & 0 \\
c(3) & c(6) & c(9) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c(1) & c(4) & c(7) & 0 & 0 & 0 \\
0 & 0 & 0 & c(2) & c(5) & c(8) & 0 & 0 & 0 \\
0 & 0 & 0 & c(3) & c(6) & c(9) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & c(1) & c(4) & c(7) \\
0 & 0 & 0 & 0 & 0 & 0 & c(2) & c(5) & c(8) \\
0 & 0 & 0 & 0 & 0 & 0 & c(3) & c(6) & c(3)
\end{array}\right)
$$

Instead, use one of these forms:

- 6N-element form - [c1;0;c2;0;0;c3;c4;0;c5;0;0;c6;c7;0;c8;0;0;c9]
- 9 N -element form -
[c1;0;0;0;c2;0;0;0;c3;c4;0;0;0;c5;0;0;0;c6;c7;0;0;0;c8;0;0;0;c9]

6N-Element Column Vector c, 3-D Systems

The software interprets a $6 N$-element column vector c as a symmetric block diagonal matrix. In the following diagram, • means the entry is symmetric.

$$
\left(\begin{array}{ccccccccc}
c(1) & c(2) & c(4) & 0 & 0 & 0 & \cdots & 0 & 0 \\
\bullet & c(3) & c(5) & 0 & 0 & 0 & \cdots & 0 & 0 \\
\bullet & \bullet & c(6) & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & c(7) & c(8) & c(10) & \cdots & 0 & 0 \\
0 & 0 & 0 & \bullet & c(9) & c(11) & \cdots & 0 & 0 \\
0 & 0 & 0 & \bullet & \bullet & c(12) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(6 N-5) & c(6 N-4) \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & \bullet & c(6 N-2) \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & \bullet & 0 \\
0 & & 0 & c(6 N-3) & c(6 N-1) \\
0 & c(6 N)
\end{array}\right)
$$

Coefficient $c(i, j, k, l)$ is in row $(6 i+k+1 / 2 l(l-1)-6)$ of the vector c.

9N-Element Column Vector c, 3-D Systems

The software interprets a $9 N$-element column vector c as a block diagonal matrix.

$$
\left(\begin{array}{cccccccccc}
c(1) & c(4) & c(7) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
c(2) & c(5) & c(8) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
c(3) & c(6) & c(9) & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(10) & c(13) & c(16) & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(11) & c(14) & c(17) & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & c(12) & c(15) & c(18) & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(9 N-8) & c(9 N-5) & c(9 N-2) \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(9 N-7) & c(9 N-4) & c(9 N-1) \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & c(9 N-6) & c(9 N-3) & c(9 N)
\end{array}\right)
$$

Coefficient $c(i, j, k, l)$ is in row $(9 i+3 l+k-12)$ of the vector c.

3N(3N+1)/2-Element Column Vector c, 3-D Systems

The software interprets a $3 N(3 N+1) / 2$-element column vector c as a symmetric matrix. In the following diagram, • means the entry is symmetric.

```
c(1) c(2) c(4) c(7) c(10)c(13)\cdotsc(3(N-1)(3(N-1)+1)/2+1 c(3(N-1)(3(N-1)+1)/2+4 c(3(N-1))(3(N-1)+1)/2+7
- c(3)c(5) c(8)c(11)c(14) \cdots.c(3(N-1)(3(N-1)+1)/2+2 c(3(N-1)(3(N-1)+1)/2+5 c(3(N-1)(3(N-1)+1)/2+8
- . c(6) c(9) c(12)c(15)\cdotsc(3(N-1)(3(N-1)+1)/2+3 c(3(N-1)(3(N-1)+1)/2+6 c(3(N-1)(3(N-1)+1)/2+9
- . - c(16)c(17)c(19) \cdotscc(3(N-1)(3(N-1)+1)/2+10c(3(N-1)(3(N-1)+1)/2+13c(3(N-1)(3(N-1)+1)/2+16
. . . . c(18) c(20)\cdotsc(3(N-1)(3(N-1)+1)/2+11c(3(N-1)(3(N-1)+1)/2+14c(3(N-1)(3(N-1)+1)/2+17
• . . . . c(21)\cdotsc(3(N-1)(3(N-1)+1)/2+12c(3(N-1)(3(N-1)+1)/2+15c(3(N-1)(3(N-1)+1)/2+18
. . . . . . . . . .. ccc(3N(3N+1)/2-5) 
    c(3N(3N+1)/2-3) c(3N(3N+1)/2)
```

Coefficient $c(i, j, k, l)$, for $i<j$, is in row $(9(j-1)(j-2) / 2+6(j-1)+9 i+3 l+k-12)$ of the vector c. For $i=j$, coefficient $c(i, j, k, l)$ is in row $(9(i-1)(i-2) / 2+15(i-1)+1 / 2 l(l-1)+k)$ of the vector c.

9N2-Element Column Vector c, 3-D Systems

The software interprets a $9 N^{2}$-element column vector c as a matrix.
$\left(\begin{array}{cccccccccc}c(1) & c(4) & c(7) & c(9 N+1) & c(9 N+4) & c(9 N+7) & \cdots & c(9 N(N-1)+1) & c(9 N(N-1)+4) & c(9 N(N-1)+7) \\ c(2) & c(5) & c(8) & c(9 N+2) & c(9 N+5) & c(9 N+8) & \cdots & c(9 N(N-1)+2) & c(9 N(N-1)+5) & c(9 N(N-1)+8) \\ c(3) & c(6) & c(9) & c(9 N+3) & c(9 N+6) & c(9 N+9) & \cdots & c(9 N(N-1)+3) & c(9 N(N-1)+6) & c(9 N(N-1)+9) \\ c(10) & c(13) & c(16) & c(9 N+10) & c(9 N+13) & c(9 N+16) & \cdots & c(9 N(N-1)+10) & c(9 N(N-1)+13) & c(9 N(N-1)+16) \\ c(11) & c(14) & c(17) & c(9 N+11) & c(9 N+14) & c(9 N+17) & \cdots & c(9 N(N-1)+11) & c(9 N(N-1)+14) & c(9 N(N-1)+17) \\ c(12) & c(15) & c(18) & c(9 N+12) & c(9 N+15) & c(9 N+18) & \cdots & c(9 N(N-1)+12) & c(9 N(N-1)+15) & c(9 N(N-1)+18) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ c(9 N-8) & c(9 N-5) & c(9 N-2) & c(18 N-8) & c(18 N-5) & c(18 N-2) & \cdots & c\left(9 N^{2}-8\right) & c\left(9 N^{2}-5\right) & c\left(9 N^{2}-2\right) \\ c(9 N-7) & c(9 N-4) & c(9 N-1) & c(18 N-7) & c(18 N-4) & c(18 N-1) & \cdots & c\left(9 N^{2}-7\right) & c\left(9 N^{2}-4\right) & c\left(9 N^{2}-1\right) \\ c(9 N-6) & c(9 N-3) & c(9 N) & c(18 N-6) & c(18 N-3) & c(18 N) & \cdots & c\left(9 N^{2}-6\right) & c\left(9 N^{2}-3\right) & c\left(9 N^{2}\right)\end{array}\right.$

Coefficient $c(i, j, k, l)$ is in row $(9 N(j-1)+9 i+3 l+k-12)$ of the vector c.

Functional Form

If your c coefficient is not constant, represent it as a function of the form
ccoeffunction(location,state)
solvepde or solvepdeeig pass the location and state structures to ccoeffunction. The function must return a matrix of size $N 1$-by- Nr , where:

- $N 1$ is the number of coefficients you pass to the solver. There are several possible values of $N 1$, detailed in "Some c Vectors Can Be Short" on page 2-78. For 2-D geometry, $1 \leq N 1 \leq 4 N^{2}$, and for 3 -D geometry, $1 \leq N 1 \leq 9 N^{2}$.
- $N r$ is the number of points in the location that the solver passes. $N r$ is equal to the length of the location. x or any other location field. The function should evaluate c at these points.

Pass the coefficient to specifyCoefficients as a function handle, such as
specifyCoefficients(model, 'c',@ccoeffunction,....)

- location is a structure with these fields:
- location.x
- location.y
- location.z
- location.subdomain

The fields x, y, and z represent the $x-, y$-, and z - coordinates of points for which your function calculates coefficient values. The subdomain field represents the subdomain numbers, which currently apply only to 2-D models. The location fields are row vectors.

- state is a structure with these fields:
- state.u
- state.ux
- state.uy
- state.uz
- state.time

The state. u field represents the current value of the solution u. The state.ux, state.uy, and state. uz fields are estimates of the solution's partial derivatives ($\partial u / \partial x, \partial u / \partial y$, and $\partial u / \partial z$) at the corresponding points of the location structure. The solution and gradient estimates are N -by- Nr matrices. The state.time field is a scalar representing time for time-dependent models.

For example, suppose $N=3$, and you have 2-D geometry. Suppose your c matrix is of the form

$$
c=\left[\begin{array}{ccccc}
1 & 2 & & & \\
2 & & & & \\
2 & & & \\
& 1+x^{2}+y^{2} & \frac{u(2)}{1+u(1)^{2}+u(3)^{2}} & & \\
& \frac{u(2)}{1+u(1)^{2}+u(3)^{2}} & 1+x^{2}+y^{2} & & \\
& & & s_{1}(x, y) & -1 \\
& & & -1 & s_{1}(x, y)
\end{array}\right]
$$

where unlisted elements are zero. Here $s_{1}(x, y)$ is 5 in subdomain 1 , and is 10 in subdomain 2.
This c is a symmetric, block-diagonal matrix with different coefficients in each block. So it is natural to represent c as a "3N-Element Column Vector c, 2-D Systems" on page 2-81:

$$
\left(\begin{array}{ccccccc}
c(1) & c(2) & 0 & 0 & \cdots & 0 & 0 \\
c(2) & c(3) & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & c(4) & c(5) & \cdots & 0 & 0 \\
0 & 0 & c(5) & c(6) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c(3 N-2) & c(3 N-1) \\
0 & 0 & 0 & 0 & \cdots & c(3 N-1) & c(3 N)
\end{array}\right)
$$

For that form, the following function is appropriate.

```
function cmatrix = ccoeffunction(location,state)
n1 = 9;
nr = numel(location.x);
cmatrix = zeros(n1,nr);
cmatrix(1,:) = ones(1,nr);
cmatrix(2,:) = 2*ones(1,nr);
cmatrix(3,:) = 8*ones(1,nr);
cmatrix(4,:) = 1+location.x.^2 + location.y.^2;
cmatrix(5,:) = state.u(2,:)./(1 + state.u(1,:).^2 + state.u(3,:).^2);
cmatrix(6,:) = cmatrix(4,:);
cmatrix(7,:) = 5*location.subdomain;
cmatrix(8,:) = -ones(1,nr);
cmatrix(9,:) = cmatrix(7,:);
```

To include this function as your c coefficient, pass the function handle @ccoeffunction:
specifyCoefficients(model,'c',@ccoeffunction,...

See Also

Related Examples

- "Put Equations in Divergence Form" on page 2-71
- "Solve Problems Using PDEModel Objects" on page 2-2
- "f Coefficient for specifyCoefficients" on page 2-74
- "m, d, or a Coefficient for specifyCoefficients" on page 2-91

m, d, or a Coefficient for specifyCoefficients

In this section...

"Coefficients m, d, or a" on page 2-91
"Short m, d, or a vectors" on page 2-91
"Nonconstant m, d, or a" on page 2-92

Coefficients m, d, or a

This section describes how to write the \mathbf{m}, \mathbf{d}, or a coefficients in the system of equations

$$
\mathbf{m} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}+\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

or in the eigenvalue system

$$
\begin{aligned}
& -\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\lambda \mathbf{d u} \\
& \text { or } \\
& -\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\lambda^{2} \mathbf{m u}
\end{aligned}
$$

The topic applies to the recommended workflow for including coefficients in your model using specifyCoefficients.

If there are N equations in the system, then these coefficients represent N-by- N matrices.
For constant (numeric) coefficient matrices, represent each coefficient using a column vector with N^{2} components. This column vector represents, for example, m (:).

For nonconstant coefficient matrices, see "Nonconstant m, d, or a" on page 2-92.

Note The d coefficient takes a special matrix form when m is nonzero. See "d Coefficient When m is Nonzero" on page 5-956.

Short m, d, or a vectors

Sometimes, your \mathbf{m}, \mathbf{d}, or a matrices are diagonal or symmetric. In these cases, you can represent \mathbf{m}, d, or a using a smaller vector than one with N^{2} components. The following sections give the possibilities.

- "Scalar m, d, or a" on page 2-91
- "N-Element Column Vector m, d, or a" on page 2-92
- " $\mathrm{N}(\mathrm{N}+1) / 2$-Element Column Vector m, d, or a " on page 2-92
- "N2-Element Column Vector m, d, or a" on page 2-92

Scalar m, d, or a

The software interprets a scalar \mathbf{m}, \mathbf{d}, or \mathbf{a} as a diagonal matrix.

$$
\left(\begin{array}{cccc}
a & 0 & \cdots & 0 \\
0 & a & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a
\end{array}\right)
$$

N -Element Column Vector m , d , or a

The software interprets an N-element column vector \mathbf{m}, \mathbf{d}, or a as a diagonal matrix.

$$
\left(\begin{array}{cccc}
d(1) & 0 & \cdots & 0 \\
0 & d(2) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d(N)
\end{array}\right)
$$

$\mathbf{N}(\mathbf{N}+1) / \mathbf{2}$-Element Column Vector m , d , or a

The software interprets an $N(N+1) / 2$-element column vector \mathbf{m}, \mathbf{d}, or \mathbf{a} as a symmetric matrix. In the following diagram, • means the entry is symmetric.

$$
\left(\begin{array}{ccccc}
a(1) & a(2) & a(4) & \cdots & a(N(N-1) / 2) \\
\bullet & a(3) & a(5) & \cdots & a(N(N-1) / 2+1) \\
\bullet & \bullet & a(6) & \cdots & a(N(N-1) / 2+2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\bullet & \cdot & \cdot & \cdots & a(N(N+1) / 2)
\end{array}\right)
$$

Coefficient $a(i, j)$ is in row $(j(j-1) / 2+i)$ of the vector a.

N2-Element Column Vector m, d, or a

The software interprets an N^{2}-element column vector \mathbf{m}, \mathbf{d}, or a as a matrix.

$$
\left(\begin{array}{cccc}
d(1) & d(N+1) & \cdots & d\left(N^{2}-N+1\right) \\
d(2) & d(N+2) & \cdots & d\left(N^{2}-N+2\right) \\
\vdots & \vdots & \ddots & \vdots \\
d(N) & d(2 N) & \cdots & d\left(N^{2}\right)
\end{array}\right)
$$

Coefficient $a(i, j)$ is in row $(N(j-1)+i)$ of the vector a.

Nonconstant m, d, or a

Note If both \mathbf{m} and \mathbf{d} are nonzero, then \mathbf{d} must be a constant scalar or vector, not a function.

If any of the \mathbf{m}, \mathbf{d}, or a coefficients is not constant, represent it as a function of the form

```
dcoeffunction(location,state)
```

solvepde or solvepdeeig pass the location and state structures to dcoeffunction. The function must return a matrix of size $N 1$-by- Nr , where:

- $N 1$ is the length of the vector representing the coefficient. There are several possible values of $N 1$, detailed in "Short m, d, or a vectors" on page 2-91. $1 \leq N 1 \leq N^{2}$.
- $N r$ is the number of points in the location that the solver passes. $N r$ is equal to the length of the location. x or any other location field. The function should evaluate \mathbf{m}, \mathbf{d}, or \mathbf{a} at these points.

Pass the coefficient to specifyCoefficients as a function handle, such as
specifyCoefficients(model,' 'd',@dcoeffunction,...)

- location is a structure with these fields:
- location.x
- location.y
- location.z
- location.subdomain

The fields x, y, and z represent the $x-, y$-, and z - coordinates of points for which your function calculates coefficient values. The subdomain field represents the subdomain numbers, which currently apply only to $2-\mathrm{D}$ models. The location fields are row vectors.

- state is a structure with these fields:
- state.u
- state.ux
- state.uy
- state.uz
- state.time

The state. u field represents the current value of the solution u. The state.ux, state.uy, and state. uz fields are estimates of the solution's partial derivatives ($\partial u / \partial x, \partial u / \partial y$, and $\partial u / \partial z$) at the corresponding points of the location structure. The solution and gradient estimates are N-by- Nr matrices. The state. time field is a scalar representing time for time-dependent models.

For example, suppose $N=3$, and you have 2-D geometry. Suppose your d matrix is of the form

$$
\mathbf{d}=\left[\begin{array}{ccc}
1 & s_{1}(x, y) & \sqrt{x^{2}+y^{2}} \\
s_{1}(x, y) & 4 & -1 \\
\sqrt{x^{2}+y^{2}} & -1 & 9
\end{array}\right]
$$

where $s_{1}(x, y)$ is 5 in subdomain 1 , and is 10 in subdomain 2 .
This d is a symmetric matrix. So it is natural to represent d as a " $N(N+1) / 2$-Element Column Vector m, d, or a " on page 2-92:

$$
\left(\begin{array}{ccccc}
a(1) & a(2) & a(4) & \cdots & a(N(N-1) / 2) \\
\bullet & a(3) & a(5) & \cdots & a(N(N-1) / 2+1) \\
\bullet & \bullet & a(6) & \cdots & a(N(N-1) / 2+2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\bullet & \bullet & \bullet & \cdots & a(N(N+1) / 2)
\end{array}\right)
$$

For that form, the following function is appropriate.

```
function dmatrix = dcoeffunction(location,state)
n1 = 6;
nr = numel(location.x);
dmatrix = zeros(n1,nr);
dmatrix(1,:) = ones(1,nr);
dmatrix(2,:) = 5*location.subdomain;
dmatrix(3,:) = 4*ones(1,nr);
dmatrix(4,:) = sqrt(location.x.^2 + location.y.^2);
dmatrix(5,:) = -ones(1,nr);
dmatrix(6,:) = 9*ones(1,nr);
```

To include this function as your d coefficient, pass the function handle @dcoeffunction: specifyCoefficients(model,'d',@dcoeffunction,...

See Also

Related Examples

- "Put Equations in Divergence Form" on page 2-71
- "Solve Problems Using PDEModel Objects" on page 2-2
- "f Coefficient for specifyCoefficients" on page 2-74
- "c Coefficient for specifyCoefficients" on page 2-76

View, Edit, and Delete PDE Coefficients

View Coefficients

A PDE model stores coefficients in its EquationCoefficients property. Suppose model is the name of your model. Obtain the coefficients:

```
coeffs = model.EquationCoefficients;
```

To see the active coefficient assignment for a region, call the findCoefficients function. For example, create a model and view the geometry.

```
model = createpde();
geometryFromEdges(model,@lshapeg) ;
pdegplot(model,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal
```


Specify constant coefficients over all the regions in the model.
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',2);
Specify a different f coefficient on each subregion.
specifyCoefficients(model,'m', 0,'d', 0,'c',1,'a', 0,'f',3,'Face', 2); specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',4,'Face', 3);

Change the specification to have nonzero a on region 2 .

```
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',1,'f',3,'Face',2);
```

View the coefficient assignment for region 2.

```
coeffs = model.EquationCoefficients;
findCoefficients(coeffs,'Face',2)
ans =
    CoefficientAssignment with properties:
        RegionType: 'face'
        RegionID: 2
            m: 0
            d: 0
            c: 1
            a: 1
            f: 3
```

This shows the "last assignment wins" characteristic.
View the coefficient assignment for region 1.

```
findCoefficients(coeffs,'Face',1)
ans =
    CoefficientAssignment with properties:
        RegionType: 'face'
        RegionID: [1 2 3]
            m: 0
            d: 0
            c: 1
            a: 0
            f: 2
```

The active coefficient assignment for region 1 includes all three regions, though this assignment is no longer active for regions 2 and 3.

Delete Existing Coefficients

To delete all the coefficients in your PDE model, use delete. Suppose model is the name of your model. Remove all coefficients from model.

```
delete(model.EquationCoefficients)
```

To delete specific coefficient assignments, delete them from the model.EquationCoefficients.CoefficientAssignments vector.

```
coefv = model.EquationCoefficients.CoefficientAssignments;
```

delete(coefv(2))

Tip You do not need to delete coefficients; you can override them by calling specifyCoefficients again. However, deleting unused assignments can make your model smaller.

Change a Coefficient Assignment

To change a coefficient assignment, you need the coefficient handle. To get the coefficient handle:

- Retain the handle when using specifyCoefficients. For example,

```
coefh1 = specifyCoefficients(model,'m',m,'d',d,'c',c,'a',a,'f',f);
```

- Obtain the handle using findCoefficients. For example,
coeffs = model.EquationCoefficients;
coefh1 = findCoefficients(coeffs,'face',2);
You can change any property of the coefficient handle. For example,

```
coefh1.RegionID = [1,3];
coefh1.a = 2;
coefh1.c = @ccoeffun;
```

Note Editing an existing assignment in this way does not change its priority. For example, if the active coefficient in region 3 was assigned after coefh1, then editing coefh1 to include region 3 does not make coefh1 the active coefficient in region 3.

Set Initial Conditions

What Are Initial Conditions?

The term initial condition has two meanings:

- For time-dependent problems, the initial condition is the solution u at the initial time, and also the initial time-derivative if the m coefficient is nonzero. Set the initial condition in the model using setInitialConditions.
- For nonlinear stationary problems, the initial condition is a guess or approximation of the solution u at the initial iteration of the nonlinear solver. Set the initial condition in the model using setInitialConditions.

If you do not specify the initial condition for a stationary problem, solvepde uses the zero function for the initial iteration.

Constant Initial Conditions

For a system of N equations, you can give constant initial conditions as either a scalar or as a vector with N components. For example, if the initial condition is $u=15$ for all components, use the following command.
setInitialConditions(model,15);
If $N=3$, and the initial condition is 15 for the first equation, 0 for the second equation, and -3 for the third equation, use the following commands.

```
u0 = [15,0,-3];
setInitialConditions(model,u0);
```

If the m coefficient is nonzero, give an initial condition for the time derivative as well. Set this initial derivative in the same form as the first initial condition. For example, if the initial derivative of the solution is $[4,3,0]$, use the following commands.

```
u0 = [15,0,-3];
ut0 = [4,3,0];
setInitialConditions(model,u0,ut0);
```


Nonconstant Initial Conditions

If your initial conditions are not constant, set them by writing a function of the form.

```
function u0 = initfun(location)
```

solvepde passes location as a structure with fields location. x, location. y, and, for 3-D problems, location.z. initfun must return a matrix u0 of size N-by-M, where N is the number of equations in your PDE and $M=$ length(location.x). The fields in location are row vectors.

For example, suppose you have a 2-D problem with $N=2$ equations:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(\nabla u)=\left[\begin{array}{c}
3+x \\
4-x-y
\end{array}\right] \\
& u(0)=\left[\begin{array}{c}
4+x^{2}+y^{2} \\
0
\end{array}\right] \\
& \frac{\partial u}{\partial t}(0)=\left[\begin{array}{c}
0 \\
\sin (x y)
\end{array}\right]
\end{aligned}
$$

This problem has $\mathrm{m}=1, \mathrm{c}=1$, and $\mathrm{f}=\left[\begin{array}{c}3+x \\ 4-x-y\end{array}\right]$. Because m is nonzero, give both an initial value of u and an initial value of the derivative of u.

Write the following function files. Save them to a location on your MATLAB path.

```
function uinit = u0fun(location)
M = length(location.x);
uinit = zeros(2,M);
uinit(1,:) = 4 + location.x.^2 + location.y.^2;
function utinit = ut0fun(location)
M = length(location.x);
utinit = zeros(2,M);
utinit(2,:) = sin(location.x.*location.y);
```

Pass the initial conditions to your PDE model:

```
u0 = @u0fun;
ut0 = @ut0fun;
setInitialConditions(model,u0,ut0) ;
```


Nodal Initial Conditions

You can use results of previous analysis as nodal initial conditions for your current model. The geometry and mesh of the model you used to obtain the results and the current model must be the same. For example, solve a time-dependent PDE problem for times from t0 to t1 with a time step tstep.

```
results = solvepde(model,t0:tstep:t1);
```

If later you need to solve this PDE problem for times from t1 to $t 2$, you can use results to set initial conditions. If you do not explicitly specify the time step, setInitialConditions uses results corresponding to the last solution time, t 1 .

```
setInitialConditions(model,results)
```

To use results for a particular solution time instead of the last one, specify the solution time index as a third parameter of setInitialConditions. For example, to use the solution at time t0 + $10 *$ tstep, specify 11 as the third parameter.

```
setInitialConditions(model,results,11)
```


See Also

Related Examples

- "Solve Problems Using PDEModel Objects" on page 2-2
- "Wave Equation on Square Domain" on page 3-251
- "Inhomogeneous Heat Equation on Square Domain" on page 3-230
- "Heat Distribution in Circular Cylindrical Rod" on page 3-234
- "Heat Transfer Problem with Temperature-Dependent Properties" on page 3-215
- "Dynamic Analysis of Clamped Beam" on page 3-28

Nonlinear System with Cross-Coupling Between Components

This example shows how to solve a nonlinear PDE system of two equations with cross-coupling between the two components. The system is a Schnakenberg system

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial t}-D_{1} \Delta u_{1}=\kappa\left(a-u_{1}+u_{1}^{2} u_{2}\right) \\
& \frac{\partial u_{2}}{\partial t}-D_{2} \Delta u_{2}=\kappa\left(b-u_{1}^{2} u_{2}\right)
\end{aligned}
$$

with the steady-state solution $u_{1 S}=a+b$ and $u_{2 S}=\frac{b}{(a+b)^{2}}$. The initial conditions are a small perturbation of the steady-state solution.

Solution for First Time Span

First, create a PDE model for a system of two equations.

```
model = createpde(2);
```

Create a cubic geometry and assign it to the model.

```
gm = multicuboid(1,1,1);
model.Geometry = gm;
```

Generate the mesh using the linear geometric order to save memory.

```
generateMesh(model,'GeometricOrder','linear');
```

Define the parameters of the system.

```
D1 = 0.05;
D2 = 1;
kappa = 100;
a = 0.2;
b = 0.8;
```

Based on these parameters, specify the PDE coefficients in the toolbox format.

```
d = [1;1];
c = [D1;D2];
f = @(region,state) [kappa*(a - state.u(1,:) + ...
    state.u(1,:).^2.*state.u(2,:));
    kappa*(b - state.u(1,:).^2.*state.u(2,:))
    ];
specifyCoefficients(model,'m',0,'d',d,'c',c,'a',0,'f',f);
```

Set the initial conditions. The first component is a small perturbation of the steady-state solution $u_{1 S}=a+b$. The second component is the steady-state solution $u_{2 S}=\frac{b}{(a+b)^{2}}$.

```
icFcn = @(region) [a + b + 10^(-3)*exp(-100*((region.x - 1/3).^2 ...
    +(region.y - 1/2).^2)); ...
    (b/(a + b)^2)*ones(size(region.x))];
setInitialConditions(model,icFcn);
```

Solve the system for times 0 through 2 seconds.

```
tlist = linspace(0,2,10);
results = solvepde(model,tlist);
```

Plot the first component of the solution at the last time step.

```
pdeplot3D(model,'ColorMapData',results.NodalSolution(:,1,end));
```


Initial Condition for Second Time Span Based on Previous Solution

Now, resume the analysis and solve the problem for times from 2 to 5 seconds. Reduce the magnitude of the previously obtained solution for time 2 seconds to 10% of the original value.

```
u2 = results.NodalSolution(:,:,end);
newResults = createPDEResults(model,u2(:)*0.1);
```

Use newResults as the initial condition for further analysis.

```
setInitialConditions(model,newResults);
```

Solve the system for times 2 through 5 seconds.

```
tlist = linspace(2,5,10);
results25 = solvepde(model,tlist);
```

Plot the first component of the solution at the last time step.
figure
pdeplot3D(model,'ColorMapData', results25.NodalSolution(:,1,end));

Alternatively, you can write a function that uses the results returned by the solver and computes the initial conditions based on the results of the previous analysis.

```
NewIC = @(location) computeNewIC(results)
NewIC = function_handle with value:
    @(location) computeNewIC(results)
```

Remove the previous initial conditions.

```
delete(model.InitialConditions);
```

Set the initial conditions using the function NewIC.

```
setInitialConditions(model,NewIC)
ans =
    GeometricInitialConditions with properties:
            RegionType: 'cell'
                        RegionID: 1
            InitialValue: @(location)computeNewIC(results)
        InitialDerivative: []
```

Solve the system for times 2 through 5 seconds.
results25f = solvepde(model,tlist);
Plot the first component of the solution at the last time step.
figure
pdeplot3D(model,'ColorMapData',results25f.NodalSolution(:,1,end));

Function Computing Initial Conditions

function newU0 = computeNewIC(resultsObject)
newU0 = 0.1*results0bject.NodalSolution(:,:,end).';
end

Set Initial Condition for Model with Fine Mesh Using Solution Obtained with Coarser Mesh

Set initial conditions for a model with a fine mesh by using the coarse-mesh solution from a previous analysis.

Create a PDE model and include the geometry of the built-in function squareg.

```
model = createpde;
geometryFromEdges(model,@squareg);
```

Specify the coefficients, apply boundary conditions, and set initial conditions.

```
specifyCoefficients(model,'m',0,'d',1,'c',5,'a',0,'f',0.1);
applyBoundaryCondition(model,'dirichlet','Edge',1,'u',1);
setInitialConditions(model,10);
```

Generate a comparatively coarse mesh with the target maximum element edge length of 0.1.
generateMesh(model, 'Hmax',0.1);
Solve the model for the entire time span of 0 through 0.02 seconds.

```
tlist = linspace(0,2E-2,20);
Rtotal = solvepde(model,tlist);
```

Interpolate the solution at the origin for the entire time span.

```
singleSpanSol = Rtotal.interpolateSolution(0,0,1:numel(tlist));
```

Now solve the model for the first half of the time span. You will use this solution as an initial condition when solving the model with a finer mesh for the second half of the time span.

```
tlist1 = linspace(0,1E-2,10);
R1 = solvepde(model,tlist1);
```

Create an interpolant to interpolate the initial condition.

```
x = model.Mesh.Nodes(1,:)';
y = model.Mesh.Nodes(2,:)';
interpolant = scatteredInterpolant(x,y,R1.NodalSolution(:,end));
```

Generate a finer mesh by setting the target maximum element edge length to 0.05.
generateMesh(model, 'Hmax' , 0.05) ;
Use the coarse mesh model results as the initial condition for the model with the finer mesh. For the definition of the icFcn function, see Initial Conditions Function on page 2-0

```
setInitialConditions(model,@(region) icFcn(region,interpolant));
```

Solve the model for the second half of the time span.

```
tlist2 = linspace(1E-2,2E-2,10);
R2 = solvepde(model,tlist2);
```

Interpolate the solutions at the origin for the first and the second halves of the time span.

```
multispanSol1 = R1.interpolateSolution(0,0,1:numel(tlist1));
multispanSol2 = R2.interpolateSolution(0,0,1:numel(tlist2));
```

Plot all three solutions at the origin.
figure
plot(tlist,singleSpanSol)
hold on
plot(tlist1, multispanSol1,'r*')
plot(tlist2, multispanSol2,'ko')
legend('Overall solution','Coarse mesh solution', 'Fine mesh solution')

Initial Conditions Function

```
function u0 = icFcn(region,interpolant)
u0 = interpolant(region.x',region.y');
end
```


View, Edit, and Delete Initial Conditions

View Initial Conditions

A PDE model stores initial conditions in its InitialConditions property. Suppose model is the name of your model. Obtain the initial conditions:

```
inits = model.InitialConditions;
```

To see the active initial conditions assignment for a region, call the findInitialConditions function. For example, create a model and view the geometry.

```
model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal
```


Specify constant initial conditions over all the regions in the model.

```
setInitialConditions(model,2);
```

Specify a different initial condition on each subregion.

```
setInitialConditions(model,3,'Face',2);
setInitialConditions(model,4,'Face',3);
```

View the initial condition assignment for region 2.

```
ics = model.InitialConditions;
findInitialConditions(ics,'Face',2)
ans =
    GeometricInitialConditions with properties:
            RegionType: 'face'
                        RegionID: 2
            InitialValue: 3
        InitialDerivative: []
```

This shows the "last assignment wins" characteristic.
View the initial conditions assignment for region 1.

```
findInitialConditions(ics,'Face',1)
ans =
    GeometricInitialConditions with properties:
            RegionType: 'face'
                        RegionID: [1 2 3]
            InitialValue: 2
        InitialDerivative: []
```

The active initial conditions assignment for region 1 includes all three regions, though this assignment is no longer active for regions 2 and 3.

Delete Existing Initial Conditions

To delete all the initial conditions in your PDE model, use delete. Suppose model is the name of your model. Remove all initial conditions from model.
delete(model.InitialConditions)
To delete specific initial conditions assignments, delete them from the model.InitialConditions.InitialConditionAssignments vector.
icv = model.InitialConditions.InitialConditionAssignments;
delete(icv(2))

Tip You do not need to delete initial conditions; you can override them by calling setInitialConditions again. However, deleting unused assignments can make your model smaller.

Change an Initial Conditions Assignment

To change an initial conditions assignment, you need the initial conditions handle. To get the initial condition handle:

- Retain the handle when using setInitialConditions. For example,

```
ics1 = setInitialConditions(model,2);
```

- Obtain the handle using findInitialConditions. For example,

```
ics = model.InitialConditions;
ics1 = findInitialConditions(ics,'Face',2);
```

You can change any property of the initial conditions handle. For example,

```
icsl.RegionID = [1,3];
icsl.InitialValue = 2;
ics1.InitialDerivative = @ut0fun;
```

Note Editing an existing assignment in this way does not change its priority. For example, if the active initial conditions in region 3 was assigned after ics1, then editing ics1 to include region 3 does not make ics1 the active initial condition in region 3.

No Boundary Conditions Between Subdomains

There are two types of boundaries:

- Boundaries between the interior of the region and the exterior of the region
- Boundaries between subdomains - these are boundaries in the interior of the region

Boundary conditions, either Dirichlet or generalized Neumann, apply only to boundaries between the interior and exterior of the region. This is because the toolbox formulation uses the weak form of PDEs. See "Finite Element Method Basics" on page 1-11. In the weak formulation you do not specify boundary conditions between subdomains, even if coefficients are discontinuous between subdomains. So the toolbox does not support defining boundary conditions on subdomain boundaries.

For example, look at a rectangular region with a circular subdomain. The red numbers are the subdomain labels, the black numbers are the edge segment labels.

```
% Rectangle is code 3, 4 sides, followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
% Circle is code 1, center (.5,0), radius .2
C1 = [1,.5,0,.2]';
% Pad C1 with zeros to enable concatenation with R1
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];
% Names for the two geometric objects
ns = (char('R1','C1'))';
% Set formula
sf = 'R1 + C1';
% Create geometry
gd = decsg(geom,sf,ns);
% View geometry
pdegplot(gd,'EdgeLabels','on','SubdomainLabels','on')
xlim([-1.1 1.1])
axis equal
```


You need not give boundary conditions on segments $5,6,7$, and 8 , because these are subdomain boundaries, not exterior boundaries.

However, if the circle is a hole, meaning it is not part of the region, then you do give boundary conditions on segments $5,6,7$, and 8 .

Identify Boundary Labels

You can see the edge labels by using the pdegplot function with the EdgeLabels name-value pair set to 'on':

```
pdegplot(g,'EdgeLabels','on')
```

For 3-D problems, set the FaceLabels name-value pair to ' on '.
For example, look at the edge labels for a simple annulus geometry:

```
e1 = [4;0;0;1;.5;0]; % Outside ellipse
e2 = [4;0;0;.5;.25;0]; % Inside ellipse
ee = [e1 e2]; % Both ellipses
lbls = char('outside','inside'); % Ellipse labels
lbls = lbls'; % Change to columns
sf = 'outside-inside'; % Set formula
dl = decsg(ee,sf,lbls); % Geometry now done
pdegplot(dl,'EdgeLabels','on')
```


Specify Boundary Conditions

Before you create boundary conditions, you need to create a PDEModel container. For details, see "Solve Problems Using PDEModel Objects" on page 2-2. Suppose that you have a container named model, and that the geometry is stored in model. Examine the geometry to see the label of each edge or face.

```
pdegplot(model,'EdgeLabels','on') % for 2-D
pdegplot(model,'FaceLabels','on') % for 3-D
```

Now you can specify the boundary conditions for each edge or face. If you have a system of PDEs, you can set a different boundary condition for each component on each boundary edge or face.

If you do not specify a boundary condition for an edge or face, the default is the Neumann boundary condition with the zero values for ' g ' and ' q '.

If the boundary condition is a function of position, time, or the solution u, set boundary conditions by using the syntax in "Nonconstant Boundary Conditions" on page 2-116.

Dirichlet Boundary Conditions

Scalar PDEs

The Dirichlet boundary condition implies that the solution u on a particular edge or face satisfies the equation
$h u=r$,
where h and r are functions defined on $\partial \Omega$, and can be functions of space (x, y, and, in 3-D, z), the solution u, and, for time-dependent equations, time. Often, you take $h=1$, and set r to the appropriate value. You can specify Dirichlet boundary conditions as the value of the solution u on the boundary or as a pair of the parameters h and r.

Suppose that you have a PDE model named model, and edges or faces [e1,e2,e3], where the solution u must equal 2 . Specify this boundary condition as follows.

```
% For 3-D geometry:
applyBoundaryCondition(model,'dirichlet','Face',[e1,e2,e3],'u',2);
% For 2-D geometry:
applyBoundaryCondition(model,'dirichlet','Edge',[e1,e2,e3],'u',2);
```

If the solution on edges or faces [e1,e2,e3] satisfies the equation $2 u=3$, specify the boundary condition as follows.

```
% For 3-D geometry:
applyBoundaryCondition(model,'dirichlet','Face',[e1,e2,e3],'r',3,'h',2);
% For 2-D geometry:
applyBoundaryCondition(model,'dirichlet','Edge',[e1,e2,e3],'r',3,'h',2);
```

- If you do not specify ' r ', applyBoundaryCondition sets its value to 0 .
- If you do not specify ' h ', applyBoundaryCondition sets its value to 1 .

Systems of PDEs

The Dirichlet boundary condition for a system of PDEs is $\mathbf{h u}=\mathbf{r}$, where \mathbf{h} is a matrix, \mathbf{u} is the solution vector, and \mathbf{r} is a vector.

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3] where the first component of the solution u must equal 1 , while the second and third components must equal 2. Specify this boundary condition as follows.

```
% For 3-D geometry:
applyBoundaryCondition(model,'dirichlet','Face',[e1,e2,e3],...
    'u',[1,2,2],'EquationIndex',[1,2,3]);
% For 2-D geometry:
applyBoundaryCondition(model,'dirichlet','Edge',[e1,e2,e3],...
    'u',[1,2,2],'EquationIndex',[1,2,3]);
```

- The 'u' and 'EquationIndex' arguments must have the same length.
- If you exclude the 'EquationIndex' argument, the 'u' argument must have length N.
- If you exclude the 'u' argument, applyBoundaryCondition sets the components in 'EquationIndex' to 0.

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3] where the first, second, and third components of the solution u must satisfy the equations $2 u_{1}=3,4 u_{2}=5$, and $6 u_{3}=7$, respectively. Specify this boundary condition as follows.

```
H0 = [2 0 0;
    0 4 0;
    0 0 6];
R0 = [3;5;7];
% For 3-D geometry:
applyBoundaryCondition(model,'dirichlet', ...
    'Face',[e1,e2,e3], ...
    'h',H0,'r',R0);
% For 2-D geometry:
applyBoundaryCondition(model,'dirichlet', ...
    'Edge',[e1,e2,e3], ...
    'h',H0,'r',R0);
```

- The ' r ' parameter must be a numeric vector of length N. If you do not specify ' r ', applyBoundaryCondition sets the values to 0 .
- The 'h' parameter can be an N-by- N numeric matrix or a vector of length N^{2} corresponding to the linear indexing form of the N-by- N matrix. For details about the linear indexing form, see "Array Indexing". If you do not specify ' h ', applyBoundaryCondition sets the value to the identity matrix.

Neumann Boundary Conditions

Scalar PDEs

Generalized Neumann boundary conditions imply that the solution u on the edge or face satisfies the equation

$$
\vec{n} \cdot(c \nabla u)+q u=g
$$

The coefficient c is the same as the coefficient of the second-order differential operator in the PDE equation

$$
-\nabla \cdot(c \nabla u)+a u=f \text { on domain } \Omega
$$

\vec{n} is the outward unit normal. q and g are functions defined on $\partial \Omega$, and can be functions of space (x, y, and, in 3-D, z), the solution u, and, for time-dependent equations, time.

Suppose that you have a PDE model named model, and edges or faces [e1,e2,e3] where the solution u must satisfy the Neumann boundary condition with $q=2$ and $g=3$. Specify this boundary condition as follows.

```
% For 3-D geometry:
applyBoundaryCondition(model,'neumann','Face',[e1,e2,e3],'q',2,'g',3);
% For 2-D geometry:
applyBoundaryCondition(model,'neumann','Edge',[e1,e2,e3],'q',2,'g',3);
```

- If you do not specify ' g ', applyBoundaryCondition sets its value to 0 .
- If you do not specify ' q ', applyBoundaryCondition sets its value to 0 .

Systems of PDEs

Neumann boundary conditions for a system of PDEs is $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{q u}=\mathbf{g}$. For 2-D systems, the notation $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ means the N-by-1 vector with (i,1)-component

$$
\sum_{j=1}^{N}\left(\cos (\alpha) c_{i, j, 1,1} \frac{\partial}{\partial x}+\cos (\alpha) c_{i, j, 1,2} \frac{\partial}{\partial y}+\sin (\alpha) c_{i, j, 2,1} \frac{\partial}{\partial x}+\sin (\alpha) c_{i, j, 2,2} \frac{\partial}{\partial y}\right) u_{j}
$$

where the outward normal vector of the boundary $\mathbf{n}=(\cos (\alpha), \sin (\alpha))$.
For 3-D systems, the notation $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ means the N-by-1 vector with ($i, 1$)-component

$$
\begin{aligned}
& \sum_{j=1}^{N}\left(\sin (\varphi) \cos (\theta) c_{i, j, 1,1} \frac{\partial}{\partial x}+\sin (\varphi) \cos (\theta) c_{i, j, 1,2} \frac{\partial}{\partial y}+\sin (\varphi) \cos (\theta) c_{i, j, 1,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\sin (\varphi) \sin (\theta) c_{i, j, 2,1} \frac{\partial}{\partial x}+\sin (\varphi) \sin (\theta) c_{i, j, 2,2} \frac{\partial}{\partial y}+\sin (\varphi) \sin (\theta) c_{i, j, 2,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\cos (\theta) c_{i, j, 3,1} \frac{\partial}{\partial x}+\cos (\theta) c_{i, j, 3,2} \frac{\partial}{\partial y}+\cos (\theta) c_{i, j, 3,3} \frac{\partial}{\partial z}\right) u_{j}
\end{aligned}
$$

where the outward normal vector of the boundary $\mathbf{n}=(\sin (\varphi) \cos (\theta), \sin (\varphi) \sin (\theta), \cos (\varphi))$. For each edge or face segment, there are a total of N boundary conditions.

Suppose that you have a PDE model named model, and edges or faces [e1,e2,e3] where the first component of the solution u must satisfy the Neumann boundary condition with $q=2$ and $g=3$, and the second component must satisfy the Neumann boundary condition with $q=4$ and $g=5$. Specify this boundary condition as follows.

```
Q = [2 0; 0 4];
G = [3;5];
% For 3-D geometry:
applyBoundaryCondition(model,'neumann','Face',[e1,e2,e3],'q',Q,'g',G);
% For 2-D geometry:
applyBoundaryCondition(model,'neumann','Edge',[e1,e2,e3],'q',Q,'g',G);
```

- The ' g ' parameter must be a numeric vector of length N. If you do not specify ' g ', applyBoundaryCondition sets the values to 0 .
- The ' q ' parameter can be an N-by- N numeric matrix or a vector of length N^{2} corresponding to the linear indexing form of the N-by- N matrix. For details about the linear indexing form, see "Array Indexing". If you do not specify ' q ', applyBoundaryCondition sets the values to 0.

Mixed Boundary Conditions

If some equations in your system of PDEs must satisfy the Dirichlet boundary condition and some must satisfy the Neumann boundary condition for the same geometric region, use the 'mixed' parameter to apply boundary conditions in one call. Note that applyBoundaryCondition uses the default Neumann boundary condition with $\mathrm{g}=0$ and $\mathrm{q}=0$ for equations for which you do not explicitly specify a boundary condition.

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3] where the first component of the solution u must equal 11 , the second component must equal 22, and the third component must satisfy the Neumann boundary condition with $q=3$ and $g=4$. Express this boundary condition as follows.

```
Q = [0 0 0; 0 0 0; 0 0 3];
G = [0;0;4];
% For 3-D geometry:
applyBoundaryCondition(model,'mixed','Face',[e1,e2,e3],...
                            'u',[11,22],'EquationIndex',[1,2],...
    'q',Q,'g',G);
% For 2-D geometry:
applyBoundaryCondition(model,'mixed',...
    'Edge',[e1,e2,e3],'u',[11,22],...
    'EquationIndex',[1,2],'q',Q,'g',G);
```

Suppose that you have a PDE model named model, and edges or faces [e1,e2,e3] where the first component of the solution u must satisfy the Dirichlet boundary condition $2 u_{1}=3$, the second component must satisfy the Neumann boundary condition with $q=4$ and $g=5$, and the third component must satisfy the Neumann boundary condition with $q=6$ and $g=7$. Express this boundary condition as follows.

```
h = [2 0 0; 0 0 0; 0 0 0];
r = [3;0;0];
Q = [0 0 0; 0 4 0; 0 0 6];
G = [0;5;7];
% For 3-D geometry:
applyBoundaryCondition(model,'mixed', ...
    'Face',[e1,e2,e3], ...
    'h',h,'r',r,'q',Q,'g',G);
% For 2-D geometry:
applyBoundaryCondition(model,'mixed', ...
    'Edge',[e1,e2,e3], ...
    'h',h,'r',r,'q',Q,'g',G);
```


Nonconstant Boundary Conditions

Use functions to express nonconstant boundary conditions.

```
applyBoundaryCondition(model,'dirichlet', ...
    'Edge',1, ...
```

```
    'r',@myrfun);
applyBoundaryCondition(model,'neumann', ...
    'Face',2, ...
    'g',@mygfun,'q',@myqfun);
applyBoundaryCondition(model,'mixed', ...
    'Edge',[3,4], ...
    'u',@myufun, ...
    'EquationIndex',[2,3]);
```

Each function must have the following syntax.
function bcMatrix = myfun(location,state)
Partial Differential Equation Toolbox solvers pass the location and state data to your function.

- location - A structure containing the following fields. If you pass a name-value pair to applyBoundaryCondition with Vectorized set to 'on', then location can contain several evaluation points. If you do not set Vectorized or use Vectorized, ' off' , then solvers pass just one evaluation point in each call.
- location. x - The x-coordinate of the point or points
- location. y - The y-coordinate of the point or points
- location. z - For 3-D geometry, the z-coordinate of the point or points

Furthermore, if there are Neumann conditions, then solvers pass the following data in the location structure.

- location. $\mathrm{nx}-x$-component of the normal vector at the evaluation point or points
- location.ny - y-component of the normal vector at the evaluation point or points
- location. nz - For 3-D geometry, z-component of the normal vector at the evaluation point or points
- state - For transient or nonlinear problems.
- state. u contains the solution vector at evaluation points. state. u is an N-by- M matrix, where each column corresponds to one evaluation point, and M is the number of evaluation points.
- state. time contains the time at evaluation points. state. time is a scalar.

Your function returns bcMatrix. This matrix has the following form, depending on the boundary condition type.

- ' u' $-N 1$-by- M matrix, where each column corresponds to one evaluation point, and M is the number of evaluation points. $N 1$ is the length of the 'EquationIndex' argument. If there is no 'EquationIndex' argument, then $N 1=N$.
- ' r ' or ' g ' $-N$-by- M matrix, where each column corresponds to one evaluation point, and M is the number of evaluation points.
- ' h ' or ' q ' $-N^{2}$-by-M matrix, where each column corresponds to one evaluation point via linear indexing of the underlying N-by- N matrix, and M is the number of evaluation points. Alternatively, an N-by- N-by- M array, where each evaluation point is an N-by- N matrix. For details about linear indexing, see "Array Indexing".

If boundary conditions depend on state. u or state.time, ensure that your function returns a matrix of NaN of the correct size when state. u or state. time are NaN. Solvers check whether a
problem is nonlinear or time-dependent by passing NaN state values, and looking for returned NaN values.

See "Solve PDEs with Nonconstant Boundary Conditions" on page 2-123.

Solve PDEs with Constant Boundary Conditions

This example shows how to apply various constant boundary condition specifications for both scalar PDEs and systems of PDEs.

Geometry

All the specifications use the same 2-D geometry, which is a rectangle with a circular hole.

```
% Rectangle is code 3, 4 sides, followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
% Circle is code 1, center (.5,0), radius .2
C1 = [1,.5,0,.2]';
% Pad C1 with zeros to enable concatenation with R1
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];
% Names for the two geometric objects
ns = (char('R1','C1'))';
% Set formula
sf = 'R1 - C1';
% Create geometry
g = decsg(geom,sf,ns);
% Create geometry model
model = createpde;
% Include the geometry in the model and view the geometry
geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
xlim([-1.1 1.1])
axis equal
```


Scalar Problem

Suppose that edge 3 has Dirichlet conditions with value 32, edge 1 has Dirichlet conditions with value 72 , and all other edges have Neumann boundary conditions with $q=0, g=-1$.

```
applyBoundaryCondition(model,'dirichlet','edge',3,'u',32);
applyBoundaryCondition(model,'dirichlet','edge',1,'u',72);
applyBoundaryCondition(model,'neumann','edge',[2,4:8],'g',-1);
```

This completes the boundary condition specification.
Solve an elliptic PDE with these boundary conditions with $c=1$, $a=0$, and $f=10$. Because the shorter rectangular side has length 0.8 , to ensure that the mesh is not too coarse choose a maximum mesh size Hmax = 0.1.

```
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',10);
generateMesh(model,'Hmax',0.1);
results = solvepde(model);
u = results.NodalSolution;
pdeplot(model,'XYData',u,'ZData',u)
view(-23,8)
```


System of PDEs

Suppose that the system has $\mathrm{N}=2$.

- Edge 3 has Dirichlet conditions with values [32,72].
- Edge 1 has Dirichlet conditions with values [72,32].
- Edge 4 has a Dirichlet condition for the first component with value 52, and has a Neumann condition for the second component with $\mathrm{q}=0, \mathrm{~g}=-1$.
- Edge 2 has Neumann boundary conditions with $q=[1,2 ; 3,4]$ and $g=[5,-6]$.
- The circular edges (edges 5 through 8) have $q=0$ and $g=0$.
model = createpde(2);
geomet ryFromEdges (model, g) ;
applyBoundaryCondition(model,'dirichlet','edge', $3,{ }^{\prime} \mathbf{u ' ~}^{\prime}[32,72]$);
applyBoundaryCondition(model,'dirichlet','edge',1,'u',[72,32]);
applyBoundaryCondition(model,'mixed','edge', 4,'u',52,'EquationIndex',1,'g', [0,-1]);
Q2 $=[1,2 ; 3,4]$;
G2 = [5,-6];
applyBoundaryCondition(model,'neumann','edge',2,'q', Q2,'g',G2);
\% The next step is optional, because it sets 'g' to its default value
applyBoundaryCondition(model,'neumann','edge',5:8,'g',[0,0]);
This completes the boundary condition specification.

Solve an elliptic PDE with these boundary conditions using $c=1$, $a=0$, and $f=[10 ;-10]$. Because the shorter rectangular side has length 0.8 , to ensure that the mesh is not too coarse choose a maximum mesh size Hmax = 0.1.

```
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f', [10;-10]);
```

generateMesh(model,'Hmax',0.1);
results = solvepde(model);
u = results.NodalSolution;
pdeplot(model,'XYData',u(:,2),'ZData',u(:,2))

See Also

More About

- "Specify Boundary Conditions" on page 2-113
- "Solve PDEs with Nonconstant Boundary Conditions" on page 2-123

Solve PDEs with Nonconstant Boundary Conditions

This example shows how to write functions for a nonconstant boundary condition specification.

Geometry

All the specifications use the same geometry, which is a rectangle with a circular hole.

```
% Rectangle is code 3, 4 sides, followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
% Circle is code 1, center (.5,0), radius .2
C1 = [1,.5,0,.2]';
% Pad C1 with zeros to enable concatenation with R1
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];
% Names for the two geometric objects
ns = (char('R1','C1'))';
% Set formula
sf = 'R1-C1';
% Create geometry
g = decsg(geom,sf,ns);
% Create geometry model
model = createpde;
% Include the geometry in the model and view the geometry
geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
xlim([-1.1 1.1])
axis equal
```


Scalar Problem

- Edge 3 has Dirichlet conditions with value 32.
- Edge 1 has Dirichlet conditions with value 72.
- Edges 2 and 4 have Dirichlet conditions that linearly interpolate between edges 1 and 3.
- The circular edges (5 through 8) have Neumann conditions with $q=0, g=-1$.

```
applyBoundaryCondition(model,'dirichlet','Edge',3,'u',32);
applyBoundaryCondition(model,'dirichlet','Edge',1,'u',72);
applyBoundaryCondition(model,'neumann','Edge',5:8,'g',-1); % q = 0 by default
```

Edges 2 and 4 need functions that perform the linear interpolation. Each edge can use the same function that returns the value $u(x, y)=52+20 x$.

You can implement this simple interpolation in an anonymous function.

```
myufunction = @(location,state)52 + 20*location.x;
```

Include the function for edges 2 and 4. To help speed the solver, allow a vectorized evaluation.

```
applyBoundaryCondition(model,'dirichlet','Edge',[2,4],...
    'u',myufunction,...
    'Vectorized','on');
```

Solve an elliptic PDE with these boundary conditions, using the parameters $\mathrm{c}=1$, $\mathrm{a}=0$, and $\mid \mathrm{f}=$ $10 \mid$. Because the shorter rectangular side has length 0.8 , to ensure that the mesh is not too coarse choose a maximum mesh size $\operatorname{Hmax}=0.1$.
specifyCoefficients(model,'m', 0,'d',0,'c',1,'a',0,'f',10);
generateMesh(model,'Hmax',0.1);
results = solvepde(model);
u = results.NodalSolution;
pdeplot(model,'XYData',u)

System of PDEs

Suppose that the system has $\mathrm{N}=2$.

- Edge 3 has Dirichlet conditions with values [32,72].
- Edge 1 has Dirichlet conditions with values [72,32].
- Edges 2 and 4 have Dirichlet conditions that interpolate between the conditions on edges 1 and 3, and include a sinusoidal variation.
- Circular edges (edges 5 through 8) have $q=0$ and $g=-10$.
model = createpde(2);
geometryFromEdges (model,g);
applyBoundaryCondition(model,'dirichlet','Edge', 3, 'u', [32,72]);
applyBoundaryCondition(model,'dirichlet','Edge',1,'u',[72,32]);
applyBoundaryCondition(model,' ${ }^{\prime}$ neumann','Edge', 5:8,'g', [-10,-10]) ;
The first component of edges 2 and 4 satisfies the equation $u_{1}(x)=52+20 x+10 \sin \left(\pi x^{3}\right)$.
The second component satisfies $u_{2}(x)=52-20 x-10 \sin \left(\pi x^{3}\right)$.

Write a function file myufun.m that incorporates these equations in the syntax described in "Nonconstant Boundary Conditions" on page 2-116.

```
function bcMatrix = myufun(location,state)
bcMatrix = [52 + 20*location.x + 10*sin(pi*(location.x.^3));
    52 - 20*location.x - 10*sin(pi*(location.x.^3))]; % OK to vectorize
end
```

Include this function in the edge 2 and edge 4 boundary condition.

```
applyBoundaryCondition(model,'dirichlet','Edge',[2,4],...
    'u',@myufun,...
    'Vectorized','on');
```

Solve an elliptic PDE with these boundary conditions, with the parameters $\mathrm{c}=1$, $\mathrm{a}=0$, and $\mathrm{f}=$ ($10,-10$). Because the shorter rectangular side has length 0.8 , to ensure that the mesh is not too coarse choose a maximum mesh size $\mathrm{Hmax}=0.1$.

```
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',[10;-10]);
generateMesh(model,'Hmax',0.1);
results = solvepde(model);
u = results.NodalSolution;
subplot(1,2,1)
pdeplot(model,'XYData',u(:,1),'ZData',u(:,1),'ColorBar','off')
view(-9,24)
subplot(1,2,2)
pdeplot(model,'XYData',u(:,2),'ZData',u(:,2),'ColorBar','off')
view(-9,24)
```


View, Edit, and Delete Boundary Conditions

In this section...

"View Boundary Conditions" on page 2-128
"Delete Existing Boundary Conditions" on page 2-129
"Change a Boundary Conditions Assignment" on page 2-130

View Boundary Conditions

A PDE model stores boundary conditions in its BoundaryConditions property. To obtain the boundary conditions stored in the PDE model called model, use this syntax:

BCs = model.BoundaryConditions;
To see the active boundary condition assignment for a region, call the findBoundaryConditions function.

For example, create a model and view the geometry.

```
model = createpde(3);
```

importGeometry(model,'Block.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha', 0.5)

Set zero Dirichlet conditions for all equations and all regions in the model.

```
applyBoundaryCondition(model,'dirichlet','Face',1:6,'u',[0,0,0]);
```

On face 3 , set the Neumann boundary condition for equation 1 and Dirichlet boundary condition for equations 2 and 3 .

```
h = [0 0 0;0 1 0;0 0 1];
r = [0;3;3];
q = [1 0 0;0 0 0;0 0 0];
g = [10;0;0];
applyBoundaryCondition(model,'mixed','Face',3,'h',h,'r',r,'g',g,'q',q);
```

View the boundary condition assignment for face 3 . The result shows that the active boundary condition is the last assignment.

```
BCs = model.BoundaryConditions;
findBoundaryConditions(BCs,'Face',3)
ans =
    BoundaryCondition with properties:
        BCType: 'mixed'
        RegionType: 'Face'
            RegionID: 3
                r: [3x1 double]
                h: [3x3 double]
                g: [3x1 double]
                q: [3x3 double]
                u: []
        EquationIndex: []
            Vectorized: 'off'
```

View the boundary conditions assignment for face 1.

```
findBoundaryConditions(BCs,'Face',1)
ans =
    BoundaryCondition with properties:
            BCType: 'dirichlet'
        RegionType: 'Face'
            RegionID: [11 2 3 4 5 6]
                r: []
        h: []
        g: []
        q: []
        u: [0 0 0]
        EquationIndex: []
            Vectorized: 'off'
```

The active boundary conditions assignment for face 1 includes all six faces, though this assignment is no longer active for face 3.

Delete Existing Boundary Conditions

To remove all the boundary conditions in the PDE model called pdem, use delete.

```
delete(pdem.BoundaryConditions)
```

To remove specific boundary conditions assignments from pdem, delete them from the pdem. BoundaryConditions.BoundaryConditionAssignments vector. For example,
$\mathrm{BCv}=$ pdem.BoundaryConditions.BoundaryConditionAssignments; delete(BCv(2))

Tip You do not need to delete boundary conditions; you can override them by calling applyBoundaryCondition again. However, removing unused assignments can make your model more concise.

Change a Boundary Conditions Assignment

To change a boundary conditions assignment, you need the boundary condition's handle. To get the boundary condition's handle:

- Retain the handle when using applyBoundaryCondition. For example,

```
bc1 = applyBoundaryCondition(model,'dirichlet', ..
    'Face',1:6, ...
    'u',[0 0 0]);
```

- Obtain the handle using findBoundaryConditions. For example,

```
BCs = model.BoundaryConditions;
bc1 = findBoundaryConditions(BCs,'Face',2)
bc1 =
BoundaryCondition with properties:
            BCType: 'dirichlet'
            RegionType: 'Face'
            RegionID: [llllllll
                r: []
            h: []
            g: []
            q: []
            u: [0 0 0]
        EquationIndex: []
            Vectorized: 'off'
```

You can change any property of the boundary conditions handle. For example,

```
bcl.BCType = 'neumann';
bc1.u = [];
bcl.g = [0 0 0];
bcl.q = [0 0 0];
bc1
bc1 =
    BoundaryCondition with properties:
            BCType: 'neumann'
            RegionType: 'Face'
```

```
    RegionID: [1 2 3 4 5 6]
        r: []
        h: []
        g: [0 0 0]
        q: [0 0 0]
        u: []
EquationIndex: []
    Vectorized: 'off'
```

Note Editing an existing assignment in this way does not change its priority. For example, if the active boundary condition was assigned after bc1, then editing bc1 does not make bc1 the active boundary condition.

See Also

Related Examples

- "Specify Boundary Conditions" on page 2-113

Generate Mesh

The generateMesh function creates a triangular mesh for a 2-D geometry and a tetrahedral mesh for a 3-D geometry. By default, the mesh generator uses internal algorithms to choose suitable sizing parameters for a particular geometry. You also can use additional arguments to specify the following parameters explicitly:

- Target maximum mesh edge length, which is an approximate upper bound on the mesh edge lengths. Note that occasionally, some elements can have edges longer than this parameter.
- Target minimum mesh edge length, which is an approximate lower bound on the mesh edge lengths. Note that occasionally, some elements can have edges shorter than this parameter.
- Mesh growth rate, which is the rate at which the mesh size increases away from the small parts of the geometry. The value must be between 1 and 2. This ratio corresponds to the edge length of two successive elements. The default value is 1.5 , that is, the mesh size increases by 50%.
- Quadratic or linear geometric order. A quadratic element has nodes at its corners and edge centers, while a linear element has nodes only at its corners.

Create a PDE model.

```
model = createpde;
```

Include and plot the following geometry.

```
importGeometry(model,'PlateSquareHolePlanar.stl');
pdegplot(model)
```


Generate a default mesh. For this geometry, the default target maximum and minimum mesh edge lengths are 8.9443 and 4.4721, respectively.

```
mesh_default = generateMesh(model)
mesh default =
    FEMesh with properties:
```

```
            Nodes: [2x1218 double]
```

 Nodes: [2x1218 double]
 Elements: [6x574 double]
 Elements: [6x574 double]
 MaxElementSize: 8.9443
 MaxElementSize: 8.9443
 MinElementSize: 4.4721
 MinElementSize: 4.4721
 MeshGradation: 1.5000
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'
    ```
        GeometricOrder: 'quadratic'
```

View the mesh.
figure
pdemesh(mesh_default)

For comparison, create a mesh with the target maximum element edge length of 20.
mesh_Hmax = generateMesh(model,'Hmax', 20)
mesh_Hmax =
FEMesh with properties:

```
    Nodes: [2x286 double]
    Elements: [6x126 double]
MaxElementSize: 20
MinElementSize: 10
    MeshGradation: 1.5000
GeometricOrder: 'quadratic'
```

figure
pdemesh(mesh_Hmax)

Now create a mesh with the target minimum element edge length of 0.5.

```
mesh_Hmin = generateMesh(model,'Hmin',0.5)
mesh Hmin =
    FEMesh with properties:
```

 Nodes: [2x1378 double]
 Elements: [6x654 double]
 MaxElementSize: 8.9443
 MinElementSize: 0.5000
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'
 figure
pdemesh(mesh_Hmin)

Create a mesh, specifying both the maximum and minimum element edge lengths instead of using the default values.

```
mesh_HminHmax = generateMesh(model,'Hmax',20,'Hmin' ,0.5)
mesh_HminHmax =
    FEMesh with properties:
            Nodes: [2x458 double]
            Elements: [6x212 double]
    MaxElementSize: 20
    MinElementSize: 0.5000
        MeshGradation: 1.5000
    GeometricOrder: 'quadratic'
```

View the mesh.
figure
pdemesh(mesh_HminHmax)

Create a mesh with the same maximum and minimum element edge lengths, but with the growth rate of 1.9 instead of the default value of 1.5.

```
mesh_Hgrad = generateMesh(model,'Hmax',20,'Hmin',0.5,'Hgrad',1.9)
mesh_Hgrad =
    FEMesh with properties:
            Nodes: [2x390 double]
            Elements: [6x178 double]
    MaxElementSize: 20
    MinElementSize: 0.5000
        MeshGradation: 1.9000
    GeometricOrder: 'quadratic'
figure
pdemesh(mesh_Hgrad)
```


You also can choose the geometric order of the mesh. The toolbox can generate meshes made up of quadratic or linear elements. By default, it uses quadratic meshes, which have nodes at both the edge centers and corner nodes.

```
mesh_quadratic = generateMesh(model,'Hmax',50);
figure
pdemesh(mesh_quadratic,'NodeLabels','on')
hold on
plot(mesh_quadratic.Nodes(1,:),mesh_quadratic.Nodes(2,:),'ok','MarkerFaceColor','g')
```


To save memory or solve a 2-D problem using a legacy solver, override the default quadratic geometric order. Legacy PDE solvers require linear triangular meshes for 2-D geometries.

```
mesh_linear = generateMesh(model,'Hmax',50,'GeometricOrder','linear');
figure
pdemesh(mesh linear,'NodeLabels','on')
hold on
plot(mesh_linear.Nodes(1,:),mesh_linear.Nodes(2,:),'ok','MarkerFaceColor','g')
```


Find Mesh Elements and Nodes by Location

Partial Differential Equation Toolbox ${ }^{\mathrm{TM}}$ allows you to find mesh elements and nodes by their geometric location or proximity to a particular point or node. This example works with a group of elements and nodes located within the specified bounding disk.

Create a steady-state thermal model.
thermalmodel = createpde('thermal','steadystate');
Import and plot the geometry.
importGeometry(thermalmodel,'PlateHolePlanar.stl');
pdegplot(thermalmodel,'FaceLabels','on','EdgeLabels','on')

Assign the thermal conductivity of the material.
thermalProperties(thermalmodel,'ThermalConductivity',1);
Apply a constant temperature of $20^{\circ} \mathrm{C}$ to the left edge and a constant temperature of $-10^{\circ} \mathrm{C}$ to the right edge. All other edges are insulated by default.
thermalBC(thermalmodel,'Edge',4,'Temperature',20);
thermalBC(thermalmodel,'Edge',1,'Temperature',-10);

Generate a mesh and solve the problem. For this example, use a linear mesh to better see the nodes on the mesh plots. Additional nodes on a quadratic mesh make it difficult to see the plots in this example clearly.

```
mesh = generateMesh(thermalmodel,'GeometricOrder','linear');
thermalresults = solve(thermalmodel);
```

The solver finds the temperatures and temperature gradients at all nodal locations. Plot the temperatures.
pdeplot(thermalmodel,'XYData', thermalresults. Temperature)
axis equal

Suppose you need to analyze the results around the center hole more closely. First, find the nodes and elements located next to the hole by using the findNodes and findElements functions. For example, find nodes and elements located within the radius of 2.5 from the center [5 10].

```
Nr = findNodes(mesh,'radius',[5 10],2.5);
Er = findElements(mesh,'radius',[5 10],2.5);
```

Highlight the nodes within this radius on the mesh plot using a green marker.

```
figure
pdemesh(thermalmodel)
hold on
plot(mesh.Nodes(1,Nr),mesh.Nodes(2,Nr),'or','MarkerFaceColor','g')
```


Find the minimal and maximal temperatures within the specified radius.

```
[Temps_disk] = thermalresults.Temperature(Nr);
[T_min,index_min] = min(Temps_disk);
[T_max,index_max] = max(Temps_disk);
T_min
T_min = -2.1698
T_max
T_max = 12.2420
```

Find the IDs of the nodes corresponding to the minimal and maximal temperatures. Plot these nodes on the mesh plot.

```
nodeIDmin = Nr(index_min);
nodeIDmax = Nr(index_max);
figure
pdemesh(thermalmodel)
hold on
plot(mesh.Nodes(1,nodeIDmin),mesh.Nodes(2,nodeIDmin),'or','MarkerFaceColor','b')
plot(mesh.Nodes(1,nodeIDmax),mesh.Nodes(2,nodeIDmax),'or','MarkerFaceColor','r')
```


Now highlight the elements within the specified radius on the mesh plot using a green marker.

```
figure
pdemesh(thermalmodel)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Er),'EdgeColor','green')
```


Show the solution for only these elements.
figure
pdeplot(mesh.Nodes,mesh.Elements(:,Er),'XYData',thermalresults.Temperature)

Assess Quality of Mesh Elements

Partial Differential Equation Toolbox ${ }^{\text {TM }}$ uses the finite element method to solve PDE problems. This method discretizes a geometric domain into a collection of simple shapes that make up a mesh. The quality of the mesh is crucial for obtaining an accurate approximation of a solution.

Typically, PDE solvers work best with meshes made up of elements that have an equilateral shape. Such meshes are ideal. In reality, creating an ideal mesh for most 2-D and 3-D geometries is impossible because geometries have tiny or narrow regions and sharp angles. For such regions, a mesh generator creates meshes with some elements that are much smaller than the rest of mesh elements or have drastically different side lengths.

As mesh elements become distorted, numeric approximations of a solution typically become less accurate. Refining a mesh using smaller elements produces better shaped elements and, therefore, more accurate results. However, it also can be computationally expensive.

Checking if the mesh is of good quality before running an analysis is a good practice, especially for simulations that take a long time. The toolbox provides the meshQuality function for this task.
meshQuality evaluates the shape quality of mesh elements and returns numbers from 0 to 1 for each mesh element. The value 1 corresponds to the optimal shape of the element. By default, the meshQuality function combines several criteria when evaluating the shape quality. In addition to the default metric, you can use the aspect - ratio metric, which is based solely on the ratio of the minimum dimension of an element to its maximum dimension.

Create a PDE model.

```
model = createpde;
```

Include and plot the torus geometry.

```
importGeometry(model,'Torus.stl');
pdegplot(model)
camlight right
```


Generate a coarse mesh.
mesh = generateMesh(model,'Hmax',10);
Evaluate the shape quality of all mesh elements.
Q = meshQuality(mesh);
Find the elements with quality values less than 0.3.
elemIDs = find $(0<0.3)$;
Highlight these elements in blue on the mesh plot.
figure
pdemesh(mesh,'FaceAlpha',0.5)
hold on
pdemesh(mesh. Nodes,mesh.Elements(:,elemIDs), 'FaceColor','blue','EdgeColor','blue')

Determine how much of the total mesh volume belongs to elements with quality values less than 0.3. Return the result as a percentage.

```
mv03_percent = volume(mesh,elemIDs)/volume(mesh)*100
mv03_percent = 0.0198
```

Evaluate the shape quality of the mesh elements by using the ratio of minimal to maximal dimension for each element.

```
Q = meshQuality(mesh,'aspect-ratio');
```

Find the elements with quality values less than 0.3.

```
elemIDs = find(0 < 0.3);
```

Highlight these elements in blue on the mesh plot.
figure
pdemesh(mesh,'FaceAlpha',0.5)
hold on
pdemesh(mesh. Nodes,mesh.Elements(:,elemIDs), 'FaceColor','blue','EdgeColor','blue')

Mesh Data as [p,e,t] Triples

Partial Differential Equation Toolbox uses meshes with triangular elements for 2-D geometries and meshes with tetrahedral elements for 3-D geometries. Earlier versions of Partial Differential Equation Toolbox use meshes in the form of a [p,e,t] triple. The matrices p, e, and t represent the points (nodes), elements, and triangles or tetrahedra of a mesh, respectively. Later versions of the toolbox support the $[\mathrm{p}, \mathrm{e}, \mathrm{t}]$ meshes for compatibility reasons.

Note New features might not be compatible with the legacy workflow. For description of the mesh data in the recommended workflow, see "Mesh Data" on page 2-153.

The mesh data for a 2-D mesh has these components:

- p (points, the mesh nodes) is a 2-by-Np matrix of nodes, where Np is the number of nodes in the mesh. Each column $\mathrm{p}(:, \mathrm{k})$ consists of the x-coordinate of point k in $\mathrm{p}(1, k)$ and the y-coordinate of point k in $p(2, k)$.
- e (edges) is a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. The mesh edges in e and the edges of the geometry have a one-to-one correspondence. The e matrix represents the discrete edges of the geometry in the same manner as the t matrix represents the discrete faces. Each column in the e matrix represents one edge.
- $e(1, k)$ is the index of the first point in mesh edge k.
- $e(2, k)$ is the index of the second point in mesh edge k.
- $e(3, k)$ is the parameter value at the first point of edge k. The parameter value is related to the arc length along the geometric edge.
- $e(4, k)$ is the parameter value at the second point of edge k.
- $e(5, k)$ is the ID of the geometric edge containing the mesh edge. You can see edge IDs by using the command pdegplot (geom, 'EdgeLabels', 'on').
- $e(6, k)$ is the subdomain number on the left side of the edge. The direction along the edge is given by increasing parameter values. The subdomain 0 is the exterior of the geometry.
- $e(7, k)$ is the subdomain number on the right side of the edge.
- t (triangles) is a 4-by-Nt matrix of triangles or a 7-by-Nt matrix of triangles, depending on whether you call generateMesh with the GeometricOrder name-value pair set to 'quadratic' or 'linear', respectively. initmesh creates only ' linear' elements, which have size 4-by-Nt. $N t$ is the number of triangles in the mesh. Each column of t contains the indices of the points in p that form the triangle. The exception is the last entry in the column, which is the subdomain number. Triangle points are ordered as shown.

The mesh data for a 3-D mesh has these components:

- p (points, the mesh nodes) is a 3-by-Np matrix of nodes, where Np is the number of nodes in the mesh. Each column $p(:, k)$ consists of the x-coordinate of point k in $p(1, k)$, the y-coordinate of point k in $p(2, k)$, and the z-coordinate of point k in $p(3, k)$.
- e is an object that associates the mesh faces with the geometry boundaries. Partial Differential Equation Toolbox functions use this association when converting the boundary conditions, which you set on geometry boundaries, to the mesh boundary faces.
- t (tetrahedra) is either an 11-by-Nt matrix of tetrahedra or a 5-by-Nt matrix of tetrahedra, depending on whether you call generateMesh with the Geometric0rder name-value pair set to 'quadratic' or 'linear', respectively. Nt is the number of tetrahedra in the mesh. Each column of t contains the indices of the points in p that form the tetrahedron. The exception is the last element in the column, which is the subdomain number. Tetrahedron points are ordered as shown.

You can create a [p, e, t] mesh by using one of these approaches:

- Use the initmesh function to create a 2-D [p,e,t] mesh.
- Use the generateMesh function to create a 2-D or 3-D mesh as a FEMesh object. Then use the meshToPet function to convert the mesh to a [p,e,t] mesh.

Mesh Data

Partial Differential Equation Toolbox uses meshes with triangular elements for 2-D geometries and meshes with tetrahedral elements for 3-D geometries. In both cases, it uses the quadratic geometric order by default, and provides the option to switch to the linear geometric order. A mesh always consists of elements of the same order. The toolbox does not support mixed meshes.

The triangles in 2-D meshes are specified by three nodes for linear elements or six nodes for quadratic elements. A triangle representing a linear element has nodes at the corners. A triangle representing a quadratic element has nodes at its corners and edge centers.

The tetrahedra in 3-D meshes are specified by four nodes for linear elements or 10 nodes for quadratic elements. A tetrahedron representing a linear element has nodes at the corners. A tetrahedron representing a quadratic element has nodes at its corners and edge centers.

The center nodes in quadratic meshes are always added at half-distance between corners. For geometries with curved surfaces and edges, center nodes might not appear on the edge or surface itself.

The model container object stores the parameters of the PDE model. The toolbox offers several types of model container objects, each for a particular application area. For example, for linear elasticity problems, the model container is a StructuralModel object, and for heat transfer problems, the model container is a ThermalModel object. For general PDE problems, the toolbox uses the PDEModel object.

The Mesh property of the model container object stores mesh data. The Mesh property contains a FEMesh object. FEMesh include information on the nodes and elements of the mesh, mesh growth rate, and target minimum and maximum element size. The properties also indicate whether the mesh is linear or quadratic. You can specify these mesh parameters when creating a mesh.

To generate a mesh for your PDE model, use the generateMesh function.
By default, generateMesh uses the quadratic geometric order, which typically produces more accurate results than the linear geometric order. To switch to the linear geometric order, call the mesh generator and set the GeometricOrder name-value pair to ' linear'.

Solving PDEs

- "von Mises Effective Stress and Displacements: PDE Modeler App" on page 3-3
- "Clamped Square Isotropic Plate with Uniform Pressure Load" on page 3-7
- "Deflection of Piezoelectric Actuator" on page 3-11
- "Dynamics of Damped Cantilever Beam" on page 3-21
- "Dynamic Analysis of Clamped Beam" on page 3-28
- "Reduced-Order Modeling Technique for Beam with Point Load" on page 3-33
- "Modal and Frequency Response Analysis for Single Part of Kinova ${ }^{\circledR}$ Gen3 Robotic Arm" on page 3-40
- "Thermal Stress Analysis of Jet Engine Turbine Blade" on page 3-50
- "Finite Element Analysis of Electrostatically Actuated MEMS Device" on page 3-58
- "Deflection Analysis of Bracket" on page 3-71
- "Vibration of Square Plate" on page 3-78
- "Structural Dynamics of Tuning Fork" on page 3-82
- "Modal Superposition Method for Structural Dynamics Problem" on page 3-91
- "Stress Concentration in Plate with Circular Hole" on page 3-95
- "Thermal Deflection of Bimetallic Beam" on page 3-103
- "Axisymmetric Thermal and Structural Analysis of Disc Brake" on page 3-110
- "Electrostatic Potential in Air-Filled Frame" on page 3-121
- "Electrostatic Potential in Air-Filled Frame: PDE Modeler App" on page 3-123
- "Linear Elasticity Equations" on page 3-125
- "Magnetic Field in Two-Pole Electric Motor" on page 3-130
- "Magnetic Field in Two-Pole Electric Motor: PDE Modeler App" on page 3-135
- "Scattering Problem" on page 3-140
- "Electrostatics and Magnetostatics" on page 3-145
- "Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App" on page 3-146
- "Current Density Between Two Metallic Conductors: PDE Modeler App" on page 3-154
- "Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App" on page 3-157
- "Temperature Distribution in Heat Sink" on page 3-161
- "Nonlinear Heat Transfer in Thin Plate" on page 3-170
- "Poisson's Equation on Unit Disk: PDE Modeler App" on page 3-178
- "Poisson's Equation on Unit Disk" on page 3-184
- "Scattering Problem: PDE Modeler App" on page 3-192
- "Minimal Electric Potential" on page 3-196
- "Minimal Surface Problem: PDE Modeler App" on page 3-200
- "Poisson's Equation with Point Source and Adaptive Mesh Refinement" on page 3-202
- "Heat Transfer in Block with Cavity: PDE Modeler App" on page 3-207
- "Heat Transfer in Block with Cavity" on page 3-211
- "Heat Transfer Problem with Temperature-Dependent Properties" on page 3-215
- "Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux" on page 3-223
- "Inhomogeneous Heat Equation on Square Domain" on page 3-230
- "Heat Distribution in Circular Cylindrical Rod" on page 3-234
- "Thermal Analysis of Disc Brake" on page 3-240
- "Heat Distribution in Circular Cylindrical Rod: PDE Modeler App" on page 3-248
- "Wave Equation on Square Domain" on page 3-251
- "Wave Equation on Square Domain: PDE Modeler App" on page 3-255
- "Eigenvalues and Eigenmodes of L-Shaped Membrane" on page 3-258
- "Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App" on page 3-264
- "L-Shaped Membrane with Rounded Corner: PDE Modeler App" on page 3-267
- "Eigenvalues and Eigenmodes of Square" on page 3-270
- "Eigenvalues and Eigenmodes of Square: PDE Modeler App" on page 3-275
- "Vibration of Circular Membrane" on page 3-278
- "Solution and Gradient Plots with pdeplot and pdeplot3D" on page 3-282
- "2-D Solution and Gradient Plots with MATLAB® Functions" on page 3-291
- "3-D Solution and Gradient Plots with MATLAB® Functions" on page 3-297
- "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309

von Mises Effective Stress and Displacements: PDE Modeler App

This example shows how to compute the displacements u and v and the von Mises effective stress for a steel plate that is clamped along a right-angle inset at the lower-left corner, and pulled along a rounded cut at the upper-right corner. The example uses the PDE Modeler app. The app also lets you compute and visualize other properties, such as the x - and y-direction strains and stresses and the shear stress.

Consider a steel plate that is clamped along a right-angle inset at the lower-left corner, and pulled along a rounded cut at the upper-right corner. All other sides are free. The steel plate has the following properties:

- Dimensions 1 m -by- 1 m -by 0.001 m ;
- Inset is $1 / 3$-by- $1 / 3 \mathrm{~m}$
- The rounded cut runs from $(2 / 3,1)$ to $(1,2 / 3)$
- Young's modulus: $196 \cdot 10^{3}\left(\mathrm{MN} / \mathrm{m}^{2}\right)$
- Poisson's ratio: 0.31.

The curved boundary is subjected to an outward normal load of $500 \mathrm{~N} / \mathrm{m}$. To specify a surface traction, divide the load by the thickness (0.001 m). Thus, the surface traction is $0.5 \mathrm{MN} / \mathrm{m}^{2}$. The force unit in this example is MN.

To solve this problem in the PDE Modeler app, follow these steps:
1 Draw a polygon with corners (0 1), (2/3,1), (1,2/3), (1,0), (1/3,0), (1/3,1/3), ($0,1 / 3$) and a circle with the center $(2 / 3,2 / 3)$ and radius $1 / 3$.
pdepoly([0 2/3 1 1 1/3 1/3 0],[1 1 2/3 $001 / 31 / 3])$
pdecirc(2/3,2/3,1/3)
2 Set the x-axis limit to [-0.5 1.5] and y-axis limit to [0 1.2]. To do this, select Options > Axes Limits and set the corresponding ranges.
3 Model the geometry by entering P1+C1 in the Set formula field.
4 Set the application mode to Structural Mechanics, Plane Stress.
5 Remove all subdomain borders. To do this, switch to the boundary mode by selecting Boundary > Boundary Mode. Then select Boundary > Remove All Subdomain Borders.
6 Display the edge labels by selecting Boundary > Show Edge Labels.

7 Specify the boundary conditions. To do this, select Boundary > Specify Boundary Conditions.

- For convenience, first specify the Neumann boundary condition $\mathrm{g} 1=\mathrm{g} 2=0, \mathrm{q} 11=\mathrm{q} 12=$ q21 = q22 = 0 (no normal stress) for all boundaries. Use Edit > Select All to select all boundaries.
- For the two clamped boundaries at the inset in the lower left (edges 4 and 5), specify the Dirichlet boundary condition with zero displacements: h11 = 1, h12 = 0, h21 = 0, h22 = $1, r 1=0, r 2=0$. Use Shift+click to select several boundaries.
- For the rounded cut (edge 7), specify the Neumann boundary condition: g1 = 0.5*nx, g2 = $0.5^{*} n y, q 11=q 12=q 21=q 22=0$.
8 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. Specify $\mathrm{E}=196 \mathrm{E} 3$ and $\mathrm{nu}=0.31$. The material is homogeneous, so the same values E and nu apply to the entire 2-D domain. Because there are no volume forces, specify Kx $=K y=0$. The elliptic type of PDE for plane stress does not use density, so you can specify any value. For example, specify pho $=0$.
9 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh > Refine Mesh.

10 Refining the mesh in areas where the gradient of the solution (the stress) is large. To do this, select Solve > Parameters. In the resulting dialog box, select Adaptive mode. Use the default adaptation options: the Worst triangles triangle selection method with the Worst triangle fraction set to 0.5.
11 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.
12 Plot the von Mises effective stress using color. Plot the displacement vector field (u, v) using a deformed mesh. To do this:
a Select Plot > Parameters.
b In the resulting dialog box, select the Color and Deformed mesh options. Select von Mises from the Color drop-down menu. Select Show Mesh to observe the refined mesh in large stress areas.

By selecting other options from the Color drop-down menu, you can visualize different strain and stress properties, such as the x - and y-direction strains and stresses, the shear stress, and the
principal stresses and strains. You also can plot combinations of scalar and vector properties by using color, height, vector field arrows, and displacements in a 3-D plot to represent different properties.

Clamped Square Isotropic Plate with Uniform Pressure Load

This example shows how to calculate the deflection of a structural plate under a pressure loading.
The partial differential equation for a thin isotropic plate with a pressure loading is

$$
\nabla^{2}\left(D \nabla^{2} w\right)=-p,
$$

where D is the bending stiffness of the plate given by

$$
D=\frac{E h^{3}}{12\left(1-v^{2}\right)^{\prime}}
$$

and E is the modulus of elasticity, ν is Poisson's ratio, h is the plate thickness, w is the transverse deflection of the plate, and p is the pressure load.

The boundary conditions for the clamped boundaries are $w=0$ and $w^{\prime}=0$, where w^{\prime} is the derivative of w in a direction normal to the boundary.

Partial Differential Equation Toolbox ${ }^{\text {TM }}$ cannot directly solve this fourth-order plate equation. Convert the fourth-order equation to these two second-order partial differential equations, where v is the new dependent variable.

$$
\begin{aligned}
& \nabla^{2} w=v \\
& D \nabla^{2} v=-p
\end{aligned}
$$

You cannot directly specify boundary conditions for both w and w^{\prime} in this second-order system. Instead, specify that w^{\prime} is 0 , and define v^{\prime} so that w also equals 0 on the boundary. To specify these conditions, use stiff "springs" distributed along the boundary. The springs apply a transverse shear force to the plate edge. Define the shear force along the boundary due to these springs as $n \cdot D \nabla v=-k w$, where n is the normal to the boundary, and k is the stiffness of the springs. This expression is a generalized Neumann boundary condition supported by the toolbox. The value of k must be large enough so that w is approximately 0 at all points on the boundary. It also must be small enough to avoid numerical errors due to an ill-conditioned stiffness matrix.

The toolbox uses the dependent variables u_{1} and u_{2} instead of w and v. Rewrite the two second-order partial differential equations using variables u_{1} and u_{2} :

$$
\begin{aligned}
& -\nabla^{2} u_{1}+u_{2}=0 \\
& -D \nabla^{2} u_{2}=p
\end{aligned}
$$

Create a PDE model for a system of two equations.
model $=$ createpde(2);
Create a square geometry and include it in the model.

```
len = 10;
gdm = [3 4 0 len len 0 0 0 len len]';
g = decsg(gdm,'S1',('S1')');
geometryFromEdges(model,g);
```

Plot the geometry with the edge labels.

```
figure
pdegplot(model,'EdgeLabels','on')
ylim([-1,11])
axis equal
title 'Geometry With Edge Labels Displayed'
```

Geometry With Edge Labels Displayed

PDE coefficients must be specified using the format required by the toolbox. For details, see

- "c Coefficient for specifyCoefficients" on page 2-76
- "m, d, or a Coefficient for specifyCoefficients" on page 2-91
- "f Coefficient for specifyCoefficients" on page 2-74

The c coefficient in this example is a tensor, which can be represented as a 2-by-2 matrix of 2-by-2 blocks:

$$
\left[\begin{array}{cccc}
c(1) & c(2) & \cdot & \cdot \\
\cdot & c(3) & \cdot & \cdot \\
\cdot & \cdot & c(4) & c(5) \\
\hline \cdot & \cdot & \cdot & c(6)
\end{array}\right]
$$

This matrix is further flattened into a column vector of six elements. The entries in the full 2 -by- 2 matrix (defining the coefficient a) and the 2-by-1 vector (defining the coefficient f) follow directly from the definition of the two-equation system.

```
E = 1.0e6; % Modulus of elasticity
nu = 0.3; % Poisson's ratio
thick = 0.1; % Plate thickness
pres = 2; % External pressure
D = E*thick^3/(12*(1 - nu^2));
c = [1 0 1 D 0 D]';
a = [0 0 1 0]';
f = [0 pres]';
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
```

To define boundary conditions, first specify spring stiffness.
k = 1e7;
Define distributed springs on all four edges.

```
bOuter = applyBoundaryCondition(model,'neumann','Edge',(1:4),...
```

 'g',[0 0],'q',[0 0; k 0]);
 Generate a mesh.
generateMesh(model);
Solve the model.

```
res = solvepde(model);
```

Access the solution at the nodal locations.

```
u = res.NodalSolution;
```

Plot the transverse deflection.

```
numNodes = size(model.Mesh.Nodes,2);
```

figure
pdeplot(model,'XYData',u(: 1), 'Contour','on')
title 'Transverse Deflection'

Find the transverse deflection at the plate center.
numNodes = size(model.Mesh.Nodes,2);
wMax $=\min (u(1: n u m N o d e s, 1))$
$w M a x=-0.2763$
Compare the result with the deflection at the plate center computed analytically.

```
wMax = -.0138*pres*len^4/(E*thick^3)
```

$\omega M a x=-0.2760$

Deflection of Piezoelectric Actuator

This example shows how to solve a coupled elasticity-electrostatics problem.
Piezoelectric materials deform under an applied voltage. Conversely, deforming a piezoelectric material produces a voltage. Therefore, analysis of a piezoelectric part requires the solution of a set of coupled partial differential equations with deflections and electrical potential as dependent variables.

In this example, the model is a two-layer cantilever beam, with both layers made of the same polyvinylidene fluoride (PVDF) material. The polarization direction points down (negative y-direction) in the top layer and points up in the bottom layer. The typical length to thickness ratio is 100 . When you apply a voltage between the lower and upper surfaces of the beam, the beam deflects in the y direction because one layer shortens and the other layer lengthens.

The equilibrium equations describe the elastic behavior of the solid:

$$
-\nabla \cdot \sigma=f
$$

Here, σ is the stress tensor, and f is the body force vector. Gauss's Law describes the electrostatic behavior of the solid:

$$
\nabla \cdot D=\rho
$$

D is the electric displacement, and ρ is the distributed free charge. Combine these two PDE systems into this single system:

$$
-\nabla \cdot\left\{\begin{array}{l}
\sigma \\
D
\end{array}\right\}=\left\{\begin{array}{c}
f \\
-\rho
\end{array}\right\}
$$

For a 2-D analysis, σ has the components σ_{11}, σ_{22}, and $\sigma_{12}=\sigma_{21}$, and D has the components D_{1} and D_{2}.

The constitutive equations for the material define the stress tensor and electric displacement vector in terms of the strain tensor and electric field. For a 2-D analysis of an orthotropic piezoelectric material under plane stress conditions, you can write these equations as

$$
\left\{\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12} \\
D_{1} \\
D_{2}
\end{array}\right\}=\left[\begin{array}{cccc}
C_{11} & C_{12} & & e_{11}
\end{array} e_{31}+\left[\begin{array}{c}
\epsilon_{11} \\
C_{12} \\
C_{22}
\end{array}\right.\right.
$$

$C_{i j}$ are the elastic coefficients, \mathscr{E}_{i} are the electrical permittivities, and $e_{i j}$ are the piezoelectric stress coefficients. The piezoelectric stress coefficients in these equations conform to conventional notation in piezoelectric materials where the z-direction (the third direction) aligns with the "poled" direction of the material. For the 2-D analysis, align the "poled" direction with the y-axis. Write the strain vector in terms of the x-displacement u and y-displacement v :

$$
\left\{\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\gamma_{12}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{array}\right\}
$$

Write the electric field in terms of the electrical potential ϕ :

$$
\left\{\begin{array}{l}
E_{1} \\
E_{2}
\end{array}\right\}=-\left\{\begin{array}{l}
\frac{\partial \phi}{\partial x} \\
\frac{\partial \phi}{\partial y}
\end{array}\right\}
$$

You can substitute the strain-displacement equations and electric field equations into the constitutive equations and get a system of equations for the stresses and electrical displacements in terms of displacement and electrical potential derivatives. Substituting the resulting equations into the PDE system equations yields a system of equations that involve the divergence of the displacement and electrical potential derivatives. As the next step, arrange these equations to match the form required by the toolbox.

Partial Differential Equation Toolbox ${ }^{\mathrm{TM}}$ requires a system of elliptic equations to be expressed in a vector form:

$$
-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

or in a tensor form:

$$
-\frac{\partial}{\partial x_{k}}\left(c_{i j k l} \frac{\partial u_{j}}{\partial x_{l}}\right)+a_{i j} u_{j}=f_{i}
$$

where repeated indices imply summation. For the 2-D piezoelectric system in this example, the system vector \mathbf{u} is

$$
\mathbf{u}=\left\{\begin{array}{l}
u \\
v \\
\phi
\end{array}\right\}
$$

This is an $N=3$ system. The gradient of \mathbf{u} is

$$
\nabla \mathbf{u}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} \\
\hline \frac{\partial v}{\partial y} \\
\frac{\partial \phi}{\partial x} \\
\hline \frac{\partial \phi}{\partial y}
\end{array}\right\}
$$

For details on specifying the coefficients in the format required by the toolbox, see:

- "c Coefficient for specifyCoefficients" on page 2-76
- "m, d, or a Coefficient for specifyCoefficients" on page 2-91
- "f Coefficient for specifyCoefficients" on page 2-74

The c coefficient in this example is a tensor. You can represent it as a 3-by-3 matrix of 2-by-2 blocks:
$\left[\begin{array}{ccccc}c(1) & c(2) & c(4) & c(6) & c(11) \\ \cdot & c(13) \\ \cdot & c(3) & c(5) & c(7) & c(12) \\ \cdot & \cdot & c(14) \\ \hline \cdot & \cdot & c(8) & c(9) & c(15) \\ \cdot & \cdot & \cdot & c(17) & c(16) \\ \cdot & \cdot & \cdot & \cdot & c(18) \\ \cdot \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline\end{array}\right.$

To map terms of constitutive equations to the form required by the toolbox, write the ctensor and the solution gradient in this form:
$\left[\begin{array}{ccccccc}c_{1111} & c_{1112} & c_{1211} & c_{1212} & c_{1311} & c_{1312} \\ \cdot & c_{1122} & c_{1221} & c_{1222} & c_{1321} & c_{1322} \\ \cdot & \cdot & c_{2211} & c_{2212} & c_{2311} & c_{2312} \\ \cdot \cdot & \cdot & \cdot & c_{2222} & c_{2321} & c_{2322} \\ \cdot & \cdot & \cdot & \cdot & c_{3311} & c_{3312} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & c_{3322}\end{array}\right]\left\{\begin{array}{c}\frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \\ \hline \frac{\partial v}{\partial y} \\ \frac{\partial \phi}{\partial x} \\ \hline \frac{\partial \phi}{\partial y}\end{array}\right\}$

From this equation, you can map the traditional constitutive coefficients to the form required for the c matrix. The minus sign in the equations for the electric field is incorporated into the c matrix to match the toolbox's convention.

$$
\left[\begin{array}{ccccccc}
C_{11} & \cdot & \cdot & C_{12} & e_{11} & e_{31} \\
\cdot & G_{12} & G_{12} & \cdot & e_{14} & e_{34} \\
\cdot & \cdot & G_{12} & \cdot & e_{14} & e_{34} \\
\hline \cdot & \cdot & \cdot & C_{22} & e_{13} & e_{33} \\
\cdot & \cdot & \cdot & \cdot & -\mathscr{E}_{1} & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & \cdot & -\mathscr{E}_{2}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} \\
\hline \frac{\partial v}{\partial y} \\
\frac{\partial \phi}{\partial x} \\
\hline \frac{\partial \phi}{\partial y}
\end{array}\right\}
$$

Beam Geometry

Create a PDE model. The equations of linear elasticity have three components, so the model must have three equations.
model = createpde(3);
Create the geometry and include it in the model.

```
L = 100e-3; % Beam length in meters
H = 1e-3; % Overall height of the beam
H2 = H/2; % Height of each layer in meters
topLayer = [3 4 0 L L 0 0 0 H2 H2];
bottomLayer = [3 4 0 L L 0 -H2 -H2 0 0];
gdm = [topLayer;bottomLayer]';
g = decsg(gdm,'R1+R2',['R1';'R2']');
geometryFromEdges(model,g);
```

Plot the geometry with the face and edge labels.

```
figure
pdegplot(model,'EdgeLabels','on','FaceLabels','on')
xlabel('X-coordinate, meters')
ylabel('Y-coordinate, meters')
axis([-.1*L,1.1*L, -4*H2,4*H2])
axis square
```


Material Properties

Specify the material properties of the beam layers. The material in both layers is polyvinylidene fluoride (PVDF), a thermoplastic polymer with piezoelectric behavior.

```
E = 2.0e9; % Elastic modulus, N/m^2
NU = 0.29; % Poisson's ratio
G = 0.775e9; % Shear modulus, N/m^2
d31 = 2.2e-11; % Piezoelectric strain coefficients, C/N
d33 = -3.0e-11;
```

Specify relative electrical permittivity of the material at constant stress.

```
relPermittivity = 12;
```

Specify the electrical permittivity of vacuum.

```
permittivityFreeSpace = 8.854187817620e-12; % F/m
C11 = E/(1 - NU^2);
C12 = NU*C11;
c2d = [C11 C12 0; C12 C11 0; 0 0 G];
pzeD = [0 d31; 0 d33; 0 0];
```

Specify the piezoelectric stress coefficients.

```
pzeE = c2d*pzeD;
D_const_stress = [relPermittivity 0; 0 relPermittivity]*permittivityFreeSpace;
```

Convert the dielectric matrix from constant stress to constant strain.
D_const_strain = D_const_stress - pzeD'*pzeE;
You can view the 21 coefficients as a 3-by-3 matrix of 2-by-2 blocks. The cij matrices are the 2-by-2 blocks in the upper triangle of this matrix.

```
c11 = [c2d(1,1) c2d(1,3) c2d(3,3)];
c12 = [c2d(1,3) c2d(1,2); c2d(3,3) c2d(2,3)];
c22 = [c2d(3,3) c2d(2,3) c2d(2,2)];
c13 = [pzeE(1,1) pzeE(1,2); pzeE(3,1) pzeE(3,2)];
c23 = [pzeE(3,1) pzeE(3,2); pzeE(2,1) pzeE(2,2)];
c33 = [D_const_strain(1,1) D_const_strain(2,1) D_const_strain(2,2)];
ctop = [\overline{c}11(:); c12(:); c22(:); -c\overline{13(:); -c23(:); -c33(:)];}
cbot = [c11(:); c12(:); c22(:); c13(:); c23(:); -c33(:)];
f = [0 0 0]';
specifyCoefficients(model,'m',0,'d',0,'c',ctop,'a',0,'f',f,'Face',2);
specifyCoefficients(model,'m',0,'d',0,'c',cbot,'a',0,'f',f,'Face',1);
```


Boundary Conditions

Set the voltage (solution component 3) on the top of the beam (edge 1) to 100 volts.

```
voltTop = applyBoundaryCondition(model,'mixed','Edge',1,...
    'u',100,...
    'EquationIndex',3);
```

Specify that the bottom of the beam (edge 2) is grounded by setting the voltage to 0 .

```
voltBot = applyBoundaryCondition(model,'mixed','Edge',2,\ldots
    'u',0,...
    'EquationIndex',3);
```

Specify that the left side (edges 6 and 7) is clamped by setting the x - and y-displacements (solution components 1 and 2) to 0 .

```
clampLeft = applyBoundaryCondition(model,'mixed','Edge',6:7,...
    'u',[0 0],...
    'EquationIndex',1:2);
```

The stress and charge on the right side of the beam are zero. Accordingly, use the default boundary condition for edges 3 and 4.

Finite Element and Analytical Solutions

Generate a mesh and solve the model.

```
msh = generateMesh(model,'Hmax',5e-4);
result = solvepde(model)
result =
    StationaryResults with properties:
        NodalSolution: [3605x3 double]
        XGradients: [3605x3 double]
        YGradients: [3605x3 double]
        ZGradients: [0x3 double]
```


Mesh: [1x1 FEMesh]

Access the solution at the nodal locations. The first column contains the x-deflection. The second column contains the y-deflection. The third column contains the electrical potential.

```
rs = result.NodalSolution;
```

Find the minimum y-deflection.

```
feTipDeflection = min(rs(:,2));
fprintf('Finite element tip deflection is: %12.4e\n',feTipDeflection);
Finite element tip deflection is: -3.2900e-05
```

Compare this result with the known analytical solution.

```
tipDeflection = -3*d31*100*L^2/(8*H2^2);
fprintf('Analytical tip deflection is: %12.4e\n',tipDeflection);
Analytical tip deflection is: -3.3000e-05
```

Plot the deflection components and the electrical potential.

```
varsToPlot = char('X-Deflection, meters', ...
    'Y-Deflection, meters', ...
    'Electrical Potential, Volts');
for i = 1:size(varsToPlot,1)
    figure;
    pdeplot(model,'XYData',rs(:,i),'Contour','on')
    title(varsToPlot(i,:))
    % scale the axes to make it easier to view the contours
    axis([0, L, -4*H2, 4*H2])
    xlabel('X-Coordinate, meters')
    ylabel('Y-Coordinate, meters')
    axis square
end
```


References

1 Hwang, Woo-Seok, and Hyun Chul Park. "Finite Element Modeling of Piezoelectric Sensors and Actuators." AIAA Journal 31, no. 5 (May 1993): 930-937.
2 Pieford, V. "Finite Element Modeling of Piezoelectric Active Structures." PhD diss., Universite Libre De Bruxelles, 2001.

Dynamics of Damped Cantilever Beam

This example shows how to include damping in the transient analysis of a simple cantilever beam.
The damping model is basic viscous damping distributed uniformly through the volume of the beam. The beam is deformed by applying an external load at the tip of the beam and then released at time $t=0$. This example does not use any additional loading, so the displacement of the beam decreases as a function of time due to the damping. The example uses plane-stress modal, static, and transient analysis models in its three-step workflow:

1 Perform modal analysis to compute the fundamental frequency of the beam and to speed up computations for the transient analysis.
2 Find the static solution of the beam with a vertical load at the tip to use as an initial condition for a transient model.
3 Perform the transient analysis with and without damping.
Damping is typically expressed as a percentage of critical damping, ξ, for a selected vibration frequency. This example uses $\xi=0.03$, which is three percent of critical damping.

The example specifies values of parameters using the imperial system of units. You can replace them with values specified in the metric system. If you do so, ensure that you specify all values throughout the example using the same system.

Modal Analysis

Create a modal analysis model for a plane-stress problem.

```
modelM = createpde('structural','modal-planestress');
```

Create the geometry and include it in the model. Suppose, the beam is 5 inches long and 0.1 inches thick.

```
width = 5;
height = 0.1;
gdm = [3;4;0;width;width;0;0;0;height;height];
g = decsg(gdm,'S1',('S1')');
geometryFromEdges(modelM,g);
```

Plot the geometry with the edge labels.

```
figure;
pdegplot(modelM,'EdgeLabels','on');
axis equal
title 'Geometry With Edge Labels Displayed'
```


Define a maximum element size so that there are five elements through the beam thickness. Generate a mesh.

```
hmax = height/5;
msh = generateMesh(modelM,'Hmax',hmax);
```

Specify the Young's modulus, Poisson's ratio, and mass density of steel.

```
E = 3.0e7;
nu = 0.3;
rho = 0.3/386;
structuralProperties(modelM,'YoungsModulus',E, ...
    'PoissonsRatio',nu, ...
    'MassDensity',rho);
```

Specify that the left edge of the beam is a fixed boundary.
structuralBC(modelM, 'Edge',4,'Constraint','fixed');
Solve the problem for the frequency range from 0 to $1 e 5$. The recommended approach is to use a value that is slightly smaller than the expected lowest frequency. Thus, use - 0.1 instead of 0 .

```
res = solve(modelM,'FrequencyRange',[-0.1,1e5]')
res =
    ModalStructuralResults with properties:
        NaturalFrequencies: [8x1 double]
```

```
ModeShapes: [1x1 FEStruct]
    Mesh: [1x1 FEMesh]
```

By default, the solver returns circular frequencies.

```
modeID = 1:numel(res.NaturalFrequencies);
```

Express the resulting frequencies in Hz by dividing them by 2π. Display the frequencies in a table.

```
tmodalResults = table(modeID.',res.NaturalFrequencies/(2*pi));
tmodalResults.Properties.VariableNames = {'Mode','Frequency'};
disp(tmodalResults)
    Mode Frequency
        126.94
        794.05
        2216.8
        4325.3
        7110.7
        9825.9
        1 0 5 5 1
        14623
```

Compute the analytical fundamental frequency (Hz) using the beam theory.

```
I = height^3/12;
freqAnalytical = 3.516*sqrt(E*I/(width^4*rho*height))/(2*pi)
freqAnalytical = 126.9498
```

Compare the analytical result with the numerical result.

```
freqNumerical = res.NaturalFrequencies(1)/(2*pi)
freqNumerical = 126.9416
```

Compute the period corresponding to the lowest vibration mode.

```
longestPeriod = 1/freqNumerical
longestPeriod = 0.0079
```

Plot the y-component of the solution for the lowest beam frequency.

```
figure;
pdeplot(modelM,'XYData',res.ModeShapes.uy(:,1))
title('Lowest Frequency Vibration Mode')
axis equal
```


Lowest Frequency Vibration Mode

Initial Displacement from Static Solution

The beam is deformed by applying an external load at its tip and then released at time $t=0$. Find the initial condition for the transient analysis by using the static solution of the beam with a vertical load at the tip.

Create a static plane-stress model.

```
modelS = createpde('structural','static-planestress');
```

Use the same geometry and mesh that you used for the modal analysis.
geometryFromEdges(modelS,g);
modelS.Mesh = msh;
Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(modelS,'YoungsModulus',E, ...
    'PoissonsRatio',nu, ...
    'MassDensity',rho);
```

Specify the same constraint on the left end of the beam.
structuralBC(modelS,'Edge',4,'Constraint','fixed');
Apply the static vertical load on the right side of the beam.

```
structuralBoundaryLoad(modelS,'Edge',2,'SurfaceTraction',[0;1]);
```

Solve the static model. The resulting static solution serves as an initial condition for transient analysis.

Rstatic = solve(modelS);

Transient Analysis

Perform the transient analysis of the cantilever beam with and without damping. Use the modal superposition method to speed up computations.

Create a transient plane-stress model.

```
modelT = createpde('structural','transient-planestress');
```

Use the same geometry and mesh that you used for the modal analysis.

```
geometryFromEdges(modelT,g);
modelT.Mesh = msh;
```

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(modelT,'YoungsModulus',E, ...
    'PoissonsRatio',nu, ...
    'MassDensity',rho);
```

Specify the same constraint on the left end of the beam.

```
structuralBC(modelT,'Edge',4,'Constraint','fixed');
```

Specify the initial condition by using the static solution.

```
structuralIC(modelT,Rstatic)
ans =
    NodalStructuralICs with properties:
        InitialDisplacement: [6511x2 double]
            InitialVelocity: [6511x2 double]
```

Solve the undamped transient model for three full periods corresponding to the lowest vibration mode.

```
tlist = 0:longestPeriod/100:3*longestPeriod;
resT = solve(modelT,tlist,'ModalResults',res);
```

Interpolate the displacement at the tip of the beam.

```
intrpUt = interpolateDisplacement(resT,[5;0.05]);
```

The displacement at the tip is a sinusoidal function of time with amplitude equal to the initial y displacement. This result agrees with the solution to the simple spring-mass system.

```
plot(resT.SolutionTimes,intrpUt.uy)
grid on
title('Undamped Solution')
```

xlabel('Time')
ylabel('Tip of beam displacement')

Now solve the model with damping equal to 3% of critical damping.

```
zeta = 0.03;
omega = 2*pi*freqNumerical;
structuralDamping(modelT,'Zeta',zeta);
resT = solve(modelT,tlist,'ModalResults',res);
```

Interpolate the displacement at the tip of the beam.
intrpUt = interpolateDisplacement(resT,[5;0.05]);
The y-displacement at the tip is a sinusoidal function of time with amplitude exponentially decreasing with time.

```
figure
hold on
plot(resT.SolutionTimes,intrpUt.uy)
plot(tlist,intrpUt.uy(1)*exp(-zeta*omega*tlist),'Color','r')
grid on
title('Damped Solution')
xlabel('Time')
ylabel('Tip of beam displacement')
```


Dynamic Analysis of Clamped Beam

This example shows how to analyze the dynamic behavior of a beam under a uniform pressure load and clamped at both ends.

This example uses the Imperial system of units. If you replace them with values specified in the metric system, ensure that you specify all values using the same system.

In this example, the pressure load is suddenly applied at time equal to zero. The pressure magnitude is high enough to produce deflections on the same order as the beam thickness. Accurate prediction of this type of behavior requires geometrically nonlinear elasticity equations. This example solves the clamped beam elasticity problem using both linear and nonlinear formulations of elasticity equations.

One approach to handling the large deflections is to consider the elasticity equations in the deformed position. However, the toolbox uses the equations based on the original geometry. Therefore, you must use a Lagrangian formulation of nonlinear elasticity where stresses, strains, and coordinates refer to the original geometry. The Lagrangian formulation of the equilibrium equations is

$$
\rho \ddot{u}-\nabla \cdot(F \cdot S)=f
$$

where ρ is the material density, u is the displacement vector, F is the deformation gradient, S is the second Piola-Kirchoff stress tensor, and f is the body force vector. You also can write this equation in the tensor form:

$$
\rho \ddot{u}_{i}-\frac{\partial}{\partial x_{j}}\left(\left(\frac{\partial u_{i}}{\partial x_{k}}+\delta_{i k}\right) S_{k j}\right)=f_{i}
$$

Although this formulation accounts for large deflections, it assumes that the strains remain small, so that linear elastic constitutive relations apply. For the 2-D plane stress case, you can write the constitutive relations in matrix form:

$$
\left\{\begin{array}{l}
S_{11} \\
S_{22} \\
S_{12}
\end{array}\right\}=\left[\begin{array}{lll}
C_{11} & C_{12} & \\
C_{12} & C_{22} & \\
& & 2 G_{12}
\end{array}\right]\left\{\begin{array}{l}
E_{11} \\
E_{22} \\
E_{12}
\end{array}\right\}
$$

$E_{i j}$ is the Green-Lagrange strain tensor:

$$
E_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{j}}\right)
$$

For an isotropic material:

$$
\begin{aligned}
& C_{11}=C_{22}=\frac{E}{1-\nu^{2}} \\
& C_{12}=\frac{E \nu}{1-\nu^{2}} \\
& G_{12}=\frac{E}{2(1+\nu)}
\end{aligned}
$$

where E is the Young's modulus, and ν is the Poisson's ratio. For more details about the Lagrangian formulation for nonlinear elasticity, see [1] on page 3-0 .

These equations completely define the geometrically nonlinear plane stress problem. This example uses Symbolic Math Toolbox ${ }^{\text {TM }}$ to define the c coefficient in the form required by Partial Differential Equation Toolbox ${ }^{\mathrm{TM}}$. The c coefficient is a function cCoefficientLagrangePlaneStress. You can use it with any geometric nonlinear plane stress analysis of a model made from an isotropic material. You can find it under matlab/R20XXx/examples/pde/main.

Linear Solution

Create a PDE model for a system of two equations.

```
model = createpde(2);
```

Create the following beam geometry.
sigma

height

Specify the length and thickness of the beam.

```
blength = 5; % Beam length, in
height = 0.1; % Thickness of the beam, in
```

Because the beam geometry and loading are symmetric about the beam center, you can simplify the model by considering only the right half of the beam.
l2 = blength/2;
h2 = height/2;
Create the edges of the rectangle representing the beam.

```
rect = [3 4 0 l2 l2 0 -h2 -h2 h2 h2]';
```

g = decsg(rect,'R1',('R1')');

Create the geometry from the edges and include it in the model.
$\mathrm{pg}=$ geometryFromEdges(model,g);
Plot the geometry with the edge labels.
figure
pdegplot(g,'EdgeLabels','on')
axis([-.1 1.1*ใ2 -5*h2 5*h2])

Derive the equation coefficients using the material properties. For the linear case, the c coefficient matrix is constant.

```
E = 3.0e7; % Young's modulus of the material, lbs/in^2
gnu = 0.3; % Poisson's ratio of the material
rho = 0.3/386; % Density of the material
G = E/(2.*(1 + gnu));
mu = 2*G*gnu/(1 - gnu);
c = [2*G + mu; 0; G; 0; G; mu; 0; G; 0; 2*G + mu];
f = [0 0]'; % No body forces
specifyCoefficients(model,'m',rho,'d',0,'c',c,'a',0,'f',f);
```

Apply the boundary conditions. From the symmetry condition, the x-displacement equals zero at the left edge.

```
symBC = applyBoundaryCondition(model,'mixed','Edge',4,'u',0,'EquationIndex',1);
```

Because the beam is clamped, the x - and y-displacements equal zero along the right edge.

```
clampedBC = applyBoundaryCondition(model,'dirichlet','Edge',2,'u',[0 0]);
```

Apply a constant vertical stress along the top edge.

```
sigma = 2e2;
presBC = applyBoundaryCondition(model,'neumann','Edge',3,'g',[0 sigma]);
```

Set the zero initial displacements and velocities.

```
setInitialConditions(model,0,0);
```

Generate a mesh

```
generateMesh(model);
```

Solve the model.

```
tlist = linspace(0,3e-3,100);
result = solvepde(model,tlist);
```

Interpolate the solution at the geometry center for the y-component (component 2) at all solution times.

```
xc = 1.25;
```

yc = 0;
u4Linear $=$ interpolateSolution(result, xc,yc,2,1:length(tlist));

Nonlinear Solution

Specify the coefficients for the nonlinear case. The cCoefficientLagrangePlaneStress function takes the isotropic material properties and location and state structures, and returns a c-matrix for a nonlinear plane stress analysis. It assumes that strains are small, that is, E and ν are independent of the solution.

```
c = @(location,state) cCoefficientLagrangePlaneStress(E,gnu,location,state);
specifyCoefficients(model,'m',rho,'d',0,'c', c,'a',0,'f',f);
```

Solve the model.

```
result = solvepde(model,tlist);
```

Interpolate the solution at the geometry center for the y-component (component 2) at all solution times.

```
u4NonLinear = interpolateSolution(result,xc,yc,2,1:length(tlist));
```


Solution Plots

Plot the y-deflection at the center of the beam as a function of time. The nonlinear analysis yields substantially smaller displacements than the linear analysis. This "stress stiffening" effect also results in the higher oscillation frequency from the nonlinear analysis.

```
figure
plot(tlist,u4Linear(:),tlist,u4NonLinear(:))
legend('Linear','Nonlinear')
title 'Deflection at Beam Center'
xlabel 'Time, seconds'
ylabel 'Deflection, inches'
grid on
```


References

1 Malvern, Lawrence E. Introduction to the Mechanics of a Continuous Medium. Prentice Hall Series in Engineering of the Physical Sciences. Englewood Cliffs, NJ: Prentice-Hall, 1969.

Reduced-Order Modeling Technique for Beam with Point Load

This example shows how to eliminate degrees of freedom (DoFs) that are not on the boundaries of interest by using the Craig-Bampton reduced-order modeling technique. The example also uses the smaller dimension superelement to analyze the dynamics of the system. For comparison, the example also performs a direct transient analysis on the original structure.

Create a structural model for transient analysis.

```
modelT = createpde('structural','transient-solid');
```

Create a square cross-section beam geometry and include it in the model.

```
gm = multicuboid(0.05,0.003,0.003);
modelT.Geometry = gm;
```

Plot the geometry, displaying face and edge labels.

```
figure
pdegplot(modelT,'FaceLabels','on','FaceAlpha',0.5)
view([71 4])
```

$\times 10^{-3}$

figure
pdegplot(modelT,'EdgeLabels','on','FaceAlpha', 0.5)
view([71 4])

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(modelT,'YoungsModulus',210E9, ...
    'PoissonsRatio',0.3, ...
    'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(modelT,'Edge',[2 8 11 12],'Constraint','fixed');
```

Add a vertex at the center of face 3.

```
loadedVertex = addVertex(gm,'Coordinates',[0.025 0.0 0.0015]);
```

figure
pdegplot(modelT, 'VertexLabels', 'on', 'FaceAlpha', 0.5)
view([78 2.5])

Generate a mesh.
generateMesh(modelT);
Apply a sinusoidal concentrated force in the z-direction on the new vertex.

```
structuralBoundaryLoad(modelT,'Vertex',loadedVertex, ...
    'Force',[0;0;10],' Frequency',6000);
```

Specify zero initial conditions.
structuralIC(modelT,'Velocity',[0 0 0],'Displacement',[0 0 0]);
Solve the model.
tlist = 0:0.00005:3E-3;
RT = solve(modelT,tlist);
Define superelement interfaces using the fixed and loaded boundaries. In this case, the reduced order model retains the degrees of freedom (DoFs) on the fixed face and the loaded vertex while condensing all other DoFs in favor of modal DoFs. For better performance, use the set of edges bounding face 5 instead of using the entire face.

```
structuralSEInterface(modelT,'Edge',[2 8 11 12]);
structuralSEInterface(modelT,'Vertex',loadedVertex);
```

Reduce the structure, retaining all fixed interface modes up to 5 e 5 .

```
rom = reduce(modelT,'FrequencyRange',[-0.1,5e5]);
```

Next, use the reduced order model to simulate the transient dynamics. Use the ode15s function directly to integrate the reduced system ODE. Working with the reduced model requires indexing into the reduced system matrices rom. K and rom. M. First, construct mappings of indices of K and M to loaded and fixed DoFs by using the data available in rom.

DoFs correspond to translational displacements. If the number of mesh points in a model is Nn , then the toolbox assigns the IDs to the DoFs as follows: the first 1 to Nn are x-displacements, $\mathrm{Nn}+1$ to $2 * \mathrm{Nn}$ are y-displacements, and $2 \mathrm{Nn}+1$ to $3 * \mathrm{Nn}$ are z-displacements. The reduced model object rom contains these IDs for the retained DoFs in rom. RetainedDoF.

Create a function that returns DoF IDs given node IDs and the number of nodes.
getDoF $=@(x$, numNodes $)[x(:) ; x(:)+$ numNodes; $x(:)+2 * n u m N o d e s] ;$
Knowing the DoF IDs for the given node IDs, use the intersect function to find the required indices.

```
numNodes = size(rom.Mesh.Nodes,2);
loadedNode = findNodes(rom.Mesh,'region','Vertex',loadedVertex);
loadDoFs = getDoF(loadedNode,numNodes);
[~,loadNodeROMIds,~] = intersect(rom.RetainedDoF,loadDoFs);
```

In the reduced matrices rom.K and rom.M, generalized modal DoFs appear after the retained DoFs.

```
fixedIntModeIds = (numel(rom.RetainedDoF) + 1:size(rom.K,1))';
```

Because fixed-end DoFs are not a part of the ODE system, the indices for the ODE DoFs in reduced matrices are as follows.

```
odeDoFs = [loadNodeROMIds;fixedIntModeIds];
```

The relevant components of rom.K and rom.M for time integration are:

```
Kconstrained = rom.K(odeDoFs,odeDoFs);
Mconstrained = rom.M(odeDoFs,odeDoFs);
numODE = numel(odeDoFs);
```

Now you have a second-order system of ODEs. To use ode15s, convert this into a system of firstorder ODEs by applying linearization. Such a first-order system is twice the size of the second-order system.

```
Mode = [eye(numODE,numODE), zeros(numODE,numODE); ...
    zeros(numODE,numODE), Mconstrained];
Kode = [zeros(numODE,numODE), -eye(numODE,numODE); ...
    Kconstrained, zeros(numODE,numODE)];
Fode = zeros(2*numODE,1);
```

The specified concentrated force load in the full system is along the z-direction, which is the third DoF in the ODE system. Accounting for the linearization to obtain the first-order system gives the loaded ODE DoF.
loadODEDoF $=$ numODE +3 ;
Specify the mass matrix and the Jacobian for the ODE solver.

```
odeoptions = odeset;
odeoptions = odeset(odeoptions,'Jacobian',-Kode);
odeoptions = odeset(odeoptions,'Mass',Mode);
```

Specify zero initial conditions.
u0 $=$ zeros (2*numODE, 1);
Solve the reduced system by using ode15s and the helper function CMSODEf, which is defined at the end of this example.

```
sol = ode15s(@(t,y) CMSODEf(t,y,Kode,Fode,loadODEDoF),tlist,u0,odeoptions);
```

Compute the values of the ODE variable and the time derivatives.
[displ,vel] = deval(sol,tlist);
Plot the z-displacement at the loaded vertex and compare it to the third DoF in the solution of the reduced ODE system.

```
figure
plot(tlist,RT.Displacement.uz(loadedVertex,:))
hold on
plot(tlist,displ(3,:),'r*')
title('Z-Displacement at Loaded Vertex')
legend('full model','rom')
```


Knowing the solution in terms of the interface DoFs and modal DoFs, you can reconstruct the solution for the full model. The reconstructSolution function requires the displacement, velocity, and
acceleration at all DoFs in rom. Construct the complete solution vector, including the zero values at the fixed DoFs.

```
u = zeros(size(rom.K,1),numel(tlist));
ut = zeros(size(rom.K,1),numel(tlist));
utt = zeros(size(rom.K,1),numel(tlist));
u(odeDoFs,:) = displ(1:numODE,:);
ut(odeDoFs,:) = vel(1:numODE,:);
utt(odeDoFs,:) = vel(numODE+1:2*numODE,:);
```

Construct a transient results object using this solution.
RTrom = reconstructSolution(rom,u,ut,utt,tlist);
For comparison, compute the displacement in the interior at the center of the beam using the full and reconstructed solutions.

```
coordCenter = [0;0;0];
iDispRT = interpolateDisplacement(RT, coordCenter);
iDispRTrom = interpolateDisplacement(RTrom, coordCenter);
figure
plot(tlist,iDispRT.uz,'k')
hold on
plot(tlist,iDispRTrom.uz,'g*')
title('Z-Displacement at Geometric Center')
legend('full model','rom')
```



```
ODE Helper Function
function f = CMSODEf(t,u,Kode,Fode,loadedVertex)
Fode(loadedVertex) = 10*sin(6000*t);
f = -Kode*u +Fode;
end
```


Modal and Frequency Response Analysis for Single Part of Kinova ${ }^{\circledR}$ Gen3 Robotic Arm

This example shows how to analyze the shoulder link of a Kinova ${ }^{\circledR}$ Gen3 Ultra lightweight robotic arm for possible deformation under pressure.

Robotic arms perform precise manipulations in a wide variety of applications from factory automation to medical surgery. Typically, robotic arms consist of several links connected in a serial chain, with a base attached to a tabletop or the ground and an end-effector attached at the tip. These links must be structurally strong to avoid any vibrations when the rotors are moving with a load on them.

Loads at the tips of robotic arm cause pressure on the joints of each link. The direction of pressure depends on the direction of the load.

Pressure on shoulder link

This example computes deformations of the shoulder link under the applied pressure by performing a modal analysis and frequency response analysis simulation. You can find the helper function animateSixLinkModes.m and the geometry file Gen3Shoulder.stl under matlab/R20XXx/ examples/pde/main.

Modal Analysis

Assuming that one end of the robotic arm is fixed, find the natural frequencies and mode shapes.
Create a structural model for modal analysis.
model = createpde('structural','modal-solid');
To perform unconstrained modal analysis of a structure, you must specify the geometry, mesh, and material properties. First, import the geometry of the shoulder part of the robotic arm.

```
Generate a mesh.
generateMesh(model);
pdemesh(model)
```

importGeometry(model, 'Gen3Shoulder.stl');

Specify the Young's modulus, Poisson's ratio, and mass density of the material in consistent units. Typically, the material used for the link is carbon fiber reinforced plastic. Assume that the material is homogeneous.

```
E = 1.5E11;
nu = 0.3;
rho = 2000;
structuralProperties(model,'YoungsModulus',E, ...
    'PoissonsRatio',nu, ...
    'MassDensity',rho);
```

Identify faces for applying boundary constraints and loads by plotting the geometry with the face labels.

```
figure
pdegplot(model,'FaceLabels','on')
view([-1 2])
title('Shoulder Link Geometry with Face Labels')
```

Shoulder Link Geometry with Face Labels

The shoulder link is fixed on one end (face 3) and connected to a moving link on the other end (face 4). Apply the fixed boundary condition on face 3 .

```
structuralBC(model,'Face',3,'Constraint','fixed');
```

Solve the model for a chosen frequency range. Specify the lower frequency limit below zero so that all modes with frequencies near zero, if any, appear in the solution.

RF = solve(model,'FrequencyRange', [-1,10000]*2*pi);
By default, the solver returns circular frequencies.
modeID = 1:numel(RF.NaturalFrequencies);
Express the resulting frequencies in Hz by dividing them by 2п. Display the frequencies in a table.

```
tmodalResults = table(modeID.',RF.NaturalFrequencies/2/pi);
tmodalResults.Properties.VariableNames = {'Mode','Frequency'};
disp(tmodalResults);
    Mode Frequency
    1947.2
        2662
        4982.3
        5112.6
    7819.5
```

7
9361
The best way to visualize the mode shapes is to animate the harmonic motion at their respective frequencies. The animateSixLinkModes function animates the first six modes. The resulting plot shows the areas of dominant deformation under load.
figure
frames = animateSixLinkModes(RF);

To play the animation, use the following command:
movie(figure('units','normalized','outerposition',[0 0 1 1]),frames,5,30)

Frequency Response Analysis

Simulate the dynamics of the shoulder under pressure loading on a face, assuming that the attached link applies an equal and opposite amount of pressure on the halves of the face. Analyze the frequency response and deformation of a point in the face.

Pressure on
shoulder link

First, create a structural model for the frequency response analysis.

```
fmodel = createpde('structural','frequency-solid');
```

Import the same geometry for the shoulder part that you used for the modal analysis.
importGeometry(fmodel,'Gen3Shoulder.stl');
Generate a mesh.

```
mesh = generateMesh(fmodel);
```

Specify the Young's modulus, Poisson's ratio, and mass density.

```
structuralProperties(fmodel,'YoungsModulus',E, ...
    'PoissonsRatio',nu, ...
    'MassDensity',rho);
```

The shoulder link is fixed on one end (face 3) and connected to a moving link on the other end (face 4). Apply the fixed boundary condition on face 3 .

```
structuralBC(fmodel,'Face',3,'Constraint','fixed');
```

Estimate the pressure that the moving link applies on face 4 when the arm carries a load. This figure shows two halves of face 4 divided at the center along the y-coordinate.

Use the pressFcnFR function to apply the boundary load on face 4. This function applies a push and a twist pressure signals. The push pressure component is uniform. The twist component applies positive pressure on the left side and negative pressure on the right side of the face. For the definition of the pressFcnFR function, see the Pressure Function section at the bottom of this page. This function does not have an explicit dependency on frequency. Therefore, in the frequency domain, this pressure load acts across all frequencies of the solution.

```
structuralBoundaryLoad(fmodel,'Face',4,'Pressure',@(region,state) pressFcnFR(region, state),'Vec
```

Define the frequency list for the solution as 0 to 3500 Hz with 200 steps.

```
flist = linspace(0,3500,200)*2*pi;
```

Solve the model using the modal frequency response solver by specifying the model results object RF as one of the inputs.

```
R = solve(fmodel,flist,'ModalResults',RF)
R =
    FrequencyStructuralResults with properties:
    Displacement: [1x1 FEStruct]
```

Plot the frequency response at a point on the loaded face. A point on face 4 located at maximum negative pressure loading is (0.003; 0.0436; 0.1307). Interpolate the displacement to this point and plot the result.

```
queryPoint = [0.003; 0.0436; 0.1307];
queryPointDisp = R.interpolateDisplacement(queryPoint);
figure
plot(R.SolutionFrequencies/2/pi,abs(queryPointDisp.uy))
title('Transverse Displacement at Point on Loaded Face')
xlabel('Frequency (Hz)')
ylabel('Y-Displacement')
xlim([0.0000 3500])
```


The peak of the response occurs near 2662 Hz , which is close to the second mode of vibration. A smaller response also occurs at first mode close to 1947 Hz .

Find the peak response frequency index by using the max function with two output arguments. The second output argument provides the index of the peak frequency.
$[\mathrm{M}, \mathrm{I}]=\max ($ abs(queryPointDisp.uy))

```
M = 1.1256e-04
I = 152
```

Plot the deformation at the peak response frequency. The applied loading is such that it predominantly excites the opening mode and the bending mode of the shoulder.

```
RD = struct();
RD.ux = R.Displacement.ux(:,I);
RD.uy = R.Displacement.uy(:,I);
RD.uz = R.Displacement.uz(:,I);
figure('units','normalized','outerposition',[0 0 1 1]);
subplot(2,2,1)
pdeplot3D(fmodel,'ColorMapData',R.Displacement.ux(:,I), ...
    'Deformation',RD,'DeformationScaleFactor',1);
title('X-Displacement')
subplot(2,2,2)
pdeplot3D(fmodel,'ColorMapData',R.Displacement.uy(:,I), ...
    'Deformation',RD,'DeformationScaleFactor',1);
title('Y-Displacement')
subplot(2,2,3)
pdeplot3D(fmodel,'ColorMapData',R.Displacement.uz(:,I), ...
    'Deformation',RD,'DeformationScaleFactor',1);
title('Z-Displacement')
subplot(2,2,4)
pdeplot3D(fmodel,'ColorMapData',R.Displacement.Magnitude(:,I), ...
    'Deformation',RD,'DeformationScaleFactor',1);
title('Magnitude')
```


Pressure Function

Define a pressure function, pressFcnFR, to calculate a push and a twist pressure signals. The push pressure component is uniform. The twist pressure component applies positive pressure on the left side and negative pressure on the right side of the face. The value of the twist pressure loading increases in a parabolic distribution from the minimum at point C to the positive peak at L and to the negative peak at R. The twist pressure factor for the parabolic distribution obtained in pressFcnFR is multiplied with a sinusoidal function with a magnitude of 0.1 MPa . The uniform push pressure value is 10 kPa .

```
function p = pressFcnFR(region,~)
meanY = mean(region.y);
absMaxY = max(abs(region.y));
scaleFactor = zeros(size(region.y));
% Find IDs of the points on the left and right halves of the face
% using y-coordinate values.
```

```
leftHalfIdx = region.y <= meanY;
rightHalfIdx = region.y >= meanY;
% Define a parabolic scale factor for each half of the face.
scaleFactor(leftHalfIdx) = ((region.y(leftHalfIdx) - meanY)/absMaxY).^2;
scaleFactor(rightHalfIdx) = -((region.y(rightHalfIdx) - meanY)/absMaxY).^2;
p = 10E3 + 0.1E6*scaleFactor;
end
```


Thermal Stress Analysis of Jet Engine Turbine Blade

This example shows how to compute the thermal stress and deformation of a turbine blade in its steady-state operating condition. The blade has interior cooling ducts. The cool air flowing through the ducts maintains the temperature of the blade within the limit for its material. This feature is common in modern blades.

A turbine is a component of the jet engine. It is responsible for extracting energy from the hightemperature and high-pressure gas produced in the combustion chamber and transforming it into rotational motion to produce thrust. The turbine is a radial array of blades typically made of nickel alloys. These alloys resist the extremely high temperatures of the gases. At such temperatures, the material expands significantly, producing mechanical stress in the joints and significant deformations of several millimeters. To avoid mechanical failure and friction between the tip of the blade and the turbine casing, the blade design must account for the stress and deformations.

The example shows a three-step workflow:
1 Perform structural analysis accounting only for pressure of the surrounding gases while ignoring thermal effects.
2 Compute the thermal stress while ignoring the pressure.
3 Combine the pressure and thermal stress.

Pressure Loading

The blade experiences high pressure from the surrounding gases. Compute the stress caused only by this pressure.

First, create a static structural model.

```
smodel = createpde('structural','static-solid');
```

Import and plot the geometry, displaying face labels.

```
importGeometry(smodel,'Blade.stl');
figure
pdegplot(smodel,'FaceLabels','on','FaceAlpha',0.5)
```


Generate a mesh with the maximum element size 0.01 .

```
msh = generateMesh(smodel,'Hmax',0.01);
```

Specify the Young's modulus, Poisson's ratio, and coefficient of thermal expansion for nickel-based alloy (NIMONIC 90).

```
E = 227E9; % in Pa
CTE = 12.7E-6; % in 1/K
nu = 0.27;
structuralProperties(smodel,'YoungsModulus',E, ...
    'PoissonsRatio',nu, ...
    'CTE',CTE);
```

Specify that the face of the root that is in contact with other metal is fixed.

```
structuralBC(smodel,'Face',3,'Constraint','fixed');
```

Specify the pressure load on the pressure and suction sides of the blade. This pressure is due to the high-pressure gas surrounding these sides of the blade.

```
p1 = 5e5; %in Pa
p2 = 4.5e5; %in Pa
structuralBoundaryLoad(smodel,'Face',11,'Pressure',p1); % Pressure side
structuralBoundaryLoad(smodel,'Face',10,'Pressure',p2); % Suction side
```

Solve the structural problem.
Rs = solve(smodel);
Plot the von Mises stress and the displacement. Specify a deformation scale factor of 100 to better visualize the deformation.
figure
pdeplot3D(smodel,'ColorMapData',Rs.VonMisesStress, ...
'Deformation',Rs.Displacement, ...
'DeformationScaleFactor',100)
view([116,25]);

The maximum stress is around 100 Mpa , which is significantly below the elastic limit.

Thermal Stress

Determine the temperature distribution and compute the stress and deformation due to thermal expansion only. This part of the example ignores the pressure.

First, create a thermal model for steady-state thermal analysis.

```
tmodel = createpde('thermal','steadystate');
```

Import the same geometry and use the same mesh as for the structural analysis.

```
importGeometry(tmodel,'Blade.stl');
tmodel.Mesh = msh;
```

Assuming that the blade is made of nickel-based alloy (NIMONIC 90), specify the thermal conductivity.

```
kapp = 11.5; % in W/m/K
thermalProperties(tmodel,'ThermalConductivity',kapp);
```

Convective heat transfer between the surrounding fluid and the faces of the blade defines the boundary conditions for this problem. The convection coefficient is greater where the gas velocity is higher. Also, the gas temperature is different around different faces. The temperature of the interior cooling air is $150^{\circ} \mathrm{C}$, while the temperature on the pressure and suction sides is $1000^{\circ} \mathrm{C}$.

```
% Interior cooling
thermalBC(tmodel,'Face',[15 12 14], ...
    'ConvectionCoefficient',30, ...
    'AmbientTemperature',150);
% Pressure side
thermalBC(tmodel,'Face',11, ...
    'ConvectionCoefficient',50, ...
    'AmbientTemperature', 1000);
% Suction side
thermalBC(tmodel,'Face',10, ...
    'ConvectionCoefficient',40, ...
    'AmbientTemperature',1000);
% Tip
thermalBC(tmodel,'Face',13, ...
    'ConvectionCoefficient',20, ...
    'AmbientTemperature',1000);
% Base (exposed to hot gases)
thermalBC(tmodel,'Face',1, ...
    'ConvectionCoefficient',40, ...
    'AmbientTemperature',800);
% Root in contact with hot gases
thermalBC(tmodel,'Face',[6 9 8 2 7], ...
    'ConvectionCoefficient',15, ...
    'AmbientTemperature',400);
```

The boundary condition for the faces of the root in contact with other metal is a thermal contact that can be modeled as convection with a very large coefficient (around $1000 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$ for metal-metal contact).

```
% Root in contact with metal
thermalBC(tmodel,'Face',[3 4 5], ...
    'ConvectionCoefficient',1000, ...
    'AmbientTemperature',300);
```

Solve the thermal model.

```
Rt = solve(tmodel);
```

Plot the temperature distribution. The temperature between the tip and the root ranges from around $820^{\circ} \mathrm{C}$ to $330^{\circ} \mathrm{C}$. The exterior gas temperature is $1000^{\circ} \mathrm{C}$. The interior cooling is efficient: it significantly lowers the temperature.

```
figure
pdeplot3D(tmodel,'ColorMapData',Rt.Temperature)
view([130,-20]);
```


Now, create a static structural model to compute the stress and deformation due to thermal expansion.

```
tsmodel = createpde('structural','static-solid');
```

Import the same geometry, and use the same mesh and structural properties of the material as for the structural analysis.

```
importGeometry(tsmodel,'Blade.stl');
tsmodel.Mesh = msh;
structuralProperties(tsmodel,'YoungsModulus',E, ...
                        'PoissonsRatio',nu, ...
                        'CTE',CTE);
```

Specify the reference temperature.

```
tsmodel.ReferenceTemperature = 300; %in degrees C
structuralBodyLoad(tsmodel,'Temperature',Rt);
```

Specify the boundary condition.

```
structuralBC(tsmodel,'Face',3,'Constraint','fixed');
```

Solve the thermal stress problem.

```
Rts = solve(tsmodel);
```

Plot the von Mises stress and the displacement. Specify a deformation scale factor of 100 to better visualize the deformation. The stress concentrates in the constrained root because it cannot freely expand, and also in the junction between the blade and the root.

```
figure('units','normalized','outerposition',[0 0 1 1]);
pdeplot3D(tsmodel,'ColorMapData',Rts.VonMisesStress, ...
    'Deformation',Rts.Displacement, ...
    'DeformationScaleFactor',100)
caxis([0, 200e6])
view([116,25]);
```


Evaluate the displacement at the tip. In the design of the cover, this displacement must be taken into account to avoid friction between the cover and the blade.
max(Rts.Displacement.Magnitude)
ans $=0.0015$

Combined Pressure Loading and Thermal Stress

Compute the stress and deformations caused by the combination of thermal and pressure effects.
Use the same model as for the thermal stress analysis. Add the pressure load on the pressure and suction sides of the blade. This pressure is due to the high-pressure gas surrounding these sides of the blade.

```
structuralBoundaryLoad(tsmodel,'Face',11,'Pressure',p1); % Pressure side
```

structuralBoundaryLoad(tsmodel,'Face',10,'Pressure',p2); \% Suction side

Solve the model.
Rc = solve(tsmodel);
Plot the von Mises stress and the displacement. Specify a deformation scale factor of 100 to better visualize the deformation.

```
figure('units','normalized','outerposition',[0 0 1 1]);
pdeplot3D(tsmodel,'ColorMapData',Rc.VonMisesStress, ...
    'Deformation',Rc.Displacement, ...
    'DeformationScaleFactor',100)
caxis([0, 200e6])
view([116,25]);
```


Evaluate the maximum stress and maximum displacement. The displacement is almost the same as for the thermal stress analysis, while the maximum stress, 854 MPa , is significantly higher.

```
max(Rc.VonMisesStress)
ans = 9.8378e+08
max(Rc.Displacement.Magnitude)
ans = 0.0015
```


Finite Element Analysis of Electrostatically Actuated MEMS Device

This example shows a simple approach to the coupled electromechanical finite element analysis of an electrostatically actuated micro-electromechanical (MEMS) device. For simplicity, this example uses the relaxation-based algorithm rather than the Newton method to couple the electrostatic and the mechanical domains.

MEMS Devices

MEMS devices typically consist of movable thin beams or electrodes with a high aspect ratio that are suspended over a fixed electrode.

Figure 1. MEMS-based accelerometer. Image courtesy MEMSIC Inc.

Figure 2. Electrostatic comb drive. Image courtesy Compliant Mechanisms Research Group, Brigham Young University.

Actuation, switching, and other signal and information processing functions can use the electrode deformation caused by the application of voltage between the movable and fixed electrodes. FEM provides a convenient tool for characterizing the inner workings of MEMS devices, and can predict temperatures, stresses, dynamic response characteristics, and possible failure mechanisms. One of the most common MEMS switches is the series of cantilever beams suspended over a ground electrode.

Figure 3. MEMS cantilever switch. Image courtesy Advanced Diamond Technologies.

This example uses the following geometry to model a MEMS switch. The top electrode is $150 \mu \mathrm{~m}$ in length and $2 \mu \mathrm{~m}$ in thickness. The Young's modulus E is 170 GPa , and the Poisson ratio v is 0.34 . The bottom electrode is $50 \mu \mathrm{~m}$ in length and $2 \mu \mathrm{~m}$ in thickness, and is located $100 \mu \mathrm{~m}$ from the leftmost end of the top electrode. The gap between the top and bottom electrodes is $2 \mu \mathrm{~m}$.

Figure 4. Cantilever switch modeled geometry.

A voltage applied between the top electrode and the ground plane induces electrostatic charges on the surface of the conductors which, in turn, leads to electrostatic forces acting normal to the surface of the conductors. Because the ground plane is fixed, the electrostatic forces deform only the top electrode. When the beam deforms, the charge redistributes on the surface of the conductors. The resultant electrostatic forces and the deformation of the beam also change. This process continues until the system reaches a state of equilibrium.

Approach for Coupled Electromechanical Analysis

For simplicity, this example uses the relaxation-based algorithm rather than the Newton method to couple the electrostatic and the mechanical domains. The example follows these steps:

1. Solve the electrostatic FEA problem in the nondeformed geometry with the constant potential V0 on the movable electrode.
2. Compute the load and boundary conditions for the mechanical solution by using the calculated values of the charge density along the movable electrode. The electrostatic pressure on the movable electrode is given by
$P=\frac{1}{2 \epsilon}|D|^{2}$,
where $|D|$ is the magnitude of the electric flux density and ϵ is the electric permittivity next to the movable electrode.
3. Compute the deformation of the movable electrode by solving the mechanical FEA problem.
4. Update the charge density along the movable electrode by using the calculated displacement of the movable electrode,

$$
\left|D_{\mathrm{def}}(x)\right| \approx\left|D_{0}(x)\right| \frac{G}{G-v(x)}
$$

where $\left|D_{\text {def }}(x)\right|$ is the magnitude of the electric flux density in the deformed electrode, $\left|D_{0}(x)\right|$ is the magnitude of the electric flux density in the undeformed electrode, G is the distance between the movable and fixed electrodes in the absence of actuation, and $v(x)$ is the displacement of the movable electrode at position x along its axis.
5. Repeat steps 2-4 until the electrode deformation values in the last two iterations converge.

Electrostatic Analysis

In the electrostatic analysis part of this example, you compute the electric potential around the electrodes.

First, create the cantilever switch geometry by using the constructive solid geometry (CSG) modeling approach. The geometry for electrostatic analysis consists of three rectangles represented by a matrix. Each column of the matrix describes a basic shape.

```
rect_domain = [3,4,1.75e-4,1.75e-4,-1.75e-4,-1.75e-4,-1.7e-5,1.3e-5,1.3e-5,-1.7e-5]';
rect_movable = [3,4,7.5e-5,7.5e-5,-7.5e-5,-7.5e-5,2.0e-6,4.0e-6,4.0e-6,2.0e-6]';
rect_fixed = [3,4,7.5e-5,7.5e-5,2.5e-5,2.5e-5,-2.0e-6,0,0,-2.0e-6]';
gd = [rect_domain,rect_movable,rect_fixed];
```

Create a name for each basic shape. Specify the names as a matrix whose columns contain the names of the corresponding columns in the basic shape matrix.

```
ns = char('rect_domain','rect_movable','rect_fixed');
ns = ns';
```

Create a formula describing the unions and intersections of basic shapes.

```
sf = 'rect_domain-(rect_movable+rect_fixed)';
```

Create the geometry by using the decsg function.
dl = decsg(gd,sf,ns);
Create a PDE model and include the geometry in the model.

```
model = createpde;
geometryFromEdges(model,dl);
```

Plot the geometry.

```
pdegplot(model,'EdgeLabels','on','FaceLabels','on')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-2e-4, 2e-4,-4e-5, 4e-5])
axis square
```


The edge numbers in this geometry are as follows:

- Movable electrode: E3, E7, E11, E12
- Fixed electrode: E4, E8, E9, E10
- Domain boundary: E1, E2, E5, E6

Set constant potential values of 20 V to the movable electrode and 0 V to the fixed electrode and domain boundary.

V0 = 0;
V1 = 20;
applyBoundaryCondition(model,'dirichlet','Edge', [4, 8, 9, 10], 'u' , V0);
applyBoundaryCondition(model,'dirichlet','Edge', [1, 2, 5, 6],'u', V0);
applyBoundaryCondition(model,' 'dirichlet','Edge',[3,7,11,12],'u', V1);
The PDE governing this problem is the Poisson equation,
$-\nabla \cdot(\epsilon \nabla V)=\rho$,
where ϵ is the coefficient of permittivity and ρ is the charge density. The coefficient of permittivity does not affect the result in this example as long as the coefficient is constant. Assuming that there is no charge in the domain, you can simplify the Poisson equation to the Laplace equation,
$\Delta V=0$.
Specify the coefficients.
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',0);
Generate a relatively fine mesh.

```
hmax = 5e-6;
generateMesh(model,'Hmax', hmax);
pdeplot(model)
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-2e-4, 2e-4,-4e-5, 4e-5])
axis square
```


Solve the model.

```
results = solvepde(model);
```

Plot the electric potential in the exterior domain.

```
u = results.NodalSolution;
figure
pdeplot(model,'XYData',results.NodalSolution,...
    'ColorMap','jet');
title('Electric Potential');
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-2e-4, 2e-4,-4e-5, 4e-5])
axis square
```


Mechanical Analysis

In the mechanical analysis part of this example, you compute the deformation of the movable electrode.

Create a structural model.
structuralmodel = createpde('structural','static-planestress');
Create the movable electrode geometry and include it in the model. Plot the geometry.

```
dl = decsg(rect_movable);
geometryFromEdges(structuralmodel,dl);
pdegplot(structuralmodel,'EdgeLabels','on')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-1e-4, 1e-4,-1e-5, 1e-5])
axis square
```


Specify the structural properties: the Young's modulus E is 170 GPa and the Poisson ratio ν is 0.34 .

```
structuralProperties(structuralmodel,'YoungsModulus',170e9, ...
```

Specify the pressure as a boundary load on the edges. The pressure tends to draw the conductor into the field regardless of the sign of the surface charge. For the definition of the CalculateElectrostaticPressure function, see Electrostatic Pressure Function on page 3-0

```
pressureFcn = @(location,state) - ...
```

 CalculateElectrostaticPressure(results,[],location);
 structuralBoundaryLoad(structuralmodel,'Edge', $[1,2,4], \ldots$
'Pressure', pressureFcn, ...
'Vectorized','on');

Specify that the movable electrode is fixed at edge 3.

```
structuralBC(structuralmodel,'Edge',3,'Constraint','fixed');
```

Generate a mesh.

```
hmax = 1e-6;
generateMesh(structuralmodel,'Hmax',hmax);
pdeplot(structuralmodel);
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-1e-4, le-4,-1e-5, 1e-5])
axis square
```


Solve the equations.
R = solve(structuralmodel);
Plot the displacement for the movable electrode.

```
pdeplot(structuralmodel,'XYData',R.VonMisesStress, ...
    'Deformation',R.Displacement, ...
    'DeformationScaleFactor',10, ...
    'ColorMap','jet');
title('von Mises Stress in Deflected Electrode')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-1e-4, 1e-4,-1e-5, 1e-5])
axis square
```


Find the maximal displacement.

```
maxdisp = max(abs(R.Displacement.uy));
fprintf('Finite element maximal tip deflection is: %12.4e\n', maxdisp);
Finite element maximal tip deflection is: 1.5630e-07
```

Repeatedly update the charge density along the movable electrode and solve the model until the electrode deformation values converge.

```
olddisp = 0;
while abs((maxdisp-olddisp)/maxdisp) > 1e-10
% Impose boundary conditions
    pressureFcn = @(location,state) - ....
```

 CalculateElectrostaticPressure(results, R, location);
 bl = structuralBoundaryLoad(structuralmodel,'Edge',[1,2,4], ...
 'Pressure', pressureFcn, ...
 'Vectorized', 'on');
 \% Solve the equations
R = solve(structuralmodel);
olddisp = maxdisp;
maxdisp = max(abs(R.Displacement.uy));
delete(bl)
end

Plot the displacement.

```
pdeplot(structuralmodel,'XYData',R.VonMisesStress, ...
    'Deformation',R.Displacement, ...
```

```
    'DeformationScaleFactor',10, ...
    'ColorMap','jet');
title('von Mises Stress in Deflected Electrode')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-1e-4, 1e-4,-1e-5, 1e-5])
axis square
```


Find the maximal displacement.

```
maxdisp = max(abs(R.Displacement.uy));
fprintf('Finite element maximal tip deflection is: %12.4e\n', maxdisp);
Finite element maximal tip deflection is: 1.8162e-07
```


References

[1] Sumant, P. S., N. R. Aluru, and A. C. Cangellaris. "A Methodology for Fast Finite Element Modeling of Electrostatically Actuated MEMS." International Journal for Numerical Methods in Engineering. Vol 77, Number 13, 2009, 1789-1808.

Electrostatic Pressure Function

The electrostatic pressure on the movable electrode is given by
$P=\frac{1}{2 \epsilon}|D|^{2}$,
where $|D|=\epsilon|E|$ is the magnitude of the electric flux density, ϵ is the electric permittivity next to the movable electrode, and $|E|$ is the magnitude of the electric field. The electric field E is the gradient of the electric potential V :
$E=-\nabla V$.
Solve the mechanical FEA to compute the deformation of the movable electrode. Using the calculated displacement of the movable electrode, update the charge density along the movable electrode.

$$
\left|D_{\mathrm{def}}(x)\right| \approx\left|D_{0}(x)\right| \frac{G}{G-v(x)},
$$

where $\left|D_{\operatorname{def}}(x)\right|$ is the magnitude of the electric flux density in the deformed electrode, $\left|D_{0}(x)\right|$ is the magnitude of the electric flux density in the undeformed electrode, G is the distance between the movable and fixed electrodes in the absence of actuation, and $v(x)$ is the displacement of the movable electrode at position x along its axis. Initially, the movable electrode is undeformed, $v(x)=0$, and therefore, $\left|D_{\mathrm{def}}(x)\right| \approx\left|D_{0}(x)\right|$.

```
function ePressure = ...
    CalculateElectrostaticPressure(elecResults,structResults,location)
% Function to compute electrostatic pressure.
% structuralBoundaryLoad is used to specify the pressure load
% on the movable electrode.
% Inputs:
% elecResults: Electrostatic FEA results
% structResults: Mechanical FEA results (optional)
% location: The x,y coordinate where pressure is obtained
%
% Output:
% ePressure: Electrostatic pressure at location
%
% location.x : The x-coordinate of the points
% location.y : The y-coordinate of the points
xq = location.x;
yq = location.y;
% Compute the magnitude of the electric field from the potential
% difference.
[gradx,grady] = evaluateGradient(elecResults,xq,yq);
absE = sqrt(gradx.^2 + grady.^2);
% The permittivity of vacuum is 8.854*10^-12 farad/meter.
epsilon0 = 8.854e-12;
% Compute the magnitude of the electric flux density.
absD0 = epsilon0*absE;
absD = absD0;
% If structResults (deformation) is available,
% update the charge density along the movable electrode.
if ~isempty(structResults)
    % Displacement of the movable electrode at position x
    intrpDisp = interpolateDisplacement(structResults,xq,yq);
    vdisp = abs(intrpDisp.uy);
    G = 2e-6; % Gap 2 micron
    absD = absD0.*G./(G-vdisp);
end
```

```
% Compute the electrostatic pressure.
ePressure = absD.^2/(2*epsilon0);
end
```


Deflection Analysis of Bracket

This example shows how to analyze a 3-D mechanical part under an applied load using finite element analysis (FEA) and determine the maximal deflection.

Create Structural Analysis Model

The first step in solving a linear elasticity problem is to create a structural analysis model. This is a container that holds the geometry, structural material properties, damping parameters, body loads, boundary loads, boundary constraints, superelement interfaces, initial displacement and velocity, and mesh.

```
model = createpde('structural','static-solid');
```


Import Geometry

Import an STL file of a simple bracket model using the importGeometry function. This function reconstructs the faces, edges and vertices of the model. It can merge some faces and edges, so the numbers can differ from those of the parent CAD model.

```
importGeometry(model,'BracketWithHole.stl');
```

Plot the geometry, displaying face labels.
figure

```
pdegplot(model,'FaceLabels','on')
```

view(30,30) ;
title('Bracket with Face Labels')

Bracket with Face Labels


```
figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')
```


Bracket with Face Labels, Rear View

Specify Structural Properties of Material

Specify Young's modulus and Poisson's ratio of the material.

```
structuralProperties(model,'YoungsModulus',200e9, ...
```


Apply Boundary Conditions and Loads

The problem has two boundary conditions: the back face (face 4) is fixed, and the front face has an applied load. All other boundary conditions, by default, are free boundaries.
structuralBC(model,'Face',4,'Constraint','fixed');
Apply a distributed load in the negative z-direction to the front face (face 8).
structuralBoundaryLoad (model,'Face',8,'SurfaceTraction',[0;0;-1e4]);
Generate Mesh
Generate and plot a mesh.
generateMesh(model);
figure
pdeplot3D(model)
title('Mesh with Quadratic Tetrahedral Elements');

Mesh with Quadratic Tetrahedral Elements

Calculate Solution

Use the solve function to calculate the solution.

```
result = solve(model)
result =
    StaticStructuralResults with properties:
            Displacement: [1x1 FEStruct]
            Strain: [1x1 FEStruct]
            Stress: [1x1 FEStruct]
        VonMisesStress: [5993x1 double]
                Mesh: [1x1 FEMesh]
```


Examine Solution

Find the maximal deflection of the bracket in the z-direction.

```
minUz = min(result.Displacement.uz);
fprintf('Maximal deflection in the z-direction is %g meters.', minUz)
Maximal deflection in the z-direction is -4.43075e-05 meters.
```


Plot Displacement Components

Plot the components of the solution vector. The maximal deflections are in the z-direction. Because the part and the loading are symmetric, the x-displacement and z-displacement are symmetric, and the y-displacement is antisymmetric with respect to the center line

Here, the plotting routine uses the ' jet ' colormap, which has blue as the color representing the lowest value and red representing the highest value. The bracket loading causes face 8 to dip down, so the maximum z-displacement appears blue

```
figure
pdeplot3D(model,'ColorMapData',result.Displacement.ux)
title('x-displacement')
colormap('jet')
```



```
figure
pdeplot3D(model,'ColorMapData',result.Displacement.uy)
title('y-displacement')
colormap('jet')
```


figure
pdeplot3D(model,'ColorMapData', result.Displacement.uz)
title('z-displacement')
colormap('jet')

Plot von Mises Stress

Plot values of the von Mises stress at nodal locations. Use the same jet colormap.
figure
pdeplot3D(model,'ColorMapData', result. VonMisesStress)
title('von Mises stress')
colormap('jet')

Vibration of Square Plate

This example shows how to calculate the vibration modes and frequencies of a 3-D simply supported, square, elastic plate.

The dimensions and material properties of the plate are taken from a standard finite element benchmark problem published by NAFEMS, FV52 (See Reference).

First, create a structural model container for your 3-D modal analysis problem. This is a container that holds the geometry, properties of the material, body loads, boundary loads, boundary constraints, and mesh.

```
model = createpde('structural','modal-solid');
```

Import an STL file of a simple plate model using the importGeometry function. This function reconstructs the faces, edges, and vertices of the model. It can merge some faces and edges, so the numbers can differ from those of the parent CAD model.

```
importGeometry(model,'Plate10x10x1.stl');
```

Plot the geometry and turn on face labels. You need the face labels when defining the boundary conditions.
figure
hc = pdegplot(model,'FaceLabels','on');
hc(1). FaceAlpha = 0.5;
title('Plate with Face Labels')

> Plate with Face Labels

Define the elastic modulus of steel, Poisson's ratio, and the material density.

```
structuralProperties(model,'YoungsModulus',200e9, ...
    'PoissonsRatio',0.3, ...
    'MassDensity',8000);
```

In this example, the only boundary condition is the zero z-displacement on the four edge faces. These edge faces have labels 1 through 4.

```
structuralBC(model,'Face',1:4,'ZDisplacement',0);
```

Create and plot a mesh. Specify the target minimum edge length so that there is one row of elements per plate thickness.

```
generateMesh(model,'Hmin',1.3);
figure
pdeplot3D(model);
title('Mesh with Quadratic Tetrahedral Elements');
```


Mesh with Quadratic Tetrahedral Elements

For comparison with the published values, load the reference frequencies in Hz .
refFreqHz $=\left[\begin{array}{llllllll}0 & 0 & 0 & 45.897 & 109.44 & 109.44167 .89 & 193.59206 .19206 .19] ; ~\end{array}\right.$
Solve the problem for the specified frequency range. Define the upper limit as slightly larger than the highest reference frequency and the lower limit as slightly smaller than the lowest reference frequency.

```
maxFreq = 1.1*refFreqHz(end)*2*pi;
result = solve(model,'FrequencyRange',[-0.1 maxFreq]);
```

Calculate frequencies in Hz .

```
freqHz = result.NaturalFrequencies/(2*pi);
```

Compare the reference and computed frequencies (in Hz) for the lowest 10 modes. The lowest three mode shapes correspond to rigid-body motion of the plate. Their frequencies are close to zero.

```
tfreqHz = table(refFreqHz.',freqHz(1:10));
tfreqHz.Properties.VariableNames = {'Reference','Computed'};
disp(tfreqHz);
    Reference Computed
\begin{tabular}{rr}
0 & \(6.4321 \mathrm{e}-05\) \\
0 & \(1.1519 \mathrm{e}-05\) \\
0 & \(2.9842 \mathrm{e}-05\) \\
45.897 & 44.871 \\
109.44 & 109.74 \\
109.44 & 109.77 \\
167.89 & 168.59 \\
193.59 & 193.74 \\
206.19 & 207.51 \\
206.19 & 207.52
\end{tabular}
```

You see good agreement between the computed and published frequencies.
Plot the third component (z-component) of the solution for the seven lowest nonzero-frequency modes.

```
h = figure;
h.Position = [100,100,900,600];
numToPrint = min(length(freqHz),length(refFreqHz));
for i = 4:numToPrint
    subplot(4,2,i-3);
    pdeplot3D(model,'ColorMapData',result.ModeShapes.uz(:,i));
    axis equal
    title(sprintf(['Mode=%d, z-displacement\n', ...
    'Frequency(Hz): Ref=%g FEM=%g'], ...
    i,refFreqHz(i),freqHz(i)));
end
```

Mode=4, z-displacement Frequency (Hz) : Ref=45.897 FEM=44.8715

Mode=6, z-displacement Frequency(Hz): Ref=109.44 FEM=109.765

Mode=8, z-displacement
Frequency(Hz): Ref=193.59 FEM=193.74

Mode=10, z-displacement
Frequency (Hz) : Ref=206.19 FEM=207.517

Mode=5, z-displacement

Frequency(Hz): Ref=109.44 FEM=109.738

Mode=7, z-displacement
Frequency(Hz): Ref=167.89 FEM=168.592

Mode=9, z-displacement
Frequency(Hz): Ref=206.19 $\mathrm{FEM}=\mathbf{2 0 7 . 5 1 2}$

Reference

[1] National Agency for Finite Element Methods and Standards. The Standard NAFEMS Benchmarks. United Kingdom: NAFEMS, October 1990.

Structural Dynamics of Tuning Fork

Perform modal and transient analysis of a tuning fork.
A tuning fork is a U-shaped beam. When struck on one of its prongs or tines, it vibrates at its fundamental (first) frequency and produces an audible sound.

The first flexible mode of a tuning fork is characterized by symmetric vibration of the tines: they move towards and away from each other simultaneously, balancing the forces at the base where they intersect. The fundamental mode of vibration does not produce any bending effect on the handle attached at the intersection of tines. The lack of bending at the base enables easy handling of tuning fork without influencing its dynamics.

Transverse vibration of the tines causes the handle to vibrate axially at the fundamental frequency. This axial vibration can be used to amplify the audible sound by bringing the end of the handle in contact with a larger surface area, like a metal table top. The next higher mode with symmetric mode shape is about 6.25 times the fundamental frequency. Therefore, a properly excited tuning fork tends to vibrate with a dominant frequency corresponding to fundamental frequency, producing a pure audible tone. This example simulates these aspects of the tuning fork dynamics by performing a modal analysis and a transient dynamics simulation.

You can find the helper functions animateSixTuningForkModes and tuningForkFFT and the geometry file TuningFork.stl under matlab/R20XXx/examples/pde/main.

Modal Analysis of Tuning Fork

Find natural frequencies and mode shapes for the fundamental mode of a tuning fork and the next several modes. Show the lack of bending effect on the fork handle at the fundamental frequency.

First, create a structural model for modal analysis of a solid tuning fork.

```
model = createpde('structural','modal-solid');
```

To perform unconstrained modal analysis of a structure, it is enough to specify geometry, mesh, and material properties. First, import and plot the tuning fork geometry.

```
importGeometry(model,'TuningFork.stl');
figure
pdegplot(model)
```

Specify the Young's modulus, Poisson's ratio, and mass density to model linear elastic material behavior. Specify all physical properties in consistent units.

```
E = 210E9;
nu = 0.3;
rho = 8000;
structuralProperties(model,'YoungsModulus',E, ...
    'PoissonsRatio',nu, ...
    'MassDensity',rho);
```

Generate a mesh.

```
generateMesh(model,'Hmax',0.001);
```

Solve the model for a chosen frequency range. Specify the lower frequency limit below zero so that all modes with frequencies near zero appear in the solution.

```
RF = solve(model,'FrequencyRange',[-1,4000]*2*pi);
```

By default, the solver returns circular frequencies.

```
modeID = 1:numel(RF.NaturalFrequencies);
```

Express the resulting frequencies in Hz by dividing them by 2π. Display the frequencies in a table.

```
tmodalResults = table(modeID.',RF.NaturalFrequencies/2/pi);
tmodalResults.Properties.VariableNames = {'Mode','Frequency'};
disp(tmodalResults);
```

 Mode Frequency
 10.0072398
 20.0033543
 30.0025636
 40.0039618
 50.0053295
 \(6 \quad 0.0094544\)
 \(7 \quad 460.42\)
 \(8 \quad 706.34\)
 \(9 \quad 1911.5\)
 \(10 \quad 2105.5\)
 \(11 \quad 2906.5\)
 \(12 \quad 3814.7\)
 Because there are no boundary constraints in this example, modal results include the rigid body modes. The first six near-zero frequencies indicate the six rigid body modes of a 3-D solid body. The first flexible mode is the seventh mode with a frequency around 460 Hz .

The best way to visualize mode shapes is to animate the harmonic motion at their respective frequencies. The animateSixTuningForkModes function animates the six flexible modes, which are modes 7 through 12 in the modal results RF.

```
frames = animateSixTuningForkModes(RF);
```

$\underset{\substack{\text { Filexible Moded } 1 \\ \text { Frequency }=460.421 \\ \text { Hz }}}{\text {. }}$

To play the animation, use the following command:

```
movie(figure('units','normalized','outerposition',[0 0 1 1]),frames,5,30)
```

In the first mode, two oscillating tines of the tuning fork balance out transverse forces at the handle. The next mode with this effect is the fifth flexible mode with the frequency 2906.5 Hz . This frequency is about 6.25 times greater than the fundamental frequency 460 Hz .

Transient Analysis of Tuning Fork

Simulate the dynamics of a tuning fork being gently and quickly struck on one of its tines. Analyze vibration of tines over time and axial vibration of the handle.

First, create a structural transient analysis model.

```
tmodel = createpde('structural','transient-solid');
```

Import the same tuning fork geometry you used for the modal analysis.

```
importGeometry(tmodel,'TuningFork.stl');
```

Generate a mesh.
mesh = generateMesh(tmodel,'Hmax', 0.005);
Specify the Young's modulus, Poisson's ratio, and mass density.

```
structuralProperties(tmodel,'YoungsModulus', E, ...
    'PoissonsRatio',nu, ...
    'MassDensity',rho);
```

Identify faces for applying boundary constraints and loads by plotting the geometry with the face labels.

```
figure('units','normalized','outerposition',[0 0 0 1 1])
pdegplot(tmodel,'FaceLabels','on')
view(-50,15)
title 'Geometry with Face Labels'
```


Impose sufficient boundary constraints to prevent rigid body motion under applied loading. Typically, you hold a tuning fork by hand or mount it on a table. A simplified approximation to this boundary condition is fixing a region near the intersection of tines and the handle (faces 21 and 22).
structuralBC(tmodel,'Face', [21, 22],'Constraint','fixed');
Approximate an impulse loading on a face of a tine by applying a pressure load for a very small fraction of the time period of the fundamental mode. By using this very short pressure pulse, you ensure that only the fundamental mode of a tuning fork is excited. To evaluate the time period T of the fundamental mode, use the results of modal analysis.

```
T = 2*pi/RF.NaturalFrequencies(7);
```

Specify the pressure loading on a tine as a short rectangular pressure pulse.

```
structuralBoundaryLoad(tmodel,'Face',11,'Pressure',5E6,'EndTime',T/300);
```

Apply zero displacement and velocity as initial conditions.

```
structuralIC(tmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);
```

Solve the transient model for 50 periods of the fundamental mode. Sample the dynamics 60 times per period of the fundamental mode.

```
ncycle = 50;
samplingFrequency = 60/T;
tlist = linspace(0,ncycle*T,ncycle*T*samplingFrequency);
R = solve(tmodel,tlist)
R =
    TransientStructuralResults with properties:
```

```
Displacement: [1×1 FEStruct]
    Velocity: [1\times1 FEStruct]
Acceleration: [1×1 FEStruct]
SolutionTimes: [1\times3000 double]
    Mesh: [1×1 FEMesh]
```

Plot the time-series of the vibration of the tine tip, which is face 12 . Find nodes on the tip face and plot the y-component of the displacement over time, using one of these nodes.

```
excitedTineTipNodes = findNodes(mesh,'region','Face',12);
tipDisp = R.Displacement.uy(excitedTineTipNodes(1),:);
figure
plot(R.SolutionTimes,tipDisp)
title('Transverse Displacement at Tine Tip')
xlim([0,0.1])
xlabel('Time')
ylabel('Y-Displacement')
```


Perform fast Fourier transform (FFT) on the tip displacement time-series to see that the vibration frequency of the tuning fork is close to its fundamental frequency. A small deviation from the fundamental frequency computed in an unconstrained modal analysis appears because of constraints imposed in the transient analysis.

```
[fTip,PTip] = tuningForkFFT(tipDisp,samplingFrequency);
figure
```

```
plot(fTip,PTip)
title({'Single-sided Amplitude Spectrum', 'of Tip Vibration'})
xlabel('f (Hz)')
ylabel('|P1(f)|')
xlim([0,4000])
```

 Single-sided Amplitude Spectrum

Transverse vibration of tines causes the handle to vibrate axially with the same frequency. To observe this vibration, plot the axial displacement time-series of the end face of the handle.

```
baseNodes = tmodel.Mesh.findNodes('region','Face',6);
baseDisp = R.Displacement.ux(baseNodes(1),:);
figure
plot(R.SolutionTimes,baseDisp)
title('Axial Displacement at the End of Handle')
xlim([0,0.1])
ylabel('X-Displacement')
xlabel('Time')
```


Perform an FFT of the time-series of the axial vibration of the handle. This vibration frequency is also close to its fundamental frequency.

```
[fBase,PBase] = tuningForkFFT(baseDisp,samplingFrequency);
figure
plot(fBase,PBase)
title({'Single-sided Amplitude Spectrum', 'of Base Vibration'})
xlabel('f (Hz)')
ylabel('|P1(f)|')
xlim([0,4000])
```

Single-sided Amplitude Spectrum

Modal Superposition Method for Structural Dynamics Problem

This example shows how to solve a structural dynamics problem by using modal analysis results. Solve for the transient response at the center of a 3-D beam under a harmonic load on one of its corners. Compare the direct integration results with the results obtained by modal superposition.

Modal Analysis

Create a modal analysis model for a 3-D problem.

```
modelM = createpde('structural','modal-solid');
```

Create the geometry and include it in the model. Plot the geometry and display the edge and vertex labels.

```
gm = multicuboid(0.05,0.003,0.003);
```

modelM.Geometry=gm;
pdegplot (modelM, 'EdgeLabels', 'on', 'VertexLabels', 'on');
view([95 5])

Generate a mesh.
msh = generateMesh(modelM);
Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(modelM,'YoungsModulus',210E9, ...
    'PoissonsRatio',0.3, ...
    'MassDensity',7800);
```

Specify minimal constraints on one end of the beam to prevent rigid body modes. For example, specify that edge 4 and vertex 7 are fixed boundaries.

```
structuralBC(modelM,'Edge',4,'Constraint','fixed');
structuralBC(modelM,'Vertex',7,'Constraint','fixed');
```

Solve the problem for the frequency range from 0 to 500000 . The recommended approach is to use a value that is slightly smaller than the expected lowest frequency. Thus, use -0.1 instead of 0 .

Rm = solve(modelM,' FrequencyRange', [-0.1,500000]);

Transient Analysis

Create a transient analysis model for a 3-D problem.

```
modelD = createpde('structural','transient-solid');
```

Use the same geometry and mesh as for the modal analysis.

```
modelD.Geometry = gm;
modelD.Mesh = msh;
```

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(modelD,'YoungsModulus',210E9, ...
    'PoissonsRatio',0.3, ...
    'MassDensity',7800);
```

Specify the same minimal constraints on one end of the beam to prevent rigid body modes.

```
structuralBC(modelD,'Edge',4,'Constraint','fixed');
structuralBC(modelD,'Vertex',7,'Constraint','fixed');
```

Apply a sinusoidal force on the corner opposite the constrained edge and vertex.

```
structuralBoundaryLoad(modelD,'Vertex',5,''Force',[0,0,10],'Frequency',7600);
```

Specify the zero initial displacement and velocity.

```
structuralIC(modelD,'Velocity',[0;0;0],'Displacement',[0;0;0]);
```

Specify the relative and absolute tolerances for the solver.

```
modelD.SolverOptions.RelativeTolerance = 1E-5;
modelD.SolverOptions.AbsoluteTolerance = 1E-9;
```

Solve the model using the default direct integration method.

```
tlist = linspace(0,0.004,120);
Rd = solve(modelD,tlist)
Rd =
    TransientStructuralResults with properties:
    Displacement: [1x1 FEStruct]
```

```
    Velocity: [1x1 FEStruct]
Acceleration: [1x1 FEStruct]
SolutionTimes: [1x120 double]
    Mesh: [1x1 FEMesh]
```

Now, solve the model using the modal results.

```
tlist = linspace(0,0.004,120);
Rdm = solve(modelD,tlist,'ModalResults',Rm)
Rdm =
    TransientStructuralResults with properties:
        Displacement: [1x1 FEStruct]
            Velocity: [1x1 FEStruct]
        Acceleration: [1x1 FEStruct]
        SolutionTimes: [1x120 double]
            Mesh: [1x1 FEMesh]
```

Interpolate the displacement at the center of the beam.

```
intrpUd = interpolateDisplacement(Rd,0,0,0.0015);
intrpUdm = interpolateDisplacement(Rdm,0,0,0.0015);
```

Compare the direct integration results with the results obtained by modal superposition.

```
plot(Rd.SolutionTimes,intrpUd.uz,'bo')
hold on
plot(Rdm.SolutionTimes,intrpUdm.uz,'rx')
grid on
legend('Direct integration', 'Modal superposition')
xlabel('Time');
ylabel('Center of beam displacement')
```


Stress Concentration in Plate with Circular Hole

Perform a 2-D plane-stress elasticity analysis.
A thin rectangular plate under a uniaxial tension has a uniform stress distribution. Introducing a circular hole in the plate disturbs the uniform stress distribution near the hole, resulting in a significantly higher than average stress. Such a thin plate, subject to in-plane loading, can be analyzed as a 2-D plane-stress elasticity problem. In theory, if the plate is infinite, then the stress near the hole is three times higher than the average stress. For a rectangular plate of finite width, the stress concentration factor is a function of the ratio of hole diameter to the plate width. This example approximates the stress concentration factor using a plate of a finite width.

Create Structural Model and Include Geometry

Create a structural model for static plane-stress analysis.

```
model = createpde('structural','static-planestress');
```

The plate must be sufficiently long, so that the applied loads and boundary conditions are far from the circular hole. This condition ensures that a state of uniform tension prevails in the far field and, therefore, approximates an infinitely long plate. In this example the length of the plate is four times greater than its width. Specify the following geometric parameters of the problem.

```
radius = 20.0;
width = 50.0;
totalLength = 4*width;
```

Define the geometry description matrix (GDM) for the rectangle and circle.

```
R1 = [3 4 -totalLength totalLength ...
                        totalLength -totalLength ...
    -width -width width width]';
C1 = [1 0 0 radius 0 0 0 0 0 0]';
```

Define the combined GDM, name-space matrix, and set formula to construct decomposed geometry using decsg.

```
gdm = [R1 C1];
ns = char('R1','C1');
g = decsg(gdm,'R1 - C1',ns');
```

Create the geometry and include it into the structural model.

```
geometryFromEdges(model,g);
```

Plot the geometry displaying edge labels.

```
figure
pdegplot(model,'EdgeLabel','on');
axis([-1.2*totalLength 1.2*totalLength -1.2*width 1.2*width])
title 'Geometry with Edge Labels';
```


Plot the geometry displaying vertex labels.

```
figure
pdegplot(model,'VertexLabels','on');
axis([-1.2*totalLength 1.2*totalLength -1.2*width 1.2*width])
title 'Geometry with Vertex Labels';
```


Specify Model Parameters

Specify the Young's modulus and Poisson's ratio to model linear elastic material behavior. Remember to specify physical properties in consistent units.

```
structuralProperties(model,'YoungsModulus',200E3,'PoissonsRatio',0.25);
```

Restrain all rigid-body motions of the plate by specifying sufficient constraints. For static analysis, the constraints must also resist the motion induced by applied load.

Set the x -component of displacement on the left edge (edge 3) to zero to resist the applied load. Set the y-component of displacement at the bottom left corner (vertex 3) to zero to restraint the rigid body motion.
structuralBC(model,'Edge',3,'XDisplacement',0);
structuralBC(model,'Vertex',3,'YDisplacement',0);
Apply the surface traction with a non-zero x-component on the right edge of the plate.
structuralBoundaryLoad(model,'Edge',1,'SurfaceTraction', [100;0]);

Generate Mesh and Solve

To capture the gradation in solution accurately, use a fine mesh. Generate the mesh, using Hmax to control the mesh size.
generateMesh(model,'Hmax', radius/6);

Plot the mesh.
figure
pdemesh(model)

Solve the plane-stress elasticity model.
R = solve(model);
Plot Stress Contours
Plot the x -component of the normal stress distribution. The stress is equal to applied tension far away from the circular boundary. The maximum value of stress occurs near the circular boundary.

```
figure
pdeplot(model,'XYData',R.Stress.sxx,'ColorMap','jet')
axis equal
title 'Normal Stress Along x-Direction';
```


Interpolate Stress

To see the details of the stress variation near the circular boundary, first define a set of points on the boundary.

```
thetaHole = linspace(0,2*pi,200);
xr = radius*cos(thetaHole);
yr = radius*sin(thetaHole);
CircleCoordinates = [xr;yr];
```

Then interpolate stress values at these points by using interpolateStress. This function returns a structure array with its fields containing interpolated stress values.

```
stressHole = interpolateStress(R,CircleCoordinates);
```

Plot the normal direction stress versus angular position of the interpolation points.

```
figure
plot(thetaHole,stressHole.sxx)
xlabel('0')
ylabel('\sigma_{xx}')
title 'Normal Stress Around Circular Boundary';
```


Solve the Same Problem Using Symmetric Model

The plate with a hole model has two axes of symmetry. Therefore, you can model a quarter of the geometry. The following model solves a quadrant of the full model with appropriate boundary conditions.

Create a structural model for the static plane-stress analysis.
symModel $=$ createpde('structural','static-planestress');
Create the geometry that represents one quadrant of the original model. You do not need to create additional edges to constrain the model properly.

```
R1 = [3 4 0 totalLength/2 totalLength/2 ...
    0 0 0 width width]';
C1 = [1 0 0 radius 0 0 0 0 0 0]';
gm = [R1 C1];
sf = 'R1-C1';
ns = char('R1','C1');
g = decsg(gm,sf,ns');
geometryFromEdges(symModel,g);
```

Plot the geometry displaying the edge labels.
figure

```
pdegplot(symModel,'EdgeLabel','on');
```

axis equal
title 'Symmetric Quadrant with Edge Labels';

Specify structural properties of the material.

```
structuralProperties(symModel,'YoungsModulus',200E3, ...
    'PoissonsRatio',0.25);
```

Apply symmetric constraints on the edges 3 and 4.
structuralBC(symModel,'Edge',[3 4],'Constraint','symmetric');
Apply surface traction on the edge 1.
structuralBoundaryLoad(symModel,'Edge',1,'SurfaceTraction',[100;0]);
Generate mesh and solve the symmetric plane-stress model.
generateMesh(symModel, 'Hmax', radius/6);
Rsym = solve(symModel);
Plot the x -component of the normal stress distribution. The results are identical to the first quadrant of the full model.

```
figure
pdeplot(symModel,'XYData',Rsym.Stress.sxx,'ColorMap','jet');
axis equal
title 'Normal Stress Along x-Direction for Symmetric Model';
```


Thermal Deflection of Bimetallic Beam

This example shows how to solve a coupled thermo-elasticity problem. Thermal expansion or contraction in mechanical components and structures occurs due to temperature changes in the operating environment. Thermal stress is a secondary manifestation: the structure experiences stresses when structural constraints prevent free thermal expansion or contraction of the component. Deflection of a bimetallic beam is a common physics experiment. A typical bimetallic beam consists of two materials bonded together. The coefficients of thermal expansion (CTE) of these materials are significantly different.

This example finds the deflection of a bimetallic beam using a structural finite-element model. The example compares this deflection to the analytic solution based on beam theory approximation.

Create a static structural model.

```
structuralmodel = createpde('structural','static-solid');
```

Create a beam geometry with the following dimensions.
$\mathrm{L}=0.1$; m
$\mathrm{W}=5 \mathrm{E}-3$; \% m
H = 1E-3; \% m
gm = multicuboid(L, W, [H,H],'Zoffset',[0,H]);
Include the geometry in the structural model.
structuralmodel. Geometry = gm;
Plot the geometry.
figure
pdegplot(structuralmodel)

Identify the cell labels of the cells for which you want to specify material properties.
First, display the cell label for the bottom cell. To see the cell label clearly, zoom onto the left end of the beam and rotate the geometry as follows.
figure
pdegplot(structuralmodel,'CellLabels','on')
axis([-L/2 -L/3 -W/2 W/2 0 2*H])
view([0 0])
zticks([])

Now, display the cell label for the top cell. To see the cell label clearly, zoom onto the right end of the beam and rotate the geometry as follows.

```
figure
pdegplot(structuralmodel,'CellLabels','on')
axis([L/3 L/2 -W/2 W/2 0 2*H])
view([0 0])
zticks([])
```


Specify the Young's modulus, Poisson's ratio, and linear coefficient of thermal expansion to model linear elastic material behavior. To maintain unit consistency, specify all physical properties in SI units.

Assign the material properties of copper to the bottom cell.

```
Ec = 137E9; % N/m^2
nuc = 0.28;
CTEc = 20.00E-6; % m/m-C
structuralProperties(structuralmodel,'Cell',1, ...
    'YoungsModulus',Ec, ...
    'PoissonsRatio',nuc, ...
    'CTE',CTEc);
```

Assign the material properties of invar to the top cell.

```
Ei = 130E9; % N/m^2
nui = 0.354;
CTEi = 1.2E-6; % m/m-C
structuralProperties(structuralmodel,'Cell',2, ...
                            'YoungsModulus',Ei, ...
                            'PoissonsRatio',nui, ...
                            'CTE',CTEi);
```

For this example, assume that the left end of the beam is fixed. To impose this boundary condition, display the face labels on the left end of the beam.

```
figure
pdegplot(structuralmodel,'faceLabels','on','FaceAlpha',0.25)
axis([-L/2 -L/3 -W/2 W/2 0 2*H])
view([60 10])
xticks([])
yticks([])
zticks([])
```


Apply a fixed boundary condition on faces 5 and 10 .
structuralBC(structuralmodel,'Face',[5,10],'Constraint','fixed');
Apply the temperature change as a thermal load. Use a reference temperature of 25 degrees Celsius and an operating temperature of 125 degrees Celsius. Thus, the temperature change for this model is 100 degrees Celsius.
structuralBodyLoad(structuralmodel,'Temperature',125);
structuralmodel.ReferenceTemperature = 25;
Generate a mesh and solve the model.
generateMesh(structuralmodel,'Hmax', H/2) ;
R = solve(structuralmodel);
Plot the deflected shape of the bimetallic beam with the magnitude of displacement as the color map data.
figure
pdeplot3D(structuralmodel,'ColorMapData',R.Displacement.Magnitude, ...

Compute the deflection analytically, based on beam theory. The deflection of the strip is $\delta=\frac{6 \Delta T\left(\alpha_{C}-\alpha_{i}\right) L^{2}}{K_{1}}$, where $K_{1}=14+\frac{E_{C}}{E_{i}}+\frac{E_{i}}{E_{C}}, \Delta T$ is the temperature difference, α_{C} and α_{i} are the coefficients of thermal expansion of copper and invar, E_{C} and E_{i} are the Young's modulus of copper and invar, and L is the length of the strip.

```
K1 = 14 + (Ec/Ei)+ (Ei/Ec);
deflectionAnalytical = 3*(CTEc - CTEi)*100*2*H*L^2/(H^2*K1);
```

Compare the analytical results and the results obtained in this example. The results are comparable because of the large aspect ratio.

```
PDEToobox_Deflection = max(R.Displacement.uz);
percentError = 100*(PDEToobox_Deflection - ...
    deflection}Annalytical)/PDEToobox_Deflection
bimetallicResults = table(PDEToobox_Deflection, ...
    deflectionAnalytical,percentError);
bimetallicResults.Properties.VariableNames = {'PDEToolbox', ...
                        'Analytical', ...
                        'PercentageError'};
disp(bimetallicResults)
```

| PDEToolbox | Analytical | | PercentageError |
| :---: | :---: | :---: | :---: |
| | | 0.0070488 | |
| 0.0071061 | | 0.80608 | |

3-109

Axisymmetric Thermal and Structural Analysis of Disc Brake

This example shows a quasistatic axisymmetric thermal stress analysis workflow by reproducing the results of the simplified disc brake model discussed in [1] on page 3-0 . Disc brakes absorb mechanical energy through friction and transform it into thermal energy, which then dissipates. The example uses a simplified model of a disc brake in a single braking process from a constant initial angular speed to a standstill. The workflow has two steps:

1 Transient thermal analysis to compute the temperature distribution in the disc using the heat flux from brake pads
2 Quasistatic structural analysis to compute thermal stresses at several solution times using previously obtained temperature distribution to specify thermal loads

The resulting plots show the temperature distribution, radial stress, hoop stress, and vol Mise stress for the corresponding solution times.

Disc Brake Properties and Geometry

Based on the assumptions used in [1] on page 3-0 , the example reduces the analysis domain to a rectangular region corresponding to the axisymmetric section of the annular disc. Because of the geometric and load symmetry of the disc, the example models only half the thickness of the disc and the effect of one pad. In the following figure, the left edge corresponds to the inner radius of the disc r_{d}. The right edge corresponds to the outer radius of the disc R_{d} and also coincides with the outer radius of the pad R_{p}. The disc experiences pressure from the pad, which generates the heat flux. Instead of modeling the pad explicitly, include its effect in the thermal analysis by specifying this heat flux as a boundary condition from the inner radius of the pad r_{p} to the outer radius of the pad R_{p}.

Thermal Analysis: Compute Temperature Distribution

Create a transient axisymmetric thermal model.
model = createpde('thermal','transient-axisymmetric');
Create a geometry with two adjacent rectangles. The top edge of the longer rectangle (on the right) represents the disc-pad contact region.

```
R1 = [3,4, [ 66, 76.5, 76.5, 66, -5.5, -5.5, 0, 0]/1000]';
R2 = [3,4, [76.5, 113.5, 113.5, 76.5, -5.5, -5.5, 0, 0]/1000]';
gdm = [R1 R2];
ns = char('R1','R2');
g = decsg(gdm,'R1 + R2',ns');
```

Assign the geometry to the thermal model.
geometryFromEdges (modelT,g);
Plot the geometry with the edge and face labels.
figure
pdegplot(modelT,'EdgeLabels','on','FaceLabels','on')

Generate a mesh. To match the mesh used in [1] on page 3-0 , use the linear geometric order instead of the default quadratic order.
generateMesh(modelT, 'Hmax',0.5E-04, 'GeometricOrder','linear');
Specify the thermal material properties of the disc.

```
alphad = 1.44E-5; % Diffusivity of disc
Kd = 51;
rhod = 7100;
cpd = Kd/rhod/alphad;
thermalProperties(modelT,'ThermalConductivity',Kd, ...
```

```
'MassDensity',rhod, ...
'SpecificHeat',cpd);
```

Specify the heat flux boundary condition to account for the pad region. For the definition of the qFcn function, see Heat Flux Function on page 3-0 .

```
thermalBC(modelT,'Edge',6,'HeatFlux',@qFcn);
```

Set the initial temperature.

```
thermalIC(modelT,20);
```

Solve the model for the times used in [1] on page 3-0

```
tlist = [0 0.1 0.2 1.0 2.0 3.0 3.96];
Rt = solve(modelT,tlist);
```

Plot the temperature variation with time at three key radial locations. The resulting plot is comparable to the plot obtained in [1] on page 3-0 .

```
iTRd = interpolateTemperature(Rt,[0.1135;0],1:numel(Rt.SolutionTimes));
iTrp = interpolateTemperature(Rt,[0.0765;0],1:numel(Rt.SolutionTimes));
iTrd = interpolateTemperature(Rt,[0.066;0],1:numel(Rt.SolutionTimes));
figure
plot(tlist,iTRd)
hold on
plot(tlist,iTrp)
plot(tlist,iTrd)
title('Temperature Variation with Time at Key Radial Locations')
legend('R d','r_p','r d')
xlabel 't, s'
ylabel 'T,^{\circ}C'
```


Structural Analysis: Compute Thermal Stress

Create an axisymmetric static structural analysis model.

```
model = createpde('structural','static-axisymmetric');
```

Assign the geometry and mesh used for the thermal model.

```
model.Geometry = modelT.Geometry;
```

model.Mesh = modelT.Mesh;

Specify the structural properties of the disc.

```
structuralProperties(model,'YoungsModulus',99.97E9, ...
    'PoissonsRatio',0.29, ...
    'CTE',1.08E-5);
```

Constrain the model to prevent rigid motion.
structuralBC(model,'Edge', [3,4],'ZDisplacement' ${ }^{\prime} 0$) ;
Specify the reference temperature that corresponds to the state of zero thermal stress of the model.
model. ReferenceTemperature $=20$;
Specify the thermal load by using the transient thermal results Rt. The solution times are the same as in the thermal model analysis. For each solution time, solve the corresponding static structural analysis problem and plot the temperature distribution, radial stress, hoop stress, and von Mises
stress. For the definition of the plotResults function, see Plot Results Function on page 3-0 . The results are comparable to figure 5 from [1] on page 3-0 .

```
for n = 2:numel(Rt.SolutionTimes)
structuralBodyLoad(model,'Temperature',Rt,'TimeStep',n);
R = solve(model);
plotResults(model,R,modelT,Rt,n);
end
```

Time $=0.1 \mathrm{~s}$

Time $=0.2 \mathrm{~s}$

Time $=1 \mathrm{~s}$

Time $=2 \mathrm{~s}$

Time $=3 \mathrm{~s}$

Time $=3.96 \mathrm{~s}$

Heat Flux Function

This helper function computes the transient value of the heat flux from the pad to the disc. It uses the empirical formula from [1] on page 3-0 .

```
function q = qFcn(r,s)
alphad = 1.44E-5; % Diffusivity of disc
Kd = 51; % Conductivity of disc
rhod = 7100; % Density of disc
cpd = Kd/rhod/alphad; % Specific heat capacity of disc
alphap = 1.46E-5; % Diffusivity of pad
Kp = 34.3; % Conductivity of pad
rhop = 4700; % Density of pad
cpp = Kp/rhop/alphap; % Specific heat capacity of pad
f = 0.5; % Coefficient of friction
omega0 = 88.464; % Initial angular velocity
ts = 3.96; % Stopping time
p0 = 1.47E6*(64.5/360); % Pressure only spans 64.5 deg occupied by pad
omegat = omega0*(1 - s.time/ts); % Angular speed over time
eta = sqrt(Kd*rhod*cpd)/(sqrt(Kd*rhod*cpd) + sqrt(Kp*rhop*cpp));
q = (eta)*f*omegat*r.r*p0;
end
```


Plot Results Function

This helper function plots the temperature distribution, radial stress, hoop stress, and von Mises stress.

```
function plotResults(model,R,modelT,Rt,tID)
figure
subplot(2,2,1)
pdeplot(modelT,'XYData',Rt.Temperature(:,tID), ...
                            'ColorMap','jet','Contour','on')
title({'Temperature'; ...
    ['max = ' num2str(max(Rt.Temperature(:,tID))) '^{\circ}C']})
xlabel 'r, m'
ylabel 'z, m'
subplot(2,2,2)
pdeplot(model,'XYData',R.Stress.srr, ...
    'ColorMap','jet','Contour','on')
title({'Radial Stress';
    ['min = ' num2str(min(R.Stress.srr)/1E6,'%3.2f') ' MPa']; ...
    ['max = ' num2str(max(R.Stress.srr)/1E6,'%3.2f') ' MPa']})
xlabel 'r, m'
ylabel 'z, m'
subplot(2,2,3)
pdeplot(model,'XYData',R.Stress.sh, ...
    'ColorMap','jet','Contour','on')
title({'Hoop Stress'; ...
    ['min = ' num2str(min(R.Stress.sh)/1E6,'%3.2f') ' MPa']; ...
    ['max = ' num2str(max(R.Stress.sh)/1E6,'%3.2f') ' MPa']})
xlabel 'r, m'
ylabel 'z, m'
subplot(2,2,4)
pdeplot(model,'XYData',R.VonMisesStress, ...
    'ColorMap','jet','Contour','on')
title({'Von Mises Stress'; ...
    ['max = ' num2str(max(R.VonMisesStress)/1E6,'%3.2f') ' MPa']})
xlabel 'r, m'
ylabel 'z, m'
sgtitle(['Time = ' num2str(Rt.SolutionTimes(tID)) ' s'])
end
```


References

[1] Adamowicz, Adam. "Axisymmetric FE Model to Analysis of Thermal Stresses in a Brake Disc." Journal of Theoretical and Applied Mechanics 53, issue 2 (April 2015): 357-370. https://doi.org/ 10.15632/jtam-pl.53.2.357.

Electrostatic Potential in Air-Filled Frame

This example shows how to find the electrostatic potential in an air-filled annular quadrilateral frame.
The PDE governing this problem is the Poisson equation
$-\nabla \cdot(\varepsilon \nabla V)=\rho$.
Here, ρ is the space charge density, and ε is the absolute dielectric permittivity of the material. The toolbox uses the relative permittivity of the material ε_{r}, such that $\varepsilon=\varepsilon_{r} \varepsilon_{0}$, where ε_{0} is the absolute permittivity of the vacuum. The relative permittivity for air is 1.00059 . Note that the permittivity of the air does not affect the result in this example as long as the coefficient is constant.

Assuming that there is no charge in the domain, the Poisson equation simplifies to the Laplace equation: $\Delta V=0$. For this example, use the following boundary conditions:

- The electrostatic potential at the inner boundary is 1000 V .
- The electrostatic potential at the outer boundary is $0 V$.

Create an electromagnetic model for electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Import and plot a geometry of a simple frame.

```
importGeometry(emagmodel,'Frame.STL');
pdegplot(emagmodel,'EdgeLabels','on')
```


Specify the vacuum permittivity value in the SI system of units.

```
emagmodel.VacuumPermittivity = 8.8541878128E-12;
```

Specify the relative permittivity of the material.

```
electromagneticProperties(emagmodel,'RelativePermittivity',1.00059);
```

Specify the electrostatic potential at the inner boundary.

```
electromagneticBC(emagmodel,'Voltage',1000,'Edge',[1 2 4 6]);
```

Specify the electrostatic potential at the outer boundary.

```
electromagneticBC(emagmodel,'Voltage',0,'Edge',[3 5 7 8]);
```

Generate the mesh.
generateMesh(emagmodel);
Solve the model. Plot the electric potential using the Contour parameter to display equipotential lines.

R = solve(emagmodel);
u = R.ElectricPotential;
pdeplot(emagmodel,'XYData', u,'Contour','on')

Electrostatic Potential in Air-Filled Frame: PDE Modeler App

Find the electrostatic potential in an air-filled annular quadrilateral frame using the PDE Modeler app. For this example, use the following parameters:

- Inner square side is 0.2 m
- Outer square side is 0.5 m
- Electrostatic potential at the inner boundary is 1000 V
- Electrostatic potential at the outer boundary is 0 V

The PDE governing this problem is the Poisson equation
$-\nabla \cdot(\varepsilon \nabla V)=\rho$.
The PDE Modeler app uses the relative permittivity $\varepsilon_{r}=\varepsilon / \varepsilon_{0}$, where ε_{0} is the absolute dielectric permittivity of a vacuum ($8.854 \cdot 10^{-12}$ farad/meter). The relative permittivity for the air is 1.00059 . Note that the coefficient of permittivity does not affect the result in this example as long as the coefficient is constant.

Assuming that there is no charge in the domain, you can simplify the Poisson equation to the Laplace equation,
$\Delta V=0$.
Here, the boundary conditions are the Dirichlet boundary conditions $V=1000$ at the inner boundary and $V=0$ at the outer boundary.

To solve this problem in the PDE Modeler app, follow these steps:
1 Draw the following two squares.

```
pderect([-0.1 0.1 -0.1 0.1])
pderect([-0.25 0.25 -0.25 0.25])
```

2 Set both x-and y-axis limits to [-0.3 0.3]. To do this, select Options > Axes Limits and set the corresponding ranges. Then select Options > Axes Equal.
3 Model the frame by entering SQ2-SQ1 in the Set formula field.
4 Set the application mode to Electrostatics.
5 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary > Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary > Specify Boundary Conditions.

- For the inner boundaries, use the Dirichlet boundary condition with $h=1$ and $r=1000$.
- For the outer boundaries, use the Dirichlet boundary condition with $h=1$ and $r=0$.

6 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. Specify epsilon $=1$ and rho $=0$.
7 Initialize the mesh by selecting Mesh > Initialize Mesh.
8 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar.
9 Plot the equipotential lines using a contour plot. To do this, select Plot > Parameters and choose the contour plot in the resulting dialog box.

10 Improve the accuracy of the solution by refining the mesh close to the reentrant corners where the gradients are steep. To do this, select Solve > Parameters. Select Adaptive mode, use the Worst triangles selection method, and set the maximum number of triangles to 500. Select Mesh > Refine Mesh.
11 Solve the PDE using the refined mesh. To display equipotential lines at every 100th volt, select Plot > Parameters and enter 0:100:1000 in the Contour plot levels field.

Linear Elasticity Equations

In this section...

"Summary of the Equations of Linear Elasticity" on page 3-125
"3D Linear Elasticity Problem" on page 3-126
"Plane Stress" on page 3-128
"Plane Strain" on page 3-129

Summary of the Equations of Linear Elasticity

The stiffness matrix of linear elastic isotropic material contains two parameters:

- E, Young's modulus (elastic modulus)
- \quad, Poisson's ratio

Define the following quantities.

$$
\begin{aligned}
& \sigma=\text { stress } \\
& f=\text { body force } \\
& \varepsilon=\text { strain } \\
& u=\text { displacement }
\end{aligned}
$$

The equilibrium equation is

$$
-\nabla \cdot \sigma=f
$$

The linearized, small-displacement strain-displacement relationship is

$$
\varepsilon=\frac{1}{2}\left(\nabla u+\nabla u^{T}\right)
$$

The balance of angular momentum states that stress is symmetric:

$$
\sigma_{i j}=\sigma_{j i}
$$

The Voigt notation for the constitutive equation of the linear isotropic model is

$$
\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{23} \\
\sigma_{13} \\
\sigma_{12}
\end{array}\right]=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{cccccc}
1-\nu & \nu & \nu & 0 & 0 & 0 \\
\nu & 1-\nu & \nu & 0 & 0 & 0 \\
\nu & \nu & 1-\nu & 0 & 0 & 0 \\
0 & 0 & 0 & 1-2 \nu & 0 & 0 \\
0 & 0 & 0 & 0 & 1-2 \nu & 0 \\
0 & 0 & 0 & 0 & 0 & 1-2 \nu
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
\varepsilon_{23} \\
\varepsilon_{13} \\
\varepsilon_{12}
\end{array}\right]
$$

The expanded form uses all the entries in σ and ε takes symmetry into account.

$$
\left[\begin{array}{l}
\sigma_{11} \tag{3-1}\\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{21} \\
\sigma_{22} \\
\sigma_{23} \\
\sigma_{31} \\
\sigma_{32} \\
\sigma_{33}
\end{array}\right]=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccccccccc}
1-\nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & \nu \\
\bullet & 1-2 \nu & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & 1-2 \nu & 0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & 1-2 \nu & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & 1-\nu & 0 & 0 & 0 & \nu \\
\bullet & \bullet & \bullet & \bullet & \bullet & 1-2 \nu & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & 1-2 \nu & 0 & 0 \\
\bullet & 1-2 \nu & 0 \\
\bullet & 1-\nu
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{11} \\
\varepsilon_{12} \\
\varepsilon_{13} \\
\varepsilon_{21} \\
\varepsilon_{22} \\
\varepsilon_{23} \\
\varepsilon_{31} \\
\varepsilon_{32} \\
\varepsilon_{33}
\end{array}\right]
$$

In the preceding diagram, \cdot means the entry is symmetric.

3D Linear Elasticity Problem

The toolbox form for the equation is

$$
-\nabla \cdot(c \otimes \nabla u)=f
$$

But the equations in the summary do not have ∇u alone, it appears together with its transpose:

$$
\varepsilon=\frac{1}{2}\left(\nabla u+\nabla u^{T}\right)
$$

It is a straightforward exercise to convert this equation for strain ε to ∇u. In column vector form,

$$
\nabla u=\left[\begin{array}{l}
\partial u_{x} / \partial x \\
\partial u_{x} / \partial y \\
\partial u_{x} / \partial z \\
\partial u_{y} / \partial x \\
\partial u_{y} / \partial y \\
\partial u_{y} / \partial z \\
\partial u_{z} / \partial x \\
\partial u_{z} / \partial y \\
\partial u_{z} / \partial z
\end{array}\right]
$$

Therefore, you can write the strain-displacement equation as

$$
\varepsilon=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \nabla u \equiv A \nabla u
$$

where A stands for the displayed matrix. So rewriting "Equation 3-1", and recalling that • means an entry is symmetric, you can write the stiffness tensor as

$$
\begin{aligned}
& \sigma=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccccccccc}
1-\nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & \nu \\
\bullet & 1-2 \nu & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & 1-2 \nu & 0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & 1-2 \nu & 0 & 0 & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & 1-\nu & 0 & 0 & 0 & \nu \\
\bullet & \bullet & \bullet & \bullet & \bullet & 1-2 \nu & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \cdot & \bullet & 1-2 \nu & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \cdot & \bullet & \bullet & 1-2 \nu & 0 \\
\bullet & 1-\nu
\end{array}\right] A \nabla u \\
& =\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccccccccc}
1-\nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & \nu \\
0 & 1 / 2-\nu & 0 & 1 / 2-\nu & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 2-\nu & 0 & 0 & 0 & 1 / 2-\nu & 0 & 0 \\
0 & 1 / 2-\nu & 0 & 1 / 2-\nu & 0 & 0 & 0 & 0 & 0 \\
\nu & 0 & 0 & 0 & 1-\nu & 0 & 0 & 0 & \nu \\
0 & 0 & 0 & 0 & 0 & 1 / 2-\nu & 0 & 1 / 2-\nu & 0 \\
0 & 0 & 1 / 2-\nu & 0 & 0 & 0 & 1 / 2-\nu & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 2-\nu & 0 & 1 / 2-\nu & 0 \\
\nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & 1-\nu
\end{array}\right] \nabla u
\end{aligned}
$$

Make the definitions

$$
\begin{aligned}
& \mu=\frac{E}{2(1+\nu)} \\
& \lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)} \\
& \frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}=2 \mu+\lambda
\end{aligned}
$$

and the equation becomes

$$
\sigma=\left[\begin{array}{ccccccccc}
\mu+\lambda & 0 & 0 & 0 & \lambda & 0 & 0 & 0 & \lambda \\
0 & \mu & 0 & \mu & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mu & 0 & 0 & 0 & \mu & 0 & 0 \\
0 & \mu & 0 & \mu & 0 & 0 & 0 & 0 & 0 \\
\lambda & 0 & 0 & 0 & 2 \mu+\lambda & 0 & 0 & 0 & \lambda \\
0 & 0 & 0 & 0 & 0 & \mu & 0 & \mu & 0 \\
0 & 0 & \mu & 0 & 0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \mu & 0 & \mu & 0 \\
\lambda & 0 & 0 & 0 & \lambda & 0 & 0 & 0 & 2 \mu+\lambda
\end{array}\right] \nabla u \equiv c \nabla u
$$

If you are solving a 3-D linear elasticity problem by using PDEModel instead of StructuralModel, use the elasticityC3D ($E, n u$) function (included in your software) to obtain the c coefficient. This function uses the linearized, small-displacement assumption for an isotropic material. For examples that use this function, see StationaryResults.

Plane Stress

Plane stress is a condition that prevails in a flat plate in the $x-y$ plane, loaded only in its own plane and without z-direction restraint. For plane stress, $\sigma_{13}=\sigma_{23}=\sigma_{31}=\sigma_{32}=\sigma_{33}=0$. Assuming isotropic conditions, the Hooke's law for plane stress gives the following strain-stress relation:

$$
\left[\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
2 \varepsilon_{12}
\end{array}\right]=\frac{1}{E}\left[\begin{array}{ccc}
1 & -\nu & 0 \\
-\nu & 1 & 0 \\
0 & 0 & 2+2 \nu
\end{array}\right]\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12}
\end{array}\right]
$$

Inverting this equation, obtain the stress-strain relation:

$$
\left(\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12}
\end{array}\right)=\frac{E}{1-\nu^{2}}\left(\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right)\left(\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
2 \varepsilon_{12}
\end{array}\right)
$$

Convert the equation for strain ε to ∇u.

$$
\varepsilon=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \nabla u \equiv A \nabla u
$$

Now you can rewrite the stiffness matrix as

$$
\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{12} \\
\sigma_{21} \\
\sigma_{22}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{E}{1-\nu^{2}} & 0 & 0 & \frac{E \nu}{1-\nu^{2}} \\
0 & \frac{E}{2(1+\nu)} & \frac{E}{2(1+\nu)} & 0 \\
0 & \frac{E}{2(1+\nu)} & \frac{E}{2(1+\nu)} & 0 \\
\frac{E \nu}{1-\nu^{2}} & 0 & 0 & \frac{E}{1-\nu^{2}}
\end{array}\right] \nabla u=\left[\begin{array}{cccc}
\frac{2 \mu(\mu+\lambda)}{2 \mu+\lambda} & 0 & 0 & \frac{2 \lambda \mu}{2 \mu+\lambda} \\
0 & \mu \mu & 0 \\
0 & \mu \mu & 0 \\
\frac{2 \lambda \mu}{2 \mu+\lambda} & 0 & 0 & \frac{2 \mu(\mu+\lambda)}{2 \mu+\lambda}
\end{array}\right] \nabla u
$$

Plane Strain

Plane strain is a deformation state where there are no displacements in the z-direction, and the displacements in the x - and y-directions are functions of x and y but not z. The stress-strain relation is only slightly different from the plane stress case, and the same set of material parameters is used.

For plane strain, $\varepsilon_{13}=\varepsilon_{23}=\varepsilon_{31}=\varepsilon_{32}=\varepsilon_{33}=0$. Assuming isotropic conditions, the stress-strain relation can be written as follows:

$$
\left(\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12}
\end{array}\right)=\frac{E}{(1+\nu)(1-2 \nu)}\left(\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & \frac{1-2 \nu}{2}
\end{array}\right)\left(\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
2 \varepsilon_{12}
\end{array}\right)
$$

Convert the equation for strain ε to ∇u.

$$
\varepsilon=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \nabla u \equiv A \nabla u
$$

Now you can rewrite the stiffness matrix as

$$
\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{12} \\
\sigma_{21} \\
\sigma_{22}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)} & 0 & 0 & \frac{E \nu}{(1+\nu)(1-2 \nu)} \\
0 & \frac{E}{2(1+\nu)} & \frac{E}{2(1+\nu)} & 0 \\
0 & \frac{E}{2(1+\nu)} & \frac{E}{2(1+\nu)} & 0 \\
\frac{E \nu}{(1+\nu)(1-2 \nu)} & 0 & 0 & \frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}
\end{array}\right] \nabla u=\left[\begin{array}{cccc}
2 \mu+\lambda & 0 & 0 & \lambda \\
0 & \mu & \mu & 0 \\
0 & \mu \mu & 0 \\
\lambda & 0 & 0 & 2 \mu+\lambda
\end{array}\right] \nabla u
$$

Magnetic Field in Two-Pole Electric Motor

Find the static magnetic field induced by the stator windings in a two-pole electric motor. Assuming that the motor is long and the end effects are negligible, you can use a 2-D model. The geometry consists of three regions:

- Two ferromagnetic pieces: the stator and the rotor, made of transformer steel
- The air gap between the stator and the rotor
- The armature copper coil carrying the DC current

The magnetic permeability of air and of copper are both close to the magnetic permeability of a vacuum, $\mu=\mu_{0}$. The magnetic permeability of the stator and the rotor is

$$
\mu=\mu_{0}\left(\frac{\mu_{\max }}{1+c\|\nabla A\|^{2}}+\mu_{\min }\right)
$$

where $\mu_{\max }=5000, \mu_{\min }=200$, and $c=0.05$. The current density J is 0 everywhere except in the coil, where it is $10 \mathrm{~A} / \mathrm{m}^{2}$.

The geometry of the problem makes the magnetic vector potential A symmetric with respect to the y axis and antisymmetric with respect to the x-axis. Therefore, you can limit the domain to $x \geq 0, y \geq 0$, with the default boundary condition

$$
\mathbf{n} \cdot\left(\frac{1}{\mu} \nabla A\right)=0
$$

on the x-axis and the boundary condition $A=0$ on the y-axis. Because the field outside the motor is negligible, you can use the boundary condition $A=0$ on the exterior boundary.

First, create the geometry in the PDE Modeler app. The geometry of this electric motor is a union of five circles and two rectangles. To draw the geometry, enter the following commands in the MATLAB Command Window:

```
pdecirc(0,0,1,'C1')
pdecirc(0,0,0.8,'C2')
pdecirc(0,0,0.6,'C3')
pdecirc(0,0,0.5,'C4')
pdecirc(0,0,0.4,'C5')
pderect([-0.2 0.2 0.2 0.9],'R1')
pderect([-0.1 0.1 0.2 0.9],'R2')
pderect([0 1 0 1],'SQ1')
```

Reduce the geometry to the first quadrant by intersecting it with a square. To do this, enter (C1+C2+C3+C4+C5+R1+R2)*SQ1 in the Set formula field.

From the PDE Modeler app, export the geometry description matrix, set formula, and name-space matrix to the MATLAB workspace by selecting Export Geometry Description, Set Formula, Labels... from the Draw menu.

In the MATLAB Command Window, use the decsg function to decompose the exported geometry into minimal regions. This command creates an AnalyticGeometry object d1. Plot the geometry d1.

```
[dl,btl] = decsg(gd,sf,ns);
pdegplot(d1,'EdgeLabels','on','FaceLabels','on')
```


Remove unnecessary edges using the csgdel function. Specify the edges to delete as a vector of edge IDs. Plot the resulting geometry.
[d2,bt2] = csgdel(d1,bt1,[11 3 8 25 7 212263033493410 31]);
pdegplot(d2,'EdgeLabels','on','FaceLabels','on')

Create an electromagnetic model for magnetostatic analysis.

```
emagmodel = createpde('electromagnetic','magnetostatic');
```

Include the geometry in the model.
geometryFromEdges(emagmodel,d2);
Specify the vacuum permeability value in the SI system of units.
emagmodel.VacuumPermeability $=1.2566370614 \mathrm{E}-6$;
Specify the relative permeability of the air gap and copper coil, which correspond to the faces 3 and 4 of the geometry.
electromagneticProperties(emagmodel, 'RelativePermeability',1, ...
'Face',[3 4]);

Specify the relative permeability of the stator and the rotor, which correspond to the faces 1 and 2 of the geometry.

```
perm = @(region,state)5000./(1 + 0.05*(state.ux.^2 + ...
    state.uy.^2)) + 200;
```

```
electromagneticProperties(emagmodel,'RelativePermeability',perm, ...
    'Face',[1 2]);
```

Specify the current density in the coil.

```
electromagneticSource(emagmodel,'CurrentDensity',10,'Face',4);
```

Apply the zero magnetic potential condition to all boundaries, except the edges along the x-axis. The edges along the x-axis retain the default boundary condition.

```
electromagneticBC(emagmodel,'MagneticPotential',0,...
    'Edge',[16 9 10 11 12 13 14 15]);
```

Generate the mesh.
generateMesh(emagmodel);
Solve the model and plot the magnetic potential. Use the Contour parameter to display equipotential lines.

```
R = solve(emagmodel);
pdeplot(emagmodel,'XYData',R.MagneticPotential,'Contour','on')
title 'Magnetic Potential'
```


Add the magnetic field data to the plot. Use the FaceAlpha parameter to make the quiver plot for magnetic field more visible.

```
pdeplot(emagmodel,'XYData',R.MagneticPotential, ...
    'FlowData',[R.MagneticField.Hx, ... 
```


Magnetic Field in Two-Pole Electric Motor: PDE Modeler App

Find the static magnetic field induced by the stator windings in a two-pole electric motor. The example uses the PDE Modeler app. Assuming that the motor is long and end effects are negligible, you can use a 2-D model. The geometry consists of three regions:

- Two ferromagnetic pieces: the stator and the rotor (transformer steel)
- The air gap between the stator and the rotor
- The armature copper coil carrying the DC current

Magnetic permeability of the air and copper is close to the magnetic permeability of a vacuum, $\mu_{0}=$ $4 n^{*} 10^{-7} \mathrm{H} / \mathrm{m}$. In this example, use the magnetic permeability $\mu=\mu_{0}$ for both the air gap and copper coil. For the stator and the rotor, μ is

$$
\mu=\mu_{0}\left(\frac{\mu_{\max }}{1+c\|\nabla A\|^{2}}+\mu_{\min }\right)
$$

where $\mu_{\max }=5000, \mu_{\min }=200$, and $c=0.05$. The current density J is 0 everywhere except in the coil, where it is $10 \mathrm{~A} / \mathrm{m}^{2}$.

The geometry of the problem makes the magnetic vector potential A symmetric with respect to y and antisymmetric with respect to x. Therefore, you can limit the domain to $x \geq 0, y \geq 0$ with the Neumann boundary condition

$$
\mathbf{n} \cdot\left(\frac{1}{\mu} \nabla A\right)=0
$$

on the x-axis and the Dirichlet boundary condition $A=0$ on the y-axis. Because the field outside the motor is negligible, you can use the Dirichlet boundary condition $A=0$ on the exterior boundary.

To solve this problem in the PDE Modeler app, follow these steps:
1 Set the x-axis limits to [-1.5 1.5] and the y-axis limits to [-1 1]. To do this, select Options > Axes Limits and set the corresponding ranges.
2 Set the application mode to Magnetostatics.
3 Create the geometry. The geometry of this electric motor is complex. The model is a union of five circles and two rectangles. The reduction to the first quadrant is achieved by intersection with a square. To draw the geometry, enter the following commands in the MATLAB Command Window:

```
pdecirc(0,0,1,'C1')
pdecirc(0,0,0.8,'C2')
pdecirc(0,0,0.6,'C3')
pdecirc(0,0,0.5,'C4')
pdecirc(0,0,0.4,'C5')
pderect([-0.2 0.2 0.2 0.9],'R1')
pderect([-0.1 0.1 0.2 0.9],'R2')
pderect([0 1 0 1],'SQ1')
```


4 Reduce the model to the first quadrant. To do this, enter (C1+C2+C3+C4+C5+R1+R2)*SQ1 in the Set formula field.
5 Remove unnecessary subdomain borders. To do this, switch to the boundary mode by selecting Boundary > Boundary Mode. Using Shift+click, select borders, and then select Boundary > Remove Subdomain Border until the geometry consists of four subdomains: the rotor (subdomain 1), the stator (subdomain 2), the air gap (subdomain 3), and the coil (subdomain 4). The numbering of your subdomains can differ. If you do not see the numbers, select Boundary > Show Subdomain Labels.

6 Specify the boundary conditions. To do this, select the boundaries along the x-axis. Select Boundary > Specify Boundary Conditions. In the resulting dialog box, specify a Neumann boundary condition with $g=0$ and $q=0$.

All other boundaries have a Dirichlet boundary condition with $h=1$ and $r=0$, which is the default boundary condition in the PDE Modeler app.
7 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. Double-click each subdomain and specify the following coefficients:

- Coil: $\mu=4^{*} \mathrm{pi}^{*} 10^{\wedge}(-7) \mathrm{H} / \mathrm{m}, \mathrm{J}=10 \mathrm{~A} / \mathrm{m}^{2}$.
- Stator and rotor: $\mu=4^{*} \mathrm{pi}^{*} 10^{\wedge}(-7) *\left(5000 . /\left(1+0.05^{*}(u x . \wedge 2+u y . \wedge 2)\right)+200\right) \mathrm{H} / \mathrm{m}$, where ux.^2+uy.^2 equals to $|\nabla A|^{2}, \mathrm{~J}=0$ (no current).
- Air gap: $\mu=4^{*}$ pi* $10^{\wedge}(-7) \mathrm{H} / \mathrm{m}, \mathrm{J}=0$.

8 Initialize the mesh by selecting Mesh $>$ Initialize Mesh.
9 Choose the nonlinear solver. To do this, select Solve > Parameters and check Use nonlinear solver. Here, you also can adjust the tolerance parameter and choose to use the adaptive solver together with the nonlinear solver.
10 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.
11 Plot the magnetic flux density B using arrows and the equipotential lines of the magnetostatic potential A using a contour plot. To do this, select Plot > Parameters and choose the contour and arrows plots in the resulting dialog box. Using Options > Axes Limits, adjust the axes limits as needed. For example, use the Auto check box.

The plot shows that the magnetic flux is parallel to the equipotential lines of the magnetostatic potential.

| 4 PDE Modeler - [Untitled] | | | | | | | | | | | | | | | | | | 回 | x |
| :---: |
| File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help | | | | | | | | | | | | | | | | | | | |
| | + | C) | (| D | $\partial \Omega$ | PDE | \triangle | Δ | = | - | | Magn | tostatics | \checkmark | | 1.035 | | 1.015 | |
| Set formula: $\quad(\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+\mathrm{C} 4+\mathrm{C} 5+\mathrm{R} 1+\mathrm{R} 2){ }^{+} \mathrm{SQ}$ | | | | | | | | | | | | | | | | | | | |

Scattering Problem

This example shows how to solve a simple scattering problem, where you compute the waves reflected by a square object illuminated by incident waves that are coming from the left.

For this problem, assume an infinite horizontal membrane subjected to small vertical displacements U. The membrane is fixed at the object boundary. The medium is homogeneous, and the phase velocity (propagation speed) of a wave, α, is constant. The wave equation is

$$
\frac{\partial^{2} U}{\partial t^{2}}-\alpha^{2} \Delta U=0
$$

The solution U is the sum of the incident wave V and the reflected wave R :

$$
U=V+R
$$

When the illumination is harmonic in time, you can compute the field by solving a single steady problem. Assume that the incident wave is a plane wave traveling in the $-x$ direction:

$$
V(x, y, t)=e^{i(-k x-\omega t)}=e^{-i k x} \cdot e^{-i \omega t}
$$

The reflected wave can be decomposed into spatial and time components:

$$
R(x, y, t)=r(x, y) e^{-i \omega t}
$$

Now you can rewrite the wave equation as the Helmholtz equation for the spatial component of the reflected wave with the wave number $k=\omega / \alpha$:

$$
-\Delta r-k^{2} r=0
$$

The Dirichlet boundary condition for the boundary of the object is $U=0$, or in terms of the incident and reflected waves, $R=-V$. For the time-harmonic solution and the incident wave traveling in the $-x$ direction, you can write this boundary condition as follows:

$$
r(x, y)=-e^{-i k x}
$$

The reflected wave R travels outward from the object. The condition at the outer computational boundary must allow waves to pass without reflection. Such conditions are usually called nonreflecting. As $|\vec{x}|$ approaches infinity, R approximately satisfies the one-way wave equation

$$
\frac{\partial R}{\partial t}+\alpha \vec{\xi} \cdot \nabla R=0
$$

This equation considers only the waves moving in the positive ξ-direction. Here, ξ is the radial distance from the object. With the time-harmonic solution, this equation turns into the generalized Neumann boundary condition

$$
\vec{\xi} \cdot \nabla r-i k r=0
$$

To solve the scattering problem using the programmatic workflow, first create a PDE model with a single dependent variable.

```
numberOfPDE = 1;
model = createpde(numberOfPDE);
```

Specify the variables that define the problem:

- g: A geometry specification function. For more information, see the documentation section "Parametrized Function for 2-D Geometry Creation" on page 2-10 and the code for scatterg.m.
- k, c, a, f: The coefficients and inhomogeneous term.
g = @scatterg;
$\mathrm{k}=60$;
c = 1;
$\mathrm{a}=-\mathrm{k}^{\wedge} 2$;
f = 0;
Convert the geometry and append it to the model.
geometryFromEdges (model,g);
Plot the geometry and display the edge labels for use in the boundary condition definition.

```
figure;
```

pdegplot(model,'EdgeLabels', 'on');
axis equal
title 'Geometry with Edge Labels Displayed';
ylim([0,1])

Apply the boundary conditions.
bOuter = applyBoundaryCondition(model,'neumann','Edge', (5:8), 'g', 0, 'q', -60i);
innerBCFunc = @(loc,state) $-\exp \left(-1 i^{*} \mathrm{k}^{*}\right.$ loc.x); bInner = applyBoundaryCondition(model,'dirichlet','Edge',(1:4),'u',innerBCFunc);

Specify the coefficients.
specifyCoefficients(model,'m', 0,'d', 0, 'c', c, 'a', a,'f', f);
Generate a mesh.
generateMesh(model,'Hmax',0.02);
figure
pdemesh(model);
axis equal

Solve for the complex amplitude. The real part of vector u stores an approximation to a real value solution of the Helmholtz equation.

```
result = solvepde(model);
u = result.NodalSolution;
```

Plot the solution.

```
figure
pdeplot(model,'XYData',real(u),'Mesh','off');
colormap(jet)
xlabel 'x'
ylabel 'y'
title('Real Value Solution of Helmholtz Equation')
```


Using the solution to the Helmholtz equation, create an animation showing the corresponding solution to the time-dependent wave equation.

```
figure
m = 10;
maxu = max(abs(u));
for j = 1:m
    uu = real(exp(-j*2*pi/m*sqrt(-1))*u);
    pdeplot(model,'XYData',uu,'ColorBar','off','Mesh','off');
    colormap(jet)
    caxis([-maxu maxu]);
    axis tight
    ax = gca;
    ax.DataAspectRatio = [1 1 1];
    axis off
    M(j) = getframe;
end
```


To play the movie, use the movie (M) command.

Electrostatics and Magnetostatics

Maxwell's equations describe electrodynamics as follows:

$$
\begin{gathered}
\nabla \cdot \mathbf{D}=\rho \\
\nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}
\end{gathered}
$$

The electric flux density \mathbf{D} is related to the electric field $\mathbf{E}, \mathbf{D}=\varepsilon \mathbf{E}$, where ε is the electrical permittivity of the material.

The magnetic flux density \mathbf{B} is related to the magnetic field $\mathbf{H}, \mathbf{B}=\mu \mathbf{H}$, where μ is the magnetic permeability of the material.

Also, here \mathbf{J} is the electric current density, and ρ is the electric charge density.
For electrostatic problems, Maxwell's equations simplify to this form:

$$
\begin{gathered}
\nabla \cdot(\varepsilon \mathbf{E})=\rho \\
\nabla \times \mathbf{E}=0
\end{gathered}
$$

Since the electric field \mathbf{E} is the gradient of the electric potential $V, \mathbf{E}=-\nabla V$, the first equation yields the following PDE:

$$
-\nabla \cdot(\varepsilon \nabla V)=\rho
$$

For electrostatic problems, Dirichlet boundary conditions specify the electric potential V on the boundary.

For magnetostatic problems, Maxwell's equations simplify to this form:

$$
\begin{aligned}
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \times \mathbf{H}=\mathbf{J}
\end{aligned}
$$

Since $\nabla \cdot B=0$, there exists a magnetic vector potential \mathbf{A}, such that

$$
\begin{aligned}
& \mathbf{B}=\nabla \times \mathbf{A} \\
& \nabla \times\left(\frac{1}{\mu} \nabla \times \mathbf{A}\right)=\mathbf{J}
\end{aligned}
$$

Using the identity

$$
\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}
$$

and the Coulomb gauge $\nabla \cdot \mathbf{A}=0$, simplify the equation for \mathbf{A} in terms of \mathbf{J} to the following PDE:

$$
-\nabla^{2} \mathbf{A}=-\nabla \cdot \nabla \mathbf{A}=\mu \mathbf{J}
$$

For magnetostatic problems, Dirichlet boundary conditions specify the magnetic potential on the boundary.

Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

This example shows the skin effect when a wire with a circular cross section carries AC current. In a solid conductor, such as the wire, AC current travels near the surface of a wire and avoids the area close to the center of the wire. This effect is called the skin effect. The example uses the PDE Modeler app.

The Helmholtz equation

$$
-\nabla \cdot\left(\frac{1}{\mu} \nabla E_{C}\right)+\left(j \omega \sigma-\omega^{2} \varepsilon\right) E_{C}=0
$$

describes the propagation of plane electromagnetic waves in imperfect dielectrics and good conductors ($\sigma \gg \omega$). The coefficient of dielectricity is $\varepsilon=8.8^{*} 10^{-12} \mathrm{~F} / \mathrm{m}$. The conductivity of copper is $\sigma=57 * 10^{6} \mathrm{~S} / \mathrm{m}$. The magnetic permeability of copper is close to the magnetic permeability of a vacuum, $\mu=4 \pi^{*} 10^{-7} \mathrm{H} / \mathrm{m}$. The $\omega^{2} \varepsilon$-term is negligible at the line frequency (50 Hz).

Due to induction, the current density in the interior of the conductor is smaller than at the outer surface, where it is set to $J_{S}=1$. The Dirichlet condition for the electric field is $E_{c}=1 / \sigma$. In this case, the analytical solution is

$$
J=J_{S} \frac{J_{0}(k r)}{J_{0}(k R)}
$$

Here,

$$
k=\sqrt{j \omega \mu \sigma},
$$

R is the radius of the wire, r is the distance from the center line, and $J_{0}(x)$ is the first Bessel function of zeroth order.

To solve this problem in the PDE Modeler app, follow these steps:
1 Draw a circle with a radius of 0.1 . The circle represents a cross section of the conductor.
pdecirc(0,0.05,0.1)
2 Set the x-axis limit to [-0.2 0.2] and the y-axis limit to [-0.1 0.2]. To do this, select
Options > Axes Limits and set the corresponding ranges. Then select Options > Axes Equal.
3 Set the application mode to AC Power Electromagnetics.
4 Specify the Dirichlet boundary condition $E=J_{S} / \sigma=1 / \sigma$ for the boundary of the circle. To do this:
a Switch to the boundary mode by selecting Boundary > Boundary Mode.
b Select all boundaries by using Edit > Select All.
c Select Boundary > Specify Boundary Conditions.
d Specify $h=1$ and $r=1 / 57 E 6$.
5 Specify the PDE coefficients. To do this, switch to the PDE mode by selecting PDE > PDE Mode. Then select PDE > PDE Specification or click the PDE button on the toolbar. Specify the following values:

- Angular frequency omega $=2 *$ pi*50
- Magnetic permeability mu $=4 *$ pi*1E-7
- Conductivity sigma = 57E6
- Coefficient of dielectricity epsilon $=8.8 \mathrm{E}-12$

6 Initialize the mesh by selecting Mesh > Initialize Mesh.
7 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar.
The solution of the AC power electromagnetics equation is complex. When plotting the solution, you get a warning message.

8 Plot the current density as a 3-D plot. To do this:
a Select Plot > Parameters.
b Select the Color and Height(3-D plot) options.
c Select current density from the Property drop-down menu for both the Color and Height(3-D plot) options.
d Select Show Mesh to observe the mesh.
Due to the skin effect, the current density at the surface of the conductor is much higher than in the conductor's interior.

Color: i Height: i

9 Improve the accuracy of the solution close to the surface by using adaptive mesh refinement. To do this:
a Select Solve > Parameters.
b In the resulting dialog box, select Adaptive mode.
c Set the maximum numbers of triangles to Inf.
d Set the maximum numbers of refinements to 1.
e Select the Worst triangles selection method.
10 Recompute the solution five times. Each time, the adaptive solver refines the area with the largest errors. The number of triangles is printed at the command line.
11 Plot the current density as a 3-D plot.

12 These plots show the real part of the solution, but the solution vector is the full complex solution. Plot the imaginary part of the solution. To do this:
a Select Plot $>$ Parameters.
b Select the Color and Height(3-D plot) options.
c Select user entry from the Property drop-down menu for both Color and Height(3-D plot) options.
d Type imag (u) in the corresponding User entry fields.
e Select Show Mesh to observe the mesh.
f
Color: imag(u) Height: imag(u)

13 Observe that the skin effect depends on the frequency of the alternating current. When you increase or decrease the frequency, the skin "depth" increases or decreases, respectively. At high frequencies, only a thin layer on the surface of the wire conducts the current. At very low frequencies (approaching DC conditions), almost the entire cross section area of the wire conducts the current.

Find the solution for the angular frequencies omega $=2 *$ pi*1000, omega $=2 *$ pi*50, and omega $=1 \mathrm{E}-6$. Plot the real parts of the solutions in 2-D.

Color: \mathbf{i}

Current Density Between Two Metallic Conductors: PDE Modeler App

Two circular metallic conductors are placed on a brine-soaked blotting paper which serves as a plane, thin conductor. The physical model for this problem consists of the Laplace equation
$-\nabla \cdot(\sigma \nabla V)=0$
for the electric potential V and these boundary conditions:

- $V=1$ on the left circular conductor
- $V=-1$ on the right circular conductor
- the natural Neumann boundary condition on the outer boundaries

$$
\frac{\partial V}{\partial n}=0
$$

The conductivity is $\sigma=1$.
To solve this equation in the PDE Modeler app, follow these steps:
1 Model the geometry: draw the rectangle with corners at (-1.2,-0.6), (1.2,-0.6), (1.2,0.6), and $(-1.2,0.6)$, and two circles with a radius of 0.3 and centers at $(-0.6,0)$ and $(0.6,0)$. The rectangle represents the blotting paper, and the circles represent the conductors.

```
pderect([-1.2 1.2 -0.6 0.6])
pdecirc(-0.6,0,0.3)
pdecirc(0.6,0,0.3)
```

2 Model the geometry by entering R1-(C1+C2) in the Set formula field.
3 Set the application mode to Conductive Media DC.
4 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary > Specify Boundary Conditions.

- For the rectangle, use the Neumann boundary condition with $\mathrm{g}=0$ and $\mathrm{q}=0$.
- For the left circle, use the Dirichlet boundary condition with $h=1$ and $r=1$.
- For the right circle, use the Dirichlet boundary condition with $h=1$ and $r=-1$.

5 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. Specify sigma $=1$ and $q=0$.
6 Initialize the mesh by selecting Mesh > Initialize Mesh.
7 Refine the mesh by selecting Mesh > Refine Mesh.
8 Improve the triangle quality by selecting Mesh > Jiggle Mesh.
9 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar. The resulting potential is zero along the y-axis, which, for this problem, is a vertical line of antisymmetry.

10 Plot the current density J. To do this:
a Select Plot $>$ Parameters.
b In the resulting dialog box, select the Color, Contour, and Arrows options.
c Set the Arrows value to current density.
The current flows, as expected, from the conductor with a positive potential to the conductor with a negative potential. The conductivity σ is isotropic, and the equipotential lines are orthogonal to the current lines.

Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App

Solve the following heat transfer problem with different material parameters. This example uses the PDE Modeler app. For the command-line solutions see "Heat Transfer Between Two Squares Made of Different Materials" on page 5-211.

The 2-D geometry for this problem is a square with an embedded diamond (a square with 45 degrees rotation). PDE governing this problem is a parabolic heat equation:

$$
\rho C \frac{\partial T}{\partial t}-\nabla \cdot(k \nabla T)=Q+h\left(T_{\mathrm{ext}}-T\right)
$$

where ρ is the density, C is the heat capacity, k is the coefficient of heat conduction, Q is the heat source, h is convective heat transfer coefficient, and $T_{\text {ext }}$ is the external temperature.

To solve this problem in the PDE Modeler app, follow these steps:
1 Model the geometry: draw the square region with corners in $(0,0),(3,0),(3,3)$, and $(0,3)$ and the diamond-shaped region with corners in (1.5,0.5), (2.5,1.5), (1.5,2.5), and (0.5,1.5).

```
pderect([0 3 0 3])
pdepoly([1.5 2.5 1.5 0.5],[0.5 1.5 2.5 1.5])
```

2 Set the x-axis limit to [-1.54.5] and y-axis limit to [-0.5 3.5]. To do this, select Options > Axes Limits and set the corresponding ranges.
3 Set the application mode to Heat Transfer.
4 The temperature is kept at 0 on all the outer boundaries, so you do not have to change the default Dirichlet boundary condition $\mathrm{T}=0$.
5 Specify the coefficients. To do this, select PDE > PDE Mode. Then click each region and select PDE > PDE Specification or click the PDE button on the toolbar. Since you are solving the parabolic heat equation, select the Parabolic type of PDE for both regions. For the square region, specify the following coefficients:

- Density, pho $=2$
- Heat capacity, C = 0.1
- Coefficient of heat conduction, $\mathrm{k}=10$
- Heat source, Q = 0
- Convective heat transfer coefficient, $\mathrm{h}=0$
- External temperature, Text $=0$

For the diamond-shaped region, specify the following coefficients:

- Density, pho = 1
- Heat capacity, C = 0.1
- Coefficient of heat conduction, $\mathrm{k}=2$
- Heat source, $\mathrm{Q}=4$
- Convective heat transfer coefficient, $\mathrm{h}=0$
- External temperature, Text $=0$

6 Initialize the mesh by selecting Mesh > Initialize Mesh. For a more accurate solution, refine the mesh by selecting Mesh > Refine Mesh.
7 Set the initial value and the solution time. To do this, select Solve $>$ Parameters.
The dynamics for this problem is very fast - the temperature reaches steady state in about 0.1 time units. To capture the interesting part of the dynamics, set time to logspace ($-2,-1,10$). This gives 10 logarithmically spaced numbers between 0.01 and 0.1 . Set the initial value of the temperature $u\left(t_{0}\right)$ to 0 .
8 Solve the equation by selecting Solve $>$ Solve PDE or clicking the $=$ button on the toolbar.
9 Plot the solution. By default, the app plots the temperature distribution at the last time. The best way to visualize the dynamic behavior of the temperature is to animate the solution. To do this, select Plot > Parameters and select the Animation and Height (3-D plot) options to animate a 3-D plot. Also, you can select the Plot in x-y grid option to use a rectangular grid instead of the default triangular grid. Using a rectangular grid instead of a triangular grid speeds up the animation process significantly.

You can also plot isothermal lines using a contour plot and the heat flux vector field using arrows.
a Select Plot > Parameters.
b In the resulting dialog box, deselect the Animation, and Height (3-D plot), and Plot in x-y grid options.
c Change the colormap to hot by using the corresponding drop-down menu in the same dialog box.
d To obtain the first plot, select the Color and Contour options.
e For the second plot, select the Color and Arrows and set their values to temperature and heat flux, respectively.

Isothermal Lines

Temperature and Heat Flux

Temperature Distribution in Heat Sink

This example shows how to create a simple 3-D heat sink geometry and analyze heat transfer on the heat sink. The process has three steps.

1 "Create 2-D Geometry in the PDE Modeler App" on page 3-161.
2 "Extrude 2-D Geometry into 3-D Geometry of Heat Sink" on page 3-162.
3 "Perform Thermal Analysis" on page 3-165.

Create 2-D Geometry in the PDE Modeler App

Create a geometry in the PDE Modeler app. First, open the PDE Modeler app with a geometry consisting of a rectangle and 12 circles.

```
pderect([0 0.01 0 0.008])
```

for i = 0.002:0.002:0.008
for $j=0.002: 0.002: 0.006$
pdecirc(i,j,0.0005)
end
end

Adjust the axes limits by selecting Options > Axes Limits. Select Auto to use automatic scaling for both axes.

Export the geometry description matrix, set formula, and name-space matrix into the MATLAB workspace by selecting Draw > Export Geometry Description, Set Formula, Labels. This data lets you reconstruct the geometry in the workspace.

Extrude 2-D Geometry into 3-D Geometry of Heat Sink

In the MATLAB Command Window, use the decsg function to decompose the exported geometry into minimal regions. Plot the result.

```
g = decsg(gd,sf,ns);
```

pdegplot(g,'FaceLabels','on')

Create a thermal model for transient analysis.

```
model = createpde('thermal','transient');
```

Create a 2-D geometry from decomposed geometry matrix and assign the geometry to the thermal model.
$\mathrm{g}=$ geometryFromEdges(model, g$)$;
Extrude the 2-D geometry along the z-axis by 0.0005 units.
g = extrude(g,0.0005);
Plot the extruded geometry so that you can see the face labels on the top.
figure
pdegplot(g,'FaceLabels','on')
view([0 90])

Extrude the circular faces (faces with IDs from 15 to 26) along the z-axis by 0.005 more units. These faces form the fins of the heat sink.

```
g = extrude(g,[15:26],0.005);
```

Assign the modified geometry to the thermal model and plot the geometry.

```
model.Geometry = g;
```

figure
pdegplot(g)

Perform Thermal Analysis

Assuming that the heat sink is made of copper, specify the thermal conductivity, mass density, and specific heat.

```
thermalProperties(model,'ThermalConductivity',400, ...
    'MassDensity',8960, ...
    'SpecificHeat',386);
```

Specify the Stefan-Boltzmann constant.

```
model.StefanBoltzmannConstant = 5.670367e-8;
```

Apply temperature boundary condition on the bottom surface of the heat sink, which consists of 13 faces.

```
thermalBC(model,'Face',1:13,'Temperature',1000);
```

Specify the convection and radiation parameters on all other surfaces of the heat sink.

```
thermalBC(model,'Face',14:g.NumFaces, ...
    'ConvectionCoefficient',5, ...
    'AmbientTemperature',300, ...
    'Emissivity',0.8);
```

Set the initial temperature of all the surfaces to the ambient temperature.
thermalIC(model, 300);
Generate a mesh.
generateMesh(model);

Solve the transient thermal problem for times between 0 and 0.0075 seconds with a time step of 0.0025 seconds.

```
results = solve(model,0:0.0025:0.0075);
```

Plot the temperature distribution for each time step.

```
for i = 1:length(results.SolutionTimes)
    figure
    pdeplot3D(model,'ColorMapData',results.Temperature(:,i))
    title({['Time = ' num2str(results.SolutionTimes(i)) 's']})
end
```


Nonlinear Heat Transfer in Thin Plate

This example shows how to perform a heat transfer analysis of a thin plate.
The plate is square and the temperature is fixed along the bottom edge. No heat is transferred from the other three edges (i.e. they are insulated). Heat is transferred from both the top and bottom faces of the plate by convection and radiation. Because radiation is included, the problem is nonlinear. One of the purposes of this example is to show how to handle nonlinearities in PDE problems.

Both a steady state and a transient analysis are performed. In a steady state analysis we are interested in the final temperature at different points in the plate after it has reached an equilibrium state. In a transient analysis we are interested in the temperature in the plate as a function of time. One question that can be answered by this transient analysis is how long does it take for the plate to reach an equilibrium temperature.

Heat Transfer Equations for the Plate

The plate has planar dimensions one meter by one meter and is 1 cm thick. Because the plate is relatively thin compared with the planar dimensions, the temperature can be assumed constant in the thickness direction; the resulting problem is 2 D .

Convection and radiation heat transfer are assumed to take place between the two faces of the plate and a specified ambient temperature.

The amount of heat transferred from each plate face per unit area due to convection is defined as

$$
Q_{C}=h_{C}\left(T-T_{a}\right)
$$

where T_{a} is the ambient temperature, T is the temperature at a particular x and y location on the plate surface, and h_{C} is a specified convection coefficient.

The amount of heat transferred from each plate face per unit area due to radiation is defined as

$$
Q_{r}=\epsilon \sigma\left(T^{4}-T_{a}^{4}\right)
$$

where ϵ is the emissivity of the face and σ is the Stefan-Boltzmann constant. Because the heat transferred due to radiation is proportional to the fourth power of the surface temperature, the problem is nonlinear.

The PDE describing the temperature in this thin plate is

$$
\rho C_{p} t_{z} \frac{\partial T}{\partial t}-k t_{z} \nabla^{2} T+2 Q_{c}+2 Q_{r}=0
$$

where ρ is the material density, C_{p} is the specific heat, t_{z} is the plate thickness, and the factors of two account for the heat transfer from both plate faces.

It is convenient to rewrite this equation in the form expected by PDE Toolbox

$$
\rho C_{p} t_{z} \frac{\partial T}{\partial t}-k t_{z} \nabla^{2} T+2 h_{c} T+2 \epsilon \sigma T^{4}=2 h_{C} T_{a}+2 \epsilon \sigma T_{a}^{4}
$$

Problem Setup

The plate is composed of copper which has the following properties:

```
k = 400; % thermal conductivity of copper, W/(m-K)
rho = 8960; % density of copper, kg/m^3
specificHeat = 386; % specific heat of copper, J/(kg-K)
thick = .01; % plate thickness in meters
stefanBoltz = 5.670373e-8; % Stefan-Boltzmann constant, W/(m^2-K^4)
hCoeff = 1; % Convection coefficient, W/(m^2-K)
% The ambient temperature is assumed to be 300 degrees-Kelvin.
ta = 300;
emiss = .5; % emissivity of the plate surface
```

Create the PDE model with a single dependent variable.

```
numberOfPDE = 1;
model = createpde(numberOfPDE);
```

For a square, the geometry and mesh are easily defined as shown below.

```
width = 1;
```

height = 1;

Define the square by giving the 4 x-locations followed by the 4 y-locations of the corners.

```
gdm = [3 4 0 width width 0 0 0 height height]';
```

g = decsg(gdm, 'S1', ('S1')');

Convert the DECSG geometry into a geometry object on doing so it is appended to the PDEModel
geometryFromEdges(model,g);
Plot the geometry and display the edge labels for use in the boundary condition definition.

```
figure;
pdegplot(model,'EdgeLabels','on');
axis([-.1 1.1 -.1 1.1]);
title 'Geometry With Edge Labels Displayed';
```

Geometry With Edge Labels Displayed

Specify the coefficients. The expressions for the coefficients required by PDE Toolbox can easily be identified by comparing the equation above with the scalar parabolic equation in the PDE Toolbox documentation.
c = thick*k;
Because of the radiation boundary condition, the "a" coefficient is a function of the temperature, u. It is defined as a MATLAB expression so it can be evaluated for different values of u during the analysis.

```
a = @(~,state) 2*hCoeff + 2*emiss*stefanBoltz*state.u.^3;
f = 2*hCoeff*ta + 2*emiss*stefanBoltz*ta^4;
d = thick*rho*specificHeat;
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
```

The bottom edge of the plate is set to 1000 degrees-Kelvin.
Apply the boundary conditions. Three of the plate edges are insulated. Because a Neumann boundary condition equal zero is the default in the finite element formulation, the boundary conditions on these edges do not need to be set explicitly. A Dirichlet condition is set on all nodes on the bottom edge, edge 1,
applyBoundaryCondition(model,'dirichlet','Edge',1,'u',1000);
Specify the initial guess.

```
setInitialConditions(model,0);
```

Create the triangular mesh on the square with approximately ten elements in each direction.

```
hmax = .1; % element size
msh = generateMesh(model,'Hmax',hmax);
figure;
pdeplot(model);
axis equal
title 'Plate With Triangular Element Mesh'
xlabel 'X-coordinate, meters'
ylabel 'Y-coordinate, meters'
```


Steady State Solution

Because the a and f coefficients are functions of temperature (due to the radiation boundary conditions), solvepde automatically picks the nonlinear solver to obtain the solution.

R = solvepde(model);
u = R.NodalSolution;
figure;
pdeplot(model,'XYData',u,'Contour','on','ColorMap','jet');
title 'Temperature In The Plate, Steady State Solution'
xlabel 'X-coordinate, meters'
ylabel 'Y-coordinate, meters'
axis equal

p = msh.Nodes;
plotAlongY(p,u,0);
title 'Temperature As a Function of the Y-Coordinate'
xlabel 'Y-coordinate, meters'
ylabel 'Temperature, degrees-Kelvin'

Transient Solution

Include the d coefficient.

```
specifyCoefficients(model,'m',0,'d',d,'c',c,'a',a,'f',f);
endTime = 5000;
tlist = 0:50:endTime;
numNodes = size(p,2);
```

Set the initial temperature of all nodes to ambient, 300 K .
u0(1:numNodes) = 300;
Set the initial temperature on the bottom edge E1 to the value of the constant BC, 1000 K .

```
setInitialConditions(model,1000,'edge',1);
```

Set the following solver options.

```
model.SolverOptions.RelativeTolerance = 1.0e-3;
model.SolverOptions.AbsoluteTolerance = 1.0e-4;
```

Solve the problem by using solvepde. The solver automatically picks the parabolic solver to obtain the solution.
$R=$ solvepde(model,tlist);
u = R.NodalSolution;
figure;
plot(tlist,u(3, :));
grid on
title 'Temperature Along the Top Edge of the Plate as a Function of Time' xlabel 'Time, seconds'
ylabel 'Temperature, degrees-Kelvin'

figure;
pdeplot(model,'XYData',u(:,end),'Contour','on','ColorMap','jet');
title(sprintf('Temperature In The Plate, Transient Solution(\%d seconds) \n', ...
tlist(1,end)));
xlabel 'X-coordinate, meters'
ylabel 'Y-coordinate, meters'
axis equal;

Temperature In The Plate, Transient Solution(5000 seconds)

fprintf('\nTemperature at the top edge($t=\% 5.1 f$ secs) $=\% 5.1 f$ degrees $-K \backslash n^{\prime}, \ldots$ tlist(1,end), u(4,end));

Temperature at the top edge(t=5000.0 secs)=441.8 degrees-K

Summary

The plots of temperature in the plate from the steady state and transient solution at the ending time are very close. That is, after around 5000 seconds, the transient solution has reached the steady state values. The temperatures from the two solutions at the top edge of the plate agree to within one percent.

Poisson's Equation on Unit Disk: PDE Modeler App

This example shows how to solve the Poisson's equation on a unit disk and evaluate the numeric solution error.

This example uses the PDE Modeler app. For a programmatic workflow, see "Poisson's Equation on Unit Disk" on page 3-184. Because the app and the programmatic workflow use different meshers, they yield slightly different results.

The problem formulation is $-\Delta u=1$ in $\Omega, u=0$ on $\partial \Omega$, where Ω is the unit disk. The exact solution is

$$
u(x, y)=\frac{1-x^{2}-y^{2}}{4}
$$

To solve this problem in the PDE Modeler app, follow these steps:
1 Open the PDE Modeler app by using the pdeModeler command.
2 Display grid lines by selecting Options $>$ Grid.
3 Align new shapes to the grid lines by selecting Options > Snap.
4
Draw a circle with the radius 1 and the center at $(0,0)$. To do this, first click the
 Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape you draw so that it is a circle rather than an ellipse. If the circle is not a perfect unit circle, doubleclick it. In the resulting dialog box, specify the exact center location and radius of the circle.
5 Check that the application mode is set to Generic Scalar.
6

$\partial \Omega$

Specify the boundary conditions. To do this, switch to boundary mode by clicking the button or selecting Boundary > Boundary Mode. Select all boundaries by selecting Edit > Select All. Then select Boundary > Specify Boundary Conditions and specify the Dirichlet boundary condition $u=0$. This boundary condition is the default ($h=1, r=0$), so you do not need to change it.
7 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. Specify c = 1 , a = 0, and $f=1$.
8 Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the maximum edge size to 0.1 .
9
Initialize the mesh by selecting Mesh $>$ Initialize Mesh or clicking the Δ button.

10 Solve the PDE by selecting Solve $>$ Solve PDE or clicking the $=$ button on the toolbar. The toolbox assembles the PDE problem, solves it, and plots the solution.

11 Compare the numerical solution to the exact solution:
a Select Plot > Parameters.
b In the resulting dialog box, select user entry from the Color drop-down menu.
c Plot the absolute error in the solution by typing the MATLAB expression $u-(1-x . \wedge 2-$ $y . \wedge 2) / 4$ in the User entry field.

13 Compare the numerical solution to the exact solution for the refined mesh. Plot the absolute error.

14 Export the mesh data and the solution to the MATLAB workspace by selecting Mesh > Export Mesh and Solve > Export Solution, respectively.

Poisson's Equation on Unit Disk

This example shows how to numerically solve a Poisson's equation, compare the numerical solution with the exact solution, and refine the mesh until the solutions are close.

The Poisson equation on a unit disk with zero Dirichlet boundary condition can be written as $-\Delta u=1$ in $\Omega, u=0$ on $\delta \Omega$, where Ω is the unit disk. The exact solution is

$$
u(x, y)=\frac{1-x^{2}-y^{2}}{4}
$$

For most PDEs, the exact solution is not known. However, the Poisson's equation on a unit disk has a known, exact solution that you can use to see how the error decreases as you refine the mesh.

Problem Definition

Create the PDE model and include the geometry.

```
model = createpde();
geometryFromEdges(model,@circleg);
```

Plot the geometry and display the edge labels for use in the boundary condition definition.
figure

```
pdegplot(model,'EdgeLabels','on');
```

axis equal

Specify zero Dirichlet boundary conditions on all edges.
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges, 'u', 0);
Specify the coefficients.

```
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);
```


Solution and Error with a Coarse Mesh

Create a mesh with target maximum element size 0.1.
hmax = 0.1;
generateMesh(model, 'Hmax', hmax) ;
figure
pdemesh(model);
axis equal

Solve the PDE and plot the solution.

```
results = solvepde(model);
u = results.NodalSolution;
pdeplot(model,'XYData',u)
title('Numerical Solution');
xlabel('x')
ylabel('y')
```


Compare this result with the exact analytical solution and plot the error.

```
p = model.Mesh.Nodes;
exact = (1 - p(1,:).^2 - p(2,:).^2)/4;
pdeplot(model,'XYData',u - exact')
title('Error');
xlabel('x')
ylabel('y')
```


Solutions and Errors with Refined Meshes

Solve the equation while refining the mesh in each iteration and comparing the result with the exact solution. Each refinement halves the Hmax value. Refine the mesh until the infinity norm of the error vector is less than $5 \cdot 10^{-7}$.

```
hmax = 0.1;
error = [];
err = 1;
while err > 5e-7 % run until error <= 5e-7
    generateMesh(model,'Hmax',hmax); % refine mesh
    results = solvepde(model);
    u = results.NodalSolution;
    p = model.Mesh.Nodes;
    exact = (1 - p(1,:).^2 - p(2,:).^2)/4;
    err = norm(u - exact',inf); % compare with exact solution
    error = [error err]; % keep history of err
    hmax = hmax/2;
end
```

Plot the infinity norm of the error vector for each iteration. The value of the error decreases in each iteration.

```
plot(error,'rx','MarkerSize',12);
ax = gca;
ax.XTick = 1:numel(error);
title('Error History');
```

xlabel('Iteration');
ylabel('Norm of Error');

Plot the final mesh and its corresponding solution.
figure
pdemesh(model);
axis equal

figure
pdeplot(model,'XYData',u)
title('Numerical Solution');
xlabel('x')
ylabel('y')

Compare the result with the exact analytical solution and plot the error.

```
p = model.Mesh.Nodes;
exact = (1 - p(1,:).^2 - p(2,:).^2)/4;
pdeplot(model,'XYData',u - exact')
title('Error');
xlabel('x')
ylabel('y')
```


Scattering Problem: PDE Modeler App

This example shows how to solve a simple scattering problem, where you compute the waves reflected by a square object illuminated by incident waves that are coming from the left. This example uses the PDE Modeler app. For the programmatic workflow, see "Scattering Problem" on page 3-140.

For this problem, assume an infinite horizontal membrane subjected to small vertical displacements U. The membrane is fixed at the object boundary. The medium is homogeneous, and the phase velocity (propagation speed) of a wave, α, is constant. The wave equation is

$$
\frac{\partial^{2} U}{\partial t^{2}}-\alpha^{2} \Delta U=0
$$

The solution U is the sum of the incident wave V and the reflected wave R :

$$
U=V+R
$$

When the illumination is harmonic in time, you can compute the field by solving a single steady problem. Assume that the incident wave is a plane wave traveling in the $-x$ direction:

$$
V(x, y, t)=e^{i(-k x-\omega t)}=e^{-i k x} e^{-i \omega t}
$$

The reflected wave can be decomposed into spatial and time components:

$$
R(x, y, t)=r(x, y) e^{-i \omega t}
$$

Now you can rewrite the wave equation as the Helmholtz equation for the spatial component of the reflected wave with the wave number $k=\omega / \alpha$:
$-\Delta r-k^{2} r=0$
The Dirichlet boundary condition for the boundary of the object is $U=0$, or in terms of the incident and reflected waves, $R=-V$. For the time-harmonic solution and the incident wave traveling in the $-x$ direction, you can write this boundary condition as follows:

$$
r(x, y)=-e^{-i k x}
$$

The reflected wave R travels outward from the object. The condition at the outer computational boundary must allow waves to pass without reflection. Such conditions are usually called nonreflecting. As $|\vec{x}|$ approaches infinity, R approximately satisfies the one-way wave equation

$$
\frac{\partial R}{\partial t}+\alpha \vec{\xi} \cdot \nabla R=0
$$

This equation considers only the waves moving in the positive ξ-direction. Here, ξ is the radial distance from the object. With the time-harmonic solution, this equation turns into the generalized Neumann boundary condition

$$
\vec{\xi} \cdot \nabla r=i k r
$$

To solve the scattering problem in the PDE Modeler app, follow these steps:
1 Open the PDE Modeler app by using the pdeModeler command.

2 Set the x-axis limit to [0.1 1.5] and the y-axis limit to [0 1]. To do this, select Options > Axes Limits and set the corresponding ranges.
3 Display grid lines. To do this:
a Select Options > Grid Spacing and clear the Auto checkboxes.
b Enter \mathbf{X}-axis linear spacing as 0.1:0.05:1.5 and \mathbf{Y}-axis linear spacing as 0:0.05:1.
c Select Options > Grid.
4 Align new shapes to the grid lines by selecting Options > Snap.
5 Draw a square with sides of length 0.1 and a center in [0.8 0.5]. To do this, first click the
button. Then right-click the origin and drag to draw a square. Right-clicking constrains the shape you draw so that it is a square rather than a rectangle. If the square is not a perfect square, double-click it. In the resulting dialog box, specify the exact location of the bottom left corner and the side length.
6 Rotate the square by 45 degrees. To do this, select Draw > Rotate... and enter 45 in the resulting dialog box. The rotated square represents the illuminated object.
7
Draw a circle with a radius of 0.45 and a center in [0.8 0.5]. To do this, first click the button. Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape you draw so that it is a circle rather than an ellipse. If the circle is not a perfect unit circle, double-click it. In the resulting dialog box, specify the exact center location and radius of the circle.
8 Model the geometry by entering C1-SQ1 in the Set formula field.
9 Check that the application mode is set to Generic Scalar.
10 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary > Specify Boundary Conditions.

- For the perimeter of the circle, the boundary condition is the Neumann boundary condition with $q=-i k$, where the wave number $k=60$ corresponds to a wavelength of about 0.1 units. Enter g $=0$ and $q=-60 * i$.
- For the perimeter of the square, the boundary condition is the Dirichlet boundary condition:
$r=-v(x, y)=-e^{i k \vec{a} \cdot \vec{x}}$
In this problem, because the reflected wave travels in the $-x$ direction, the boundary condition is $r=-e^{-i k x}$. Enter $\mathrm{h}=1$ and $\mathrm{r}=-\exp \left(-\mathrm{i}^{*} 60 * x\right)$.
11 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. The Helmholtz equation is a wave equation, but in Partial Differential Equation Toolbox you can treat it as an elliptic equation with $a=-k^{2}$. Specify $c=1$, $a=-3600$, and f $=0$.
12 Initialize the mesh by selecting Mesh > Initialize Mesh.
For sufficient accuracy, you need about 10 finite elements per wavelength. The outer boundary must be located a few object diameters away from the object itself. Refine the mesh by selecting Mesh > Refine Mesh. Refine the mesh two more times to achieve the required resolution.
13 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar.
The solution is complex. When plotting the solution, you get a warning message.

14 Plot the reflected waves. Change the colormap to jet by selecting Plot > Parameters and then selecting jet from the Colormap drop-down menu.

15 Animate the solution for the time-dependent wave equation. To do this:
a Export the mesh data and the solution to the MATLAB workspace by selecting Mesh > Export Mesh and Solve > Export Solution, respectively.
b Enter the following commands in the MATLAB Command Window.

```
figure
maxu = max(abs(u));
m = 10;
for j = 1:m,
    uu = real(exp(-j*2*pi/10*sqrt(-1))*u);
    pdeplot(p,e,t,'XYData',uu,'ColorBar','off','Mesh','off');
    colormap(jet)
```

```
    caxis([-maxu maxu]);
    axis tight
    ax = gca;
    ax.DataAspectRatio = [1 1 1];
    axis off
    M(:,j) = getframe;
end
movie(M);
```


Minimal Electric Potential

This example shows how to find the minimal electric potential by solving the equation
$-\nabla \cdot(\varepsilon \nabla V)=0$
on the unit disk $\Omega=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$, with $V(x, y)=x^{2}$ on the boundary $\partial \Omega$. Here, ε is the absolute dielectric permittivity of the material. The toolbox uses the relative permittivity of the material $\varepsilon_{r}=\varepsilon / \varepsilon_{0}$, where ε_{0} is the absolute permittivity of the vacuum. Note that the constant ε_{0} does not affect the result in this example.

For the minimal surface problem, the value ε is given by

$$
\varepsilon=\frac{1}{\sqrt{1+|\nabla V|^{2}}}
$$

Because the dielectric permittivity is a function of the solution V, the minimal surface problem is a nonlinear elliptic problem.

To solve the minimal surface problem, first create an electromagnetic model for electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Create the geometry and include it in the model. The circleg function represents this geometry. geometryFromEdges(emagmodel,@circleg);

Plot the geometry with the edge labels.

```
pdegplot(emagmodel,'EdgeLabels','on');
axis equal
title 'Geometry with Edge Labels';
```


Specify the vacuum permittivity value in the SI system of units.

```
emagmodel.VacuumPermittivity = 8.8541878128E-12;
```

Specify the relative permittivity of the material.

```
perm = @(region,state) 1./sqrt(1+state.ux.^2 + state.uy.^2);
electromagneticProperties(emagmodel,'RelativePermittivity',perm);
```

Specify the electrostatic potential at the boundary using the function $V(x, y)=x^{2}$.
$b c=@($ region, \sim)region.x.^2;
electromagneticBC(emagmodel,'Voltage',bc,'Edge',1:emagmodel.Geometry.NumEdges);
Generate and plot the mesh.
generateMesh(emagmodel);
figure;
pdemesh(emagmodel);
axis equal

Solve the model.
R = solve(emagmodel);
V = R.ElectricPotential;
Plot the electric potential, using the Contour parameter to display equipotential lines.
figure;
pdeplot(emagmodel,'XYData', V,'ZData', V,'Contour', 'on');
xlabel 'x'
ylabel 'y'
zlabel 'V(x,y)'
title 'Minimal Electric Potential'

Minimal Surface Problem: PDE Modeler App

This example shows how to solve the minimal surface equation

$$
-\nabla \cdot\left(\frac{1}{\sqrt{1+|\nabla u|^{2}}} \nabla u\right)=0
$$

on the unit disk $\Omega=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$, with $u=x^{2}$ on the boundary $\partial \Omega$.
This example uses the PDE Modeler app. For the programmatic workflow, see "Minimal Electric Potential" on page 3-196.

An elliptic equation in the toolbox form is

$$
-\nabla \cdot(c \nabla u)+a u=f
$$

Therefore, for the minimal surface problem the coefficients are as follows:

$$
c=\frac{1}{\sqrt{1+|\nabla u|^{2}}}, a=0, f=0
$$

Because the coefficient c is a function of the solution u, the minimal surface problem is a nonlinear elliptic problem.

To solve the minimal surface problem in the PDE Modeler app, follow these steps:
1 Model the surface as a unit circle.

```
pdecirc([0 0 1])
```

2 Check that the application mode is set to Generic Scalar.
3 Specify the boundary conditions. To do this:
a
$\partial \Omega$
Switch to boundary mode by clicking the button or selecting Boundary > Boundary Mode.
b Select all boundaries by selecting Edit > Select All.
c Select Boundary $>$ Specify Boundary Conditions.
d Specify the Dirichlet boundary condition $u=x^{2}$. To do this, specify $h=1, r=x \cdot \wedge 2$.
4 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. Specify c = 1./sqrt(1+ux.^2+uy.^2), a = 0, and f = 0 .
5 Initialize the mesh by selecting Mesh > Initialize Mesh.
6 Refine the mesh by selecting Mesh > Refine Mesh.
7 Choose the nonlinear solver. To do this, select Solve > Parameters and check Use nonlinear solver. Set the tolerance parameter to 0.001.
8 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.
9 Plot the solution in 3-D. To do this, select PlotParameters. In the resulting dialog box, select Height (3-D plot).

Poisson's Equation with Point Source and Adaptive Mesh Refinement

This example shows how to solve a Poisson's equation with a delta-function point source on the unit disk using the adaptmesh function.

Specifically, solve the Poisson's equation

$$
-\Delta u=\delta(x, y)
$$

on the unit disk with zero Dirichlet boundary conditions. The exact solution expressed in polar coordinates is

$$
u(r, \theta)=\frac{\log (r)}{2 \Pi}
$$

which is singular at the origin.
By using adaptive mesh refinement, Partial Equation Toolbox ${ }^{\text {TM }}$ can accurately find the solution everywhere away from the origin.

The following variables define the problem:

- c, a: The coefficients of the PDE.
- f: A function that captures a point source at the origin. It returns $1 /$ area for the triangle containing the origin and 0 for other triangles.
c = 1;
a = 0;
f = @circlef;
Create a PDE Model with a single dependent variable.
number0fPDE = 1;
model $=$ createpde(numberOfPDE);
Create a geometry and include it in the model.
g = @circleg;
geometryFromEdges (model,g);
Plot the geometry and display the edge labels.

```
figure;
pdegplot(model,'EdgeLabels','on');
axis equal
title 'Geometry With Edge Labels Displayed';
```


Specify the zero solution at all four outer edges of the circle.
applyBoundaryCondition(model,'dirichlet','Edge',(1:4), 'u', 0);
adaptmesh solves elliptic PDEs using the adaptive mesh generation. The tripick parameter lets you specify a function that returns which triangles will be refined in the next iteration. circlepick returns triangles with computed error estimates greater a given tolerance. The tolerance is provided to circlepick using the 'par' parameter.

```
[u,p,e,t] = adaptmesh(g,model,c,a,f,'tripick','circlepick','maxt',2000,'par',1e-3);
Number of triangles: 258
Number of triangles: 515
Number of triangles: 747
Number of triangles: 1003
Number of triangles: 1243
Number of triangles: 1481
Number of triangles: 1705
Number of triangles: 1943
Number of triangles: 2155
Maximum number of triangles obtained.
```

Plot the finest mesh.

```
figure;
```

pdemesh(p,e,t);
axis equal

Plot the error values.
$x=p(1,:)^{\prime} ;$
$y=p(2,:)^{\prime} ;$
$r=\operatorname{sqrt}\left(x . \wedge 2+y .{ }^{\wedge} 2\right) ;$
uu $=-\log (r) / 2 / p i$;
figure;
pdeplot(p,e,t,'XYData',u-uu,'ZData',u-uu,'Mesh','off');

Plot the FEM solution on the finest mesh.
figure;
pdeplot(p,e,t,'XYData',u,'ZData', u,'Mesh','off');

Heat Transfer in Block with Cavity: PDE Modeler App

This example shows how to solve a heat equation that describes the diffusion of heat in a body. This example uses the PDE Modeler app. For programmatic workflow, see "Heat Transfer in Block with Cavity" on page 3-211.

Consider a block containing a rectangular crack or cavity. The left side of the block is heated to 100 degrees centigrade. At the right side of the block, heat flows from the block to the surrounding air at a constant rate, for example $-10 \mathrm{~W} / \mathrm{m}^{2}$. All the other boundaries are insulated. The temperature in the block at the starting time $t_{0}=0$ is 0 degrees. The goal is to model the heat distribution during the first five seconds.

The PDE governing this problem is a parabolic heat equation. Partial Differential Equation Toolbox solves the generic parabolic PDE of the form

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

The heat equation has the form:

$$
d \frac{\partial u}{\partial t}-\Delta u=0
$$

To solve this problem in the PDE Modeler app, follow these steps:
1 Open the PDE Modeler app by using the pdeModeler command.
pdeModeler
2 Model the geometry: draw a rectangle with corners ($-0.5,-0.8$), ($0.5,-0.8$), ($0.5,0.8$), and ($-0.5,0.8$) and a rectangle with corners $(-0.05,-0.4),(0.05,-0.4),(0.05,0.4)$, and $(-0.05,0.4)$. Draw the first rectangle by using the pderect function.
pderect([-0.5 0.5 -0.8 0.8])
3 Display grid lines with extra ticks at -0.05 and 0.05. To do this, select Options $>$ Grid Spacing, clear the Auto checkbox, and enter X-axis extra ticks at -0.05 and 0.05. Then select Options > Grid.

4 Set the x-axis limit to [-0.6 0.6] and y-axis limit to [-1 1 1]. To do this, select Options > Axes Limits and set the corresponding ranges.
5 Select Options > Snap to align any new shape to the grid lines. Then draw the rectangle with corners ($-0.05,-0.4$), ($0.05,-0.4$), ($0.05,0.4$), and ($-0.05,0.4$)
6 Model the geometry by entering R1-R2 in the Set formula field.
7 Check that the application mode is set to Generic Scalar.
8 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary > Boundary Mode. Then select Boundary > Specify Boundary Conditions and specify the Neumann boundary condition.

- For convenience, first specify the insulating Neumann boundary condition $\partial u / \partial n=0$ for all boundaries. To do this, select all boundaries by using Edit > Select All and specify g = 0, q $=0$.
- Specify the Dirichlet boundary condition $u=100$ for the left side of the block. To do this, specify $h=1, r=100$.
- Specify the Neumann boundary condition $\partial u / \partial n=-10$ for the right side of the block. To do this, specify $g=-10, q=0$.
9 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. Heat equation is a parabolic equation, so select the Parabolic type of PDE. Specify c $=1, a=0, f=0$, and $d=1$.
10 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh > Refine Mesh.
11 Set the initial value to 0 , the solution time to 5 seconds, and compute the solution every 0.5 seconds. To do this, select Solve > Parameters. In the Solve Parameters dialog box, set time to $0: 0.5: 5$, and $u\left(t_{0}\right)$ to 0.
12 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar. The app solves the heat equation at 11 different times from 0 to 5 seconds and displays the heat distribution at the end of the time span.

13 Plot isothermal lines using a contour plot and the heat flux vector field using arrows and change the colormap to hot. To do this:
a Select Plot > Parameters.
b In the resulting dialog box, select the Color, Contour, and Arrows options. Select c*grad (u) from Arrows drop-down menu.
c Change the colormap to hot by using the corresponding drop-down menu in the same dialog box.

14 Use an animated plot to visualize the dynamic behavior of the temperature. For this, select Plot > Parameters and then select the Animation option.
15 The temperature in the block rises very quickly. To improve the animation and focus on the first second, change the list of times to the MATLAB expression logspace ($-2,0.5,20$). To do this, select Solve > Parameters. In the Solve Parameters dialog box, set time to logspace(-2,0.5,20).

16 You can explore the solution by varying the parameters of the model and plotting the results. For example, change the heat capacity coefficient d and the heat flow at the right boundary to see how these parameters affect the heat distribution.

Heat Transfer in Block with Cavity

This example shows how to solve for the heat distribution in a block with cavity.
Consider a block containing a rectangular crack or cavity. The left side of the block is heated to 100 degrees centigrade. At the right side of the block, heat flows from the block to the surrounding air at a constant rate, for example $-10 \mathrm{~W} / \mathrm{m}^{2}$. All the other boundaries are insulated. The temperature in the block at the starting time $t_{0}=0$ is 0 degrees. The goal is to model the heat distribution during the first five seconds.

Create Thermal Analysis Model

The first step in solving a heat transfer problem is to create a thermal analysis model. This is a container that holds the geometry, thermal material properties, internal heat sources, temperature on the boundaries, heat fluxes through the boundaries, mesh, and initial conditions.

```
thermalmodel = createpde('thermal','transient');
Import Geometry
```

Add the block geometry to the thermal model by using the geometryFromEdges function. The geometry description file for this problem is called crackg.m.
geometryFromEdges (thermalmodel,@crackg) ;
Plot the geometry, displaying edge labels.
pdegplot(thermalmodel,'EdgeLabels','on')
ylim([-1,1])
axis equal

Specify Thermal Properties of Material

Specify the thermal conductivity, mass density, and specific heat of the material.

```
thermalProperties(thermalmodel,'ThermalConductivity',1,...
```

'MassDensity',1,... 'SpecificHeat',1);

Apply Boundary Conditions

Specify the temperature on the left edge as 100, and constant heat flow to the exterior through the right edge as $\mathbf{- 1 0}$. The toolbox uses the default insulating boundary condition for all other boundaries.
thermalBC(thermalmodel,'Edge',6,'Temperature',100);
thermalBC(thermalmodel,'Edge',1,'HeatFlux',-10);

Set Initial Conditions

Set an initial value of 0 for the temperature.
thermalIC(thermalmodel,0);

Generate Mesh

Create and plot a mesh.
generateMesh(thermalmodel);
figure
pdemesh(thermalmodel)
title('Mesh with Quadratic Triangular Elements')

Specify Solution Times

Set solution times to be 0 to 5 seconds in steps of $1 / 2$.
tlist = 0:0.5:5;

Calculate Solution

Use the solve function to calculate the solution.

```
thermalresults = solve(thermalmodel,tlist)
```

thermalresults =
TransientThermalResults with properties:

```
    Temperature: [1320x11 double]
SolutionTimes: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4 4.5000 5]
            XGradients: [1320x11 double]
    YGradients: [1320x11 double]
    ZGradients: []
            Mesh: [1x1 FEMesh]
```


Evaluate Heat Flux

Compute the heat flux density.
[qx,qy] = evaluateHeatFlux(thermalresults);

Plot Temperature Distribution and Heat Flux

Plot the solution at the final time step, $t=5.0$ seconds, with isothermal lines using a contour plot, and plot the heat flux vector field using arrows.
pdeplot(thermalmodel,'XYData',thermalresults.Temperature(:,end), ...
'Contour', 'on', ..
'FlowData',[qx(:,end), qy(:,end)], ...
'ColorMap','hot')

Heat Transfer Problem with Temperature-Dependent Properties

This example shows how to solve the heat equation with a temperature-dependent thermal conductivity. The example shows an idealized thermal analysis of a rectangular block with a rectangular cavity in the center.

The partial differential equation for transient conduction heat transfer is:

$$
\rho C_{p} \frac{\partial T}{\partial t}-\nabla \cdot(k \nabla T)=f
$$

where T is the temperature, ρ is the material density, C_{p} is the specific heat, and k is the thermal conductivity. f is the heat generated inside the body which is zero in this example.

Steady-State Solution: Constant Thermal Conductivity

Create a steady-state thermal model.
thermalmodelS = createpde('thermal','steadystate');
Create a 2-D geometry by drawing one rectangle the size of the block and a second rectangle the size of the slot.

```
r1 = [3 4 -.5 .5 .5 -.5 -. 8 -. 8 . 8 .8];
r2 = [3 4 -.05 .05 .05 -.05 -. 4 -.4 .4 .4];
gdm = [r1; r2]';
```

Subtract the second rectangle from the first to create the block with a slot.

```
g = decsg(gdm,'R1-R2',['R1'; 'R2']');
```

Convert the decsg format into a geometry object. Include the geometry in the model.
geometryFromEdges(thermalmodelS,g);
Plot the geometry with edge labels displayed. The edge labels will be used below in the function for defining boundary conditions.

```
figure
pdegplot(thermalmodelS,'EdgeLabels','on');
axis([-.9 .9 -.9 .9]);
title 'Block Geometry With Edge Labels Displayed'
```

Block Geometry With Edge Labels Displayed

Set the temperature on the left edge to 100 degrees. On the right edge, there is a prescribed heat flux out of the block. The top and bottom edges and the edges inside the cavity are all insulated, that is, no heat is transferred across these edges.

```
thermalBC(thermalmodelS,'Edge',6,'Temperature',100);
```

thermalBC(thermalmodelS,'Edge',1,'HeatFlux',-10);

Specify the thermal conductivity of the material. First, consider the constant thermal conductivity, for example, equal one. Later, consider a case where the thermal conductivity is a function of temperature.

```
thermalProperties(thermalmodelS,'ThermalConductivity',1);
```

Create a mesh with elements no larger than 0.2.
generateMesh(thermalmodelS, 'Hmax', 0.2);
figure
pdeplot(thermalmodelS);
axis equal
title 'Block With Finite Element Mesh Displayed'

Calculate the steady-state solution.
R = solve(thermalmodelS);
T = R.Temperature;
figure
pdeplot(thermalmodelS,'XYData',T,'Contour','on','ColorMap','hot');
axis equal
title 'Temperature, Steady State Solution'

Transient Solution: Constant Thermal Conductivity

Create a transient thermal model and include the geometry.
thermalmodelT = createpde('thermal','transient');
r1 = [3 4 -. 5 . 5 . 5 -. 5 -. 8 -. 8 . 8 . 8$] ;$
r2 = [3 4 -. 05 . 05 . 05 -. 05 -. 4 -. 4 . 4 .4];
gdm = [r1; r2]';
g = decsg(gdm,'R1-R2',['R1'; 'R2']');
geometryFromEdges(thermalmodelT,g);
Specify thermal conductivity, mass density, and specific heat of the material.
thermalProperties(thermalmodelT, 'ThermalConductivity',1,...
'MassDensity',1,...
'SpecificHeat',1);
Define boundary conditions. In the transient cases, the temperature on the left edge is zero at time=0 and ramps to 100 degrees over .5 seconds. You can find the helper function transientBCHeatedBlock under matlab/R20XXx/examples/pde/main.
thermalBC(thermalmodelT, 'Edge',6,'Temperature',@transientBCHeatedBlock);
On the right edge, there is a prescribed heat flux out of the block.
thermalBC(thermalmodelT,'Edge',1,'HeatFlux',-10);

The top and bottom edges as well as the edges inside the cavity are all insulated, that is no heat is transferred across these edges.

Create a mesh with elements no larger than 0.2.

```
msh = generateMesh(thermalmodelT,'Hmax',0.2);
figure
pdeplot(thermalmodelT);
axis equal
title 'Block With Finite Element Mesh Displayed'
```

Block With Finite Element Mesh Displayed

Calculate the transient solution. Perform a transient analysis from zero to five seconds. The toolbox saves the solution every .1 seconds so that plots of the results as functions of time can be created.

```
tlist = 0:.1:5;
thermalIC(thermalmodelT,0);
R = solve(thermalmodelT,tlist);
T = R.Temperature;
```

Two plots are useful in understanding the results from this transient analysis. The first is a plot of the temperature at the final time. The second is a plot of the temperature at a specific point in the block, in this case near the center of the right edge, as a function of time. To identify a node near the center of the right edge, it is convenient to define this short utility function.

```
getClosestNode = @(p,x,y) min((p(1,:) - x).^2 + (p(2,:) - y).^2);
```

Call this function to get a node near the center of the right edge.

```
[~,nid] = getClosestNode( msh.Nodes, .5, 0 );
```

The two plots are shown side-by-side in the figure below. The temperature distribution at this time is very similar to that obtained from the steady-state solution above. At the right edge, for times less than about one-half second, the temperature is less than zero. This is because heat is leaving the block faster than it is arriving from the left edge. At times greater than about three seconds, the temperature has essentially reached steady-state.

```
h = figure;
h.Position = [1 1 2 1].*h.Position;
subplot(1,2,1);
axis equal
pdeplot(thermalmodelT,'XYData',T(:,end),'Contour','on','ColorMap','hot');
axis equal
title 'Temperature, Final Time, Transient Solution'
subplot(1,2,2);
axis equal
plot(tlist, T(nid,:));
grid on
title 'Temperature at Right Edge as a Function of Time';
xlabel 'Time, seconds'
ylabel 'Temperature, degrees-Celsius'
```


Steady State Solution: Temperature-Dependent Thermal Conductivity

It is not uncommon for material properties to be functions of the dependent variables. For example, assume that the thermal conductivity is a simple linear function of temperature:
$\mathrm{k}=$ @(~,state) 0.3+0.003*state.u;
In this case, the variable u is the temperature. For this example, assume that the density and specific heat are not functions of temperature.
thermalProperties(thermalmodelS,'ThermalConductivity',k);
Calculate the steady-state solution. Compared with the constant-conductivity case, the temperature on the right-hand edge is lower. This is due to the lower conductivity in regions with lower temperature.

```
R = solve(thermalmodelS);
T = R.Temperature;
figure
pdeplot(thermalmodelS,'XYData',T,'Contour','on','ColorMap','hot');
axis equal
title 'Temperature, Steady State Solution'
```


Transient Solution: Temperature-Dependent Thermal Conductivity

Now perform a transient analysis with the temperature-dependent conductivity.
thermalProperties(thermalmodelT, 'ThermalConductivity', k, \ldots
'MassDensity',1,...
'SpecificHeat',1);
Use the same timespan $\mathrm{tlist}=0: .1: 5$ as for the linear case.
thermalIC(thermalmodelT, 0);
R = solve(thermalmodelT,tlist);
T = R.Temperature;
Plot the temperature at the final time step and the temperature at the right edge as a function of time. The plot of temperature at the final time step is only slightly different from the comparable plot from the linear analysis: temperature at the right edge is slightly lower than the linear case. The plot of temperature as a function of time is considerably different from the linear case. Because of the lower conductivity at lower temperatures, the heat takes longer to reach the right edge of the block. In the linear case, the temperature is essentially constant at around three seconds but for this nonlinear case, the temperature curve is just beginning to flatten at five seconds.

```
h = figure;
h.Position = [1 1 2 1].*h.Position;
subplot(1,2,1);
axis equal
pdeplot(thermalmodelT,'XYData',T(:,end),'Contour','on','ColorMap','hot');
axis equal
title 'Temperature, Final Time, Transient Solution'
subplot(1,2,2);
axis equal
plot(tlist(1:size(T,2)), T(nid,:));
grid on
title 'Temperature at Right Edge as a Function of Time (Nonlinear)';
xlabel 'Time, seconds'
ylabel 'Temperature, degrees-Celsius'
```


Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

This example shows how to perform a 3-D transient heat conduction analysis of a hollow sphere made of three different layers of material.

The sphere is subject to a nonuniform external heat flux.
The physical properties and geometry of this problem are described in Singh, Jain, and Rizwan-uddin (see Reference), which also has an analytical solution for this problem. The inner face of the sphere has a temperature of zero at all times. The outer hemisphere with positive y value has a nonuniform heat flux defined by

$$
\begin{aligned}
& q_{\text {outer }}=\theta^{2}(\Pi-\theta)^{2} \phi^{2}(\Pi-\phi)^{2} \\
& 0 \leq \theta \leq \Pi, 0 \leq \phi \leq \Pi
\end{aligned}
$$

θ and ϕ are azimuthal and elevation angles of points in the sphere. Initially, the temperature at all points in the sphere is zero.

Create a thermal model for transient thermal analysis.

```
thermalmodel = createpde('thermal','transient');
```

Create a multilayered sphere using the multisphere function. Assign the resulting geometry to the thermal model. The sphere has three layers of material with a hollow inner core.

```
gm = multisphere([1,2,4,6],'Void',[true,false,false,false]);
thermalmodel.Geometry = gm;
```

Plot the geometry and show the cell labels and face labels. Use a FaceAlpha of 0.25 so that labels of the interior layers are visible.

```
figure('Position',[10,10,800,400]);
subplot(1,2,1)
pdegplot(thermalmodel,'FaceAlpha',0.25,'CellLabel', 'on')
title('Geometry with Cell Labels')
subplot(1,2,2)
pdegplot(thermalmodel,''FaceAlpha',0.25,'FaceLabel' ', 'on')
title('Geometry with Face Labels')
```

Geometry with Cell Labels

Geometry with Face Labels

Generate a mesh for the geometry. Choose a mesh size that is coarse enough to speed the solution, but fine enough to represent the geometry reasonably accurately.
generateMesh(thermalmodel,'Hmax',1);
Specify the thermal conductivity, mass density, and specific heat for each layer of the sphere. The material properties are dimensionless values, not given by realistic material properties.

```
thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity',1, ...
    'MassDensity',1, ...
    'SpecificHeat',1);
thermalProperties(thermalmodel,'Cell',2,'ThermalConductivity',2, ...
    'MassDensity',1, ...
    'SpecificHeat',0.5);
thermalProperties(thermalmodel,'Cell',3,'ThermalConductivity',4, ...
    'MassDensity',1, ...
    'SpecificHeat',4/9);
```

Specify boundary conditions. The innermost face has a temperature of zero at all times.

```
thermalBC(thermalmodel,'Face',1,'Temperature',0);
```

The outer surface of the sphere has an external heat flux. Use the functional form of thermal boundary conditions to define the heat flux.

```
function Qflux = externalHeatFlux(region,~)
[phi,theta,~] = cart2sph(region.x,region.y,region.z);
theta = pi/2 - theta; % transform to 0 <= theta <= pi
ids = phi > 0;
```

```
Qflux = zeros(size(region.x));
Qflux(ids) = theta(ids).^2.*(pi - theta(ids)).^2.*phi(ids).^2.*(pi -
phi(ids)).^2;
end
```

Plot the flux on the surface.

```
[phi,theta,r] = meshgrid(linspace(0,2*pi),linspace(-pi/2,pi/2),6);
[x,y,z] = sph2cart(phi,theta,r);
region.x = x;
region.y = y;
region.z = z;
flux = externalHeatFlux(region,[]);
figure
surf(x,y,z,flux,'LineStyle','none')
axis equal
view(130,10)
colorbar
xlabel 'x'
ylabel 'y'
zlabel 'z'
title('External Flux')
```


Include this boundary condition in the model.

```
thermalBC(thermalmodel,'Face',4,'HeatFlux',@externalHeatFlux,'Vectorized','on');
```

Define the initial temperature to be zero at all points.

```
thermalIC(thermalmodel,0);
```

Define a time-step vector and solve the transient thermal problem.

```
tlist = [0,2,5:5:50];
R = solve(thermalmodel,tlist);
```

To plot contours at several times, with the contour levels being the same for all plots, determine the range of temperatures in the solution. The minimum temperature is zero because it is the boundary condition on the inner face of the sphere.

Tmin $=0$;
Find the maximum temperature from the final time-step solution.
Tmax $=\max ($ R.Temperature(: end) $)$;
Plot contours in the range Tmin to Tmax at the times in tlist.

```
h = figure;
for i = 1:numel(tlist)
    pdeplot3D(thermalmodel,'ColorMapData',R.Temperature(:,i))
    caxis([Tmin,Tmax])
    view(130,10)
    title(['Temperature at Time ' num2str(tlist(i))]);
    M(i) = getframe;
end
```


To see a movie of the contours when running this example on your computer, execute the following line:
movie(M,2)
Visualize the temperature contours on the cross-section. First, define a rectangular grid of points on the $y-z$ plane where $x=0$.

```
[YG,ZG] = meshgrid(linspace(-6,6,100),linspace(-6,6,100));
```

XG = zeros(size(YG));

Interpolate the temperature at the grid points. Perform interpolation for several time steps to observe the evolution of the temperature contours.

```
tIndex = [2,3,5,7,9,11];
varNames = {'Time index','Time step'};
index_step = table(tIndex.',tlist(tIndex).','VariableNames',varNames);
disp(index_step);
Time_index Time_step
\begin{tabular}{rr}
2 & 2 \\
3 & 5 \\
5 & 15 \\
7 & 25 \\
9 & 35 \\
11 & 45
\end{tabular}
```

TG = interpolateTemperature(R,XG,YG,ZG,tIndex);
Define the geometric spherical layers on the cross-section.

```
t = linspace(0,2*pi);
ylayer1 = cos(t); zlayer1 = sin(t);
ylayer2 = 2*cos(t); zlayer2 = 2*sin(t);
ylayer3 = 4*cos(t); zlayer3 = 4*sin(t);
ylayer4 = 6* cos(t); zlayer4 = 6*sin(t);
```

Plot the contours in the range Tmin to Tmax for the time steps corresponding to the time indices tIndex.

```
figure('Position',[10,10,1000,550]);
for i = 1:numel(tIndex)
    subplot(2,3,i)
    contour(YG,ZG,reshape(TG(:,i),size(YG)),'ShowText','on')
    colorbar
    title(['Temperature at Time ' num2str(tlist(tIndex(i)))]);
    hold on
    caxis([Tmin,Tmax])
    axis equal
    % Plot boundaries of spherical layers for reference.
    plot(ylayer1,zlayer1,'k','LineWidth',1.5)
    plot(ylayer2,zlayer2,'k','LineWidth',1.5)
    plot(ylayer3,zlayer3,'k','LineWidth',1.5)
    plot(ylayer4,zlayer4,'k','LineWidth',1.5)
end
```


Reference

[1] Singh, Suneet, P. K. Jain, and Rizwan-uddin. "Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere." ASME. J. Heat Transfer. 138(10), 2016, pp. 101301-101301-11.

Inhomogeneous Heat Equation on Square Domain

This example shows how to solve the heat equation with a source term.
The basic heat equation with a unit source term is

$$
\frac{\partial u}{\partial t}-\Delta u=1
$$

This equation is solved on a square domain with a discontinuous initial condition and zero temperatures on the boundaries.

Create a transient thermal model.

```
thermalmodel = createpde('thermal','transient');
```

Create a square geometry centered at $x=0$ and $y=0$ with sides of length 2 . Include a circle of radius 0.4 concentric with the square.

```
R1 = [3;4;-1;1;1;-1;-1;-1;1;1];
C1 = [1;0;0;0.4];
C1 = [C1;zeros(length(R1) - length(C1),1)];
gd = [R1,C1];
sf = 'R1+C1';
ns = char('R1','C1')';
g = decsg(gd,sf,ns);
```

Append the geometry to the model.
geometryFromEdges(thermalmodel, g) ;
Specify thermal properties of the material.

```
thermalProperties(thermalmodel,'ThermalConductivity',1,...
    'MassDensity',1,...
    'SpecificHeat',1);
```

Specify internal heat source.
internalHeatSource(thermalmodel,1);
Plot the geometry and display the edge labels for use in the boundary condition definition.

```
figure
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
axis([-1.1 1.1 -1.1 1.1]);
axis equal
title 'Geometry With Edge and Subdomain Labels'
```


Set zero temperatures on all four outer edges of the square.
thermalBC(thermalmodel,'Edge',1:4,'Temperature',0);
The discontinuous initial value is 1 inside the circle and zero outside. Specify zero initial temperature everywhere.
thermalIC(thermalmodel,0);
Specify non-zero initial temperature inside the circle (Face 2).
thermalIC(thermalmodel,1,'Face', 2) ;
Generate and plot a mesh.
msh = generateMesh(thermalmodel);
figure;
pdemesh(thermalmodel);
axis equal

Find the solution at 20 points in time between 0 and 0.1 .

```
nframes = 20;
```

tlist = linspace(0,0.1,nframes);
thermalmodel. SolverOptions.ReportStatistics ='on';
result = solve(thermalmodel,tlist);

```
99 successful steps
0 ~ f a i l e d ~ a t t e m p t s
200 function evaluations
1 partial derivatives
20 LU decompositions
1 9 9 \text { solutions of linear systems}
```

T = result. Temperature;

Plot the solution.

```
figure
Tmax = max(max(T));
Tmin = min(min(T));
for j = 1:nframes
    pdeplot(thermalmodel,'XYData',T(:,j),'ZData',T(:,j));
    caxis([Tmin Tmax]);
    axis([-1 1 -1 1 0 1]);
    Mv(j) = getframe;
end
```


To play the animation, use the movie($\mathrm{Mv}, 1$) command.

Heat Distribution in Circular Cylindrical Rod

This example shows how to simplify a 3-D axisymmetric thermal problem to a 2-D problem using the symmetry around the axis of rotation of the body.

This example analyzes heat transfer in a rod with a circular cross section. There is a heat source at the bottom of the rod and a fixed temperature at the top. The outer surface of the rod exchanges heat with the environment because of convection. In addition, the rod itself generates heat because of radioactive decay. The goal is to find the temperature in the rod as a function of time.

The model geometry, material properties, and boundary conditions must all be symmetric about the axis of rotation. The toolbox assumes that the axis of rotation is the vertical axis passing through $r=$ 0.

Steady-State Solution

First, compute the steady-state solution. If the final time in the transient analysis is sufficiently large, the transient solution at the final time must be close to the steady state solution. By comparing these two results, you can check the accuracy of the transient analysis.

Create a steady-state thermal model for solving an axisymmetric problem.

```
thermalModelS = createpde('thermal','steadystate-axisymmetric');
```

The 2-D model is a rectangular strip whose x-dimension extends from the axis of symmetry to the outer surface and y-dimension extends over the actual length of the rod (from -1.5 m to 1.5 m). Create the geometry by specifying the coordinates of its four corners.

```
g = decsg([3 4 0 0 .2 .2 -1.5 1.5 1.5 -1.5]');
```

Include the geometry in the model.

```
geometryFromEdges(thermalModelS,g);
```

Plot the geometry with the edge labels.

```
figure
pdegplot(thermalModelS,'EdgeLabels','on')
axis equal
```


The rod is composed of a material with these thermal properties.

```
k = 40; % Thermal conductivity, W/(m*C)
rho = 7800; % Density, kg/m^3
cp = 500; % Specific heat, W*s/(kg*C)
q = 20000; % Heat source, W/m^3
```

For a steady-state analysis, specify the thermal conductivity of the material.
thermalProperties(thermalModelS, 'ThermalConductivity', k);
Specify the internal heat source.
internalHeatSource(thermalModelS,q);
Define the boundary conditions. There is no heat transferred in the direction normal to the axis of symmetry (edge 1). You do not need to change the default boundary condition for this edge. Edge 2 is kept at a constant temperature $T=100^{\circ} \mathrm{C}$.
thermalBC(thermalModelS,'Edge',2,'Temperature',100);
Specify the convection boundary condition on the outer boundary (edge 3). The surrounding temperature at the outer boundary is $100^{\circ} \mathrm{C}$, and the heat transfer coefficient is $50 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$.

```
thermalBC(thermalModelS,'Edge',3,...
    'ConvectionCoefficient',50,...
    'AmbientTemperature',100);
```

The heat flux at the bottom of the rod (edge 4) is $5000 \mathrm{~W} / \mathrm{m}^{2}$.
thermalBC(thermalModelS, 'Edge',4, 'HeatFlux' , 5000) ;
Generate the mesh.
msh = generateMesh(thermalModelS);
figure
pdeplot(thermalModelS)
axis equal

Solve the model and plot the result.

```
result = solve(thermalModelS);
T = result.Temperature;
figure
pdeplot(thermalModelS,'XYData',T,'Contour','on')
axis equal
title 'Steady-State Temperature'
```


Transient Solution

Create a transient thermal model for solving an axisymmetric problem.

```
thermalModelT = createpde('thermal','transient-axisymmetric');
```

Use the same geometry and mesh as for the steady-state analysis.

```
g = decsg([3 4 0 0 .2 .2 -1.5 1.5 1.5 -1.5]');
geometryFromEdges(thermalModelT,g);
thermalModelT.Mesh = msh;
```

Specify the thermal conductivity, mass density, and specific heat of the material.

```
thermalProperties(thermalModelT,'ThermalConductivity',k,...
    'MassDensity',rho,...
    'SpecificHeat',cp);
```

Specify the internal heat source and boundary conditions.

```
internalHeatSource(thermalModelT,q);
thermalBC(thermalModelT,'Edge',2,'Temperature',100);
thermalBC(thermalModelT,'Edge',3,...
    'ConvectionCoefficient',50,...
    'AmbientTemperature',100);
thermalBC(thermalModelT,'Edge',4,'HeatFlux',5000);
```

Specify that the Initial temperature in the rod is $0^{\circ} \mathrm{C}$.
thermalIC(thermalModelT, 0) ;
Compute the transient solution for solution times from $t=0$ to $t=50000$ seconds.

```
tfinal = 50000;
tlist = 0:100:tfinal;
result = solve(thermalModelT,tlist);
```

Plot the temperature distribution at $\mathrm{t}=50000$ seconds.
T = result. Temperature;

```
figure
pdeplot(thermalModelT,'XYData',T(:,end),'Contour','on')
axis equal
title(sprintf('Transient Temperature at Final Time (%g seconds)',tfinal))
```


Find the temperature at the bottom surface of the rod: first, at the center axis and then on the outer surface.

Tcenter $=$ interpolateTemperature(result,[0.0;-1.5],1:numel(tlist));
Touter $=$ interpolateTemperature(result,[0.2;-1.5],1:numel(tlist));
Plot the temperature at the left end of the rod as a function of time. The outer surface of the rod is exposed to the environment with a constant temperature of $100^{\circ} \mathrm{C}$. When the surface temperature of the rod is less than $100^{\circ} \mathrm{C}$, the environment heats the rod. The outer surface is slightly warmer than
the inner axis. When the surface temperature is greater than $100^{\circ} \mathrm{C}$, the environment cools the rod. The outer surface becomes cooler than the interior of the rod.

```
figure
plot(tlist,Tcenter)
hold on
plot(tlist,Touter,'--')
title 'Temperature at the Bottom as a Function of Time'
xlabel 'Time, s'
ylabel 'Temperature, C'
grid on
legend('Center Axis','Outer Surface','Location','SouthEast')
```


Thermal Analysis of Disc Brake

This example analyses the temperature distribution of a disc brake. Disc brakes absorb the translational mechanical energy through friction and transform it into the thermal energy, which then dissipates. The transient thermal analysis of a disc brake is critical because the friction and braking performance decreases at high temperatures. Therefore, disc brakes must not exceed a given temperature limit during operation.

This example simulates the disc behavior in two steps:

- Perform a highly detailed simulation of the brake pad moving around the disc. Because the computational cost is high, this part of the example only simulates one half revolution (25 ms).
- Simulate full braking when the car goes from $100 \mathrm{~km} / \mathrm{h}$ to $0 \mathrm{~km} / \mathrm{h}$ in 2.75 seconds, and then remains stopped for 2.25 more seconds in order to allow the heat in the disc to dissipate.

The example uses a vehicle model in Simscape Driveline ${ }^{\mathrm{TM}}$ to obtain the time dependency of the dissipated power.

Point Heat Source Moving Around the Disc

Simulate a circular brake pad moving around the disc. This detailed simulation over a short timescale models the heat source as a point moving around the disc.

First, create a thermal transient model.

```
model = createpde('thermal','transient');
```

Import the disc geometry.
importGeometry(model,'brake_disc.stl');
Plot the geometry with the face labels.

```
figure
pdegplot(model,'FaceLabels','on');
view([-5 -47])
```


Generate a fine mesh with a small target maximum element edge length. The resulting mesh has more than 130000 nodes (degrees of freedom).
generateMesh(model,'Hmax',0.005);
Plot the mesh.
figure
pdemesh(model)
view([0,90])

Specify the thermal properties of the material.

```
thermalProperties(model,'ThermalConductivity',100, ...
    'MassDensity',8000, ...
    'SpecificHeat',500);
```

Specify the boundary conditions. All the faces are exposed to air, so there will be free convection.

```
thermalBC(model,'Face',1:model.Geometry.NumFaces, ...
    'ConvectionCoefficient',10, ...
    'AmbientTemperature',30);
```

Model the moving heat source by using a function handle that defines the thermal load as a function of space and time. For the definition of the movingHeatSource function, see the Heat Source Functions section at the bottom of this page.

```
thermalBC(model,'Face',11,'HeatFlux',@movingHeatSource);
thermalBC(model,'Face',4,'HeatFlux',@movingHeatSource);
```

Specify the initial temperature.
thermalIC(model,30);
Solve the model for the time steps from 0 to 25 ms .

```
tlist = linspace(0,0.025,100); % Half revolution
R1 = solve(model,tlist)
```

```
R1 =
    TransientThermalResults with properties:
        Temperature: [132015\times100 double]
        SolutionTimes: [1×100 double]
            XGradients: [132015\times100 double]
            YGradients: [132015\times100 double]
            ZGradients: [132015\times100 double]
                        Mesh: [1×1 FEMesh]
```

Plot the temperature distribution at 25 ms .
figure('units','normalized','outerposition',[0 0 1 1])
pdeplot3D(model,'ColorMapData',R1.Temperature(: end))

The animation function visualizes the solution for all time steps. To play the animation, use this command:

```
animation(model,R1)
```

Because the heat diffusion time is much longer than the period of a revolution, you can simplify the heat source for the long simulation.

Static Ring Heat Source

Now find the disc temperatures for a longer period of time. Because the heat does not have time to diffuse during a revolution, it is reasonable to approximate the heat source with a static heat source in the shape of the path of the brake pad.

Compute the heat flow applied to the disc as a function of time. To do this, use a Simscape Driveline ${ }^{\mathrm{TM}}$ model of a four-wheeled, 2000 kg vehicle that brakes from $100 \mathrm{~km} / \mathrm{h}$ to $0 \mathrm{~km} / \mathrm{h}$ in approximately 2.75
s.
driveline model = 'DrivelineVehicle isothermal';
open_system(driveline_model);

$M=2000 ; \% \mathrm{~kg}$
V0 = 27.8; \% m/s, which is around $100 \mathrm{~km} / \mathrm{h}$
$P=277 ; ~$ bar
sim0ut = sim(driveline_model);
heatFlow = simOut.simlog. Heat_Flow_Rate_Sensor.Q.series.values;
tout = simOut.tout;
Obtain the time-dependent heat flow by using the results from the Simscape Driveline model.
drvln = struct();
drvln.tout = tout;
drvln.heatFlow = heatFlow;
Generate a mesh.
generateMesh(model);

Specify the boundary condition as a function handle. For the definition of the ringHeatSource function, see the Heat Source Functions section at the bottom of this page.

```
thermalBC(model,'Face',11,'HeatFlux', @(r,s) ringHeatSource(r,s,drvln));
thermalBC(model,'Face',4 ,'HeatFlux', @(r,s) ringHeatSource(r,s,drvln));
```

Solve the model for times from 0 to 5 seconds.
tlist $=$ linspace (0,5,250);
R2 = solve(model, tlist);
Plot the temperature distribution at the final time step $t=5$ seconds.
figure('units','normalized','outerposition',[0 0 1 1]) pdeplot3D(model,'ColorMapData',R2.Temperature(:,end))

The animation function visualizes the solution for all time steps. To play the animation, use the following command:

```
animation(model,R2)
```

Find the maximum temperature of the disc. The maximum temperature is low enough to ensure that the braking pad performs as expected.

```
Tmax = max(max(R2.Temperature))
Tmax = 52.2895
```

Heat Source Functions for Moving and Static Heat Sources

```
function F = movingHeatSource(region,state)
```

```
% Parameters --------
R = 0.115; % Distance from center of disc to center of braking pad
r = 0.025; % Radius of braking pad
xc = 0.15; % x-coordinate of center of disc
yc = 0.15; % y-coordinate of center of disc
T = 0.05; % Period of 1 revolution of disc
power = 35000; % Braking power in watts
Tambient = 30; % Ambient temperature (for convection)
h = 10; % Convection heat transfer coefficient in W/m^2*K
%-------------------
theta = 2*pi/T*state.time;
xs = xc + R* cos(theta);
ys = yc + R*sin(theta);
x = region.x;
y = region.y;
F = h*(Tambient - state.u); % Convection
if isnan(state.time)
    F = nan(1,numel(x));
end
idx = (x - xs).^2 + (y - ys).^2 <= r^2;
F(1,idx) = 0.5*power/(pi*r.^2); % 0.5 because there are 2 faces
end
function F = ringHeatSource(region,state,driveline)
% Parameters --------
R = 0.115; % Distance from center of disc to center of braking pad
r = 0.025; % Radius of braking pad
xc = 0.15; % x-coordinate of center of disc
yc = 0.15; % y-coordinate of center of disc
power = interpl(driveline.tout,driveline.heatFlow,state.time); % Braking power in watts
Tambient = 30; % Ambient temperature (for convection)
h = 10; % Convection heat transfer coefficient in W/m^2*K
Tf = 2.5; % Time in seconds
%-------------------
x = region.x;
y = region.y;
F = h*(Tambient - state.u); % Convection
if isnan(state.time)
    F = nan(1, numel(x));
```

end
if state.time < Tf
rad $=\operatorname{sqrt}((x-x c) . \wedge 2+(y-y c) . \wedge 2) ;$
$i d x=\operatorname{rad}>=R-r$ \& rad $<=R+r$;
area $=p^{*}\left((R+r)^{\wedge} 2-(R-r)^{\wedge} 2\right) ;$
$F(1, i d x)=0.5 *$ power/area; \% 0.5 because there are 2 faces
end
end

Heat Distribution in Circular Cylindrical Rod: PDE Modeler App

Solve a 3-D parabolic PDE problem by reducing the problem to 2-D using coordinate transformation. This example uses the PDE Modeler app. For the command-line solution, see "Heat Distribution in Circular Cylindrical Rod" on page 3-234.

Consider a cylindrical radioactive rod. Heat is continuously added at the left end of the rod, while the right end is kept at a constant temperature. At the outer boundary, heat is exchanged with the surroundings by transfer. At the same time, heat is uniformly produced in the whole rod due to radioactive processes. Assuming that the initial temperature is zero leads to the following equation:

$$
\rho C \frac{\partial u}{\partial t}-\nabla \cdot(k \nabla u)=q
$$

Here, ρ, C, and k are the density, thermal capacity, and thermal conductivity of the material, u is the temperature, and q is the heat generated in the rod.

Since the problem is axisymmetric, it is convenient to write this equation in a cylindrical coordinate system.

$$
\rho C \frac{\partial u}{\partial t}-\frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial u}{\partial r}\right)-\frac{1}{r^{2}} \frac{\partial}{\partial \theta}\left(k \frac{\partial u}{\partial \theta}\right)-\frac{\partial}{\partial z}\left(k \frac{\partial u}{\partial z}\right)=q
$$

Here r, θ, and z are the three coordinate variables of the cylindrical system. Because the problem is axisymmetric, $\partial u / \partial \theta=0$.

This is a cylindrical problem, and Partial Differential Equation Toolbox requires equations to be in Cartesian coordinates. To transform the equation to the Cartesian coordinates, first multiply both sides of the equation by r :

$$
\rho r C \frac{\partial u}{\partial t}-\frac{\partial}{\partial r}\left(k r \frac{\partial u}{\partial r}\right)-\frac{\partial}{\partial z}\left(k r \frac{\partial u}{\partial z}\right)=q r
$$

Then define r as y and z as x :

$$
\rho y C \frac{\partial u}{\partial t}-\nabla \cdot(k y \nabla u)=q y
$$

For this example, use these parameters:

- Density, $\rho=7800 \mathrm{~kg} / \mathrm{m}^{3}$
- Thermal capacity, $C=500 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
- Thermal conductivity, $k=40 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$
- Radioactive heat source, $q=20000 \mathrm{~W} / \mathrm{m}^{3}$
- Temperature at the right end, T_{-}right $=100{ }^{\circ} \mathrm{C}$
- Heat flux at the left end, $H F_{-}$left $=5000 \mathrm{~W} / \mathrm{m}^{2}$
- Surrounding temperature at the outer boundary, T_{-}outer $=100{ }^{\circ} \mathrm{C}$
- Heat transfer coefficient, h_outer $=50 \mathrm{~W} / \mathrm{m}^{2 .}$. C

To solve this problem in the PDE Modeler app, follow these steps:
1 Model the rod as a rectangle with corners in (-1.5,0), (1.5,0), (1.5,0.2), and (-1.5, 0.2). Here, the x axis represents the z direction, and the y-axis represents the r direction.
pderect([-1.5,1.5,0,0.2])
2 Specify the boundary conditions. To do this, double-click the boundaries to open the Boundary Condition dialog box. The PDE Modeler app requires boundary conditions in a particular form. Thus, Neumann boundary conditions must be in the form $\vec{n} \cdot(c \nabla u)+q u=g$, and Dirichlet boundary conditions must be in the form $h u=r$. Also, because both sides of the equation are multiplied by $r=y$, multiply coefficients for the boundary conditions by y.

- For the left end, use the Neumann condition $\vec{n} \cdot(k \nabla u)=H F _l e f t=5000$. Specify $g=$ 5000*y and $q=0$.
- For the right end, use the Dirichlet condition $u=T_{-}$right $=100$. Specify $h=1$ and $r=100$.
- For the outer boundary, use the Neumann condition
$\vec{n} \cdot(k \nabla u)=h _o u t e r\left(T _\right.$outer $\left.-u\right)=50(100-u)$. Specify $g=50 * y * 100$ and $q=50 * y$.
- The cylinder axis $r=0$ is not a boundary in the original problem, but in the 2-D treatment it has become one. Use the artificial Neumann boundary condition for the axis, $\vec{n} \cdot(k \nabla u)=0$. Specify $g=0$ and $q=0$.
3 Specify the coefficients by selecting PDE > PDE Specification or click the PDE button on the toolbar. Heat equation is a parabolic equation, so select the Parabolic type of PDE. Because both sides of the equation are multiplied by $r=y$, multiply the coefficients by y and enter the following values: $c=40^{*} y$, $a=0, f=20000 * y$, and $d=7800 * 500^{*} y$.

4 Initialize the mesh by selecting Mesh > Initialize Mesh.
5 Set the initial value to 0 , the solution time to 20000 seconds, and compute the solution every 100 seconds. To do this, select Solve > Parameters. In the Solve Parameters dialog box, set time to $0: 100: 20000$, and $u\left(t_{0}\right)$ to 0 .

6 Solve the equation by selecting Solve $>$ Solve PDE or clicking the $=$ button on the toolbar.
7 Plot the solution, using the color and contour plot. To do this, select Plot $>$ Parameters and choose the color and contour plots in the resulting dialog box.

You can explore the solution by varying the parameters of the model and plotting the results. For example, you can:

- Show the solution when u does not depend on time, that is, the steady state solution. To do this, open the PDE Specification dialog box, and change the PDE type to Elliptic. The resulting steady state solution is in close agreement with the transient solution at 20000 seconds.
- Show the steady state solution without cooling on the outer boundary: the heat transfer coefficient is zero. To do this, set the Neumann boundary condition at the outer boundary (the top side of the rectangle) to $\mathrm{g}=0$ and $\mathrm{q}=0$. The resulting plot shows that the temperature rises to more than 2500 on the left end of the rod.

Wave Equation on Square Domain

This example shows how to solve the wave equation using the solvepde function.
The standard second-order wave equation is

$$
\frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot \nabla u=0
$$

To express this in toolbox form, note that the solvepde function solves problems of the form

$$
m \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u=f
$$

So the standard wave equation has coefficients $m=1, c=1, a=0$, and $f=0$.

```
c = 1;
a = 0;
f = 0;
m = 1;
```

Solve the problem on a square domain. The squareg function describes this geometry. Create a model object and include the geometry. Plot the geometry and view the edge labels.

```
numberOfPDE = 1;
model = createpde(numberOfPDE);
geometryFromEdges(model,@squareg);
pdegplot(model,'EdgeLabels','on');
ylim([-1.1 1.1]);
axis equal
title 'Geometry With Edge Labels Displayed';
xlabel x
ylabel y
```


Specify PDE coefficients.
specifyCoefficients(model,'m',m,'d',0,'c',c,'a',a,'f',f);
Set zero Dirichlet boundary conditions on the left (edge 4) and right (edge 2) and zero Neumann boundary conditions on the top (edge 1) and bottom (edge 3).

```
applyBoundaryCondition(model,'dirichlet','Edge',[2,4],'u',0);
applyBoundaryCondition(model,'neumann','Edge',([1 3]),'g',0);
```

Create and view a finite element mesh for the problem.

```
generateMesh(model);
figure
pdemesh(model);
ylim([-1.1 1.1]);
axis equal
xlabel x
ylabel y
```


Set the following initial conditions:

- $u(x, 0)=\arctan \left(\cos \left(\frac{\pi x}{2}\right)\right)$.
- $\left.\frac{\partial u}{\partial t}\right|_{t=0}=3 \sin (\Pi x) \exp \left(\sin \left(\frac{\pi y}{2}\right)\right)$.

```
u0 = @(location) atan(cos(pi/2*location.x));
ut0 = @(location) 3*sin(pi*location.x).*exp(sin(pi/2*location.y));
setInitialConditions(model,u0,ut0);
```

This choice avoids putting energy into the higher vibration modes and permits a reasonable time step size.

Specify the solution times as 31 equally-spaced points in time from 0 to 5 .
n = 31;
tlist $=$ linspace (0,5,n);
Set the SolverOptions.ReportStatistics of model to 'on'.

```
model.SolverOptions.ReportStatistics ='on';
```

result = solvepde(model,tlist);

459 successful steps
38 failed attempts
993 function evaluations

```
1 partial derivatives
114 LU decompositions
9 9 2 \text { solutions of linear systems}
u = result.NodalSolution;
```

Create an animation to visualize the solution for all time steps. Keep a fixed vertical scale by first calculating the maximum and minimum values of u over all times, and scale all plots to use those z axis limits.
figure
umax $=\max (\max (u))$;
umin $=\min (\min (u))$;
for $\mathrm{i}=1: \mathrm{n}$
pdeplot(model,'XYData',u(:,i),'ZData',u(:,i),'ZStyle','continuous','Mesh','off'); axis([-1 1-1 1 umin umax]); caxis([umin umax]);
xlabel x
ylabel y
zlabel u $M(i)=$ getframe;
end

To play the animation, use the movie(M) command.

Wave Equation on Square Domain: PDE Modeler App

This example shows how to solve a wave equation for transverse vibrations of a membrane on a square. The membrane is fixed at the left and right sides, and is free at the upper and lower sides. This example uses the PDE Modeler app. For a programmatic workflow, see "Wave Equation on Square Domain" on page 3-251.

A wave equation is a hyperbolic PDE:

$$
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0
$$

To solve this problem in the PDE Modeler app, follow these steps:
1 Open the PDE Modeler app by using the pdeModeler command.
2 Display grid lines by selecting Options > Grid.
3 Align new shapes to the grid lines by selecting Options > Snap.
4
Draw a square with the corners at $(-1,-1),(-1,1),(1,1)$, and $(1,-1)$. To do this, first click the button. Then click one of the corners using the right mouse button and drag to draw a square. The right mouse button constrains the shape you draw to be a square rather than a rectangle.

You also can use the pderect function:

```
pderect([-1 1 -1 1])
```

5 Check that the application mode is set to Generic Scalar.
6

$\partial \Omega$

Specify the boundary conditions. To do this, switch to boundary mode by clicking the button or selecting Boundary > Boundary Mode. Select the left and right boundaries. Then select Boundary > Specify Boundary Conditions and specify the Dirichlet boundary condition $u=0$. This boundary condition is the default one ($\mathrm{h}=1, r=0$), so you do not need to change it.

For the bottom and top boundaries, set the Neumann boundary condition $\partial u / \partial n=0$. To do this, set $\mathrm{g}=0, \mathrm{q}=0$.
7 Specify the coefficients by selecting PDEPDE Specification or clicking the PDE button on the toolbar. Select the Hyperbolic type of PDE, and specify $c=1, a=0, f=0$, and $d=1$.
8 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh > Refine Mesh.
9 Set the solution times. To do this, select Solve >Parameters. Create linearly spaced time vector from 0 to 5 seconds by setting the solution time to linspace $(0,5,31)$.
10 In the same dialog box, specify initial conditions for the wave equation. For a well-behaved solution, the initial values must match the boundary conditions. If the initial time is $t=0$, then the following initial values that satisfy the boundary conditions: atan $(\cos (p i / 2 * x))$ for $u(0)$ and $3 * \sin \left(\mathrm{pi}^{*} \mathrm{x}\right) .{ }^{*} \exp (\sin (\mathrm{pi} / 2 * \mathrm{y}))$ for $\partial u / \partial t$,

The inverse tangent function and exponential function introduce more modes into the solution.

11 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar. The app solves the heat equation at times from 0 to 5 seconds and displays the result at the end of the time span.
12 Visualize the solution as a 3-D static and animated plots. To do this:
a Select Plot > Parameters.
b In the resulting dialog box, select the Color and Height (3-D plot) options.
c To visualize the dynamic behavior of the wave, select Animation in the same dialog box. If the animation progress is too slow, select the Plot in $\mathbf{x}-\mathrm{y}$ grid option. An $x-y$ grid can speed up the animation process significantly.

Eigenvalues and Eigenmodes of L-Shaped Membrane

This example shows how to calculate eigenvalues and eigenvectors. The eigenvalue problem is $-\Delta u=\lambda u$. This example computes all eigenmodes with eigenvalues smaller than 100.

Create a model and include this geometry. The geometry of the L-shaped membrane is described in the file lshapeg.

```
model = createpde();
geometryFromEdges(model,@lshapeg);
```

Set zero Dirichlet boundary conditions on all edges.

```
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
```

Specify the coefficients for the problem: $\mathrm{d}=1$ and $\mathrm{c}=1$. All other coefficients are equal to zero.

```
specifyCoefficients(model,'m',0,'d',1,'c',1,'a',0,'f',0);
```

Set the interval [0 100] as the region for the eigenvalues in the solution.
$r=[0$ 100];
Create a mesh and solve the problem.

```
generateMesh(model,'Hmax',0.05);
results = solvepdeeig(model,r);
```

| Basis= 10, | Time= | 0.45, | N | conv | eig= |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Basis= 11, | Time= | 0.47, | New | con | eig= |
| Basis= 12, | Time= | 0.47 , | New | conv | eig= |
| Basis= 13, | Time= | 0.48, | New | conv | eig= |
| Basis= 14, | Time= | 0.48 , | New | conv | eig= |
| Basis= 15, | Time= | 0.48 , | New | con | eig= |
| Basis= 16, | Time= | 0.50, | New | conv | eig= |
| Basis= 17, | Time= | 0.50, | New | conv | eig= |
| Basis= 18, | Time= | 0.50, | New | conv | eig= |
| Basis= 19, | Time= | 0.50, | New | conv | eig= |
| Basis= 20, | Time= | 0.73 , | New | conv | eig= |
| Basis= 21, | Time= | 0.73 , | New | conv | eig= |
| Basis= 22, | Time= | 0.73, | New | conv | eig= |
| Basis= 23, | Time= | 0.73 , | New | conv | eig= |
| Basis= 24, | Time= | 0.98 , | New | conv | eig= |
| Basis= 25, | Time= | 0.98 , | New | conv | eig= |
| Basis= 26, | Time= | 0.98 , | New | con | eig= |
| Basis= 27, | Time= | 0.98 , | New | conv | eig= |
| Basis= 28, | Time= | 0.98 , | New | con | eig= |
| Basis= 29, | Time= | 1.00, | New | conv | eig= |
| Basis= 30, | Time= | 1.00, | New | conv | eig= |
| Basis= 31, | Time= | 1.00, | New | conv | eig= |
| Basis= 32, | Time= | 1.02, | New | conv | eig= |
| Basis= 33, | Time= | 1.02, | New | con | eig= |
| Basis= 34, | Time= | 1.02, | New | conv | eig= |
| Basis= 35, | Time= | 1.20, | Ne | conv | eig= |
| Basis= 36, | Time= | 1.34, | New | conv | eig= |
| Basis= 37, | Time= | 1.39, | New | conv | eig= |
| Basis= 38, | Time= | 1.44, | New | conv | eig= |
| Basis= 39, | Time= | 1.44 | N | conv | -i |

There are 19 eigenvalues smaller than 100.
length(results.Eigenvalues)
ans = 19
Plot the first eigenmode and compare it to the MATLAB's membrane function.
$\mathrm{u}=$ results.Eigenvectors;
pdeplot(model,'XYData',u(:,1),'ZData',u(:,1));

figure
membrane (1, 20, 9, 9)

Eigenvectors can be multiplied by any scalar and remain eigenvectors. This explains the difference in scale that you see.
membrane can produce the first 12 eigenfunctions for the L-shaped membrane. Compare the 12th eigenmodes.
figure
pdeplot(model,'XYData',u(:,12),'ZData',u(:,12));

figure
membrane (12,20, 9,9)

Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App

This example shows how to compute all eigenmodes with eigenvalues smaller than 100 for the eigenmode PDE problem
$-\Delta u=\lambda u$
on the geometry of the L-shaped membrane. The boundary condition is the Dirichlet condition $u=0$. This example uses the PDE Modeler app. For a programmatic workflow, see "Eigenvalues and Eigenmodes of L-Shaped Membrane" on page 3-258.

To solve this problem in the PDE Modeler app, follow these steps:
1 Draw a polygon with the corners $(0,0),(-1,0),(-1,-1),(1,-1),(1,1)$, and $(0,1)$ by using the pdepoly function.

```
pdepoly([0,-1,-1,1,1,0],[0,0,-1,-1,1,1])
```

2 Check that the application mode is set to Generic Scalar.
3 Use the default Dirichlet boundary condition $u=0$ for all boundaries. To verify it, switch to boundary mode by selecting Boundary > Boundary Mode. Use Edit > Select all to select all boundaries. Select Boundary > Specify Boundary Conditions and verify that the boundary condition is the Dirichlet condition with $h=1, r=0$.
4 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. This is an eigenvalue problem, so select the Eigenmodes type of PDE. The general eigenvalue PDE is described by $-\nabla \cdot(c \nabla u)+a u=\lambda d u$. Thus, for this problem, use the default coefficients $c=1$, $a=0$, and $d=1$.
5 Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the maximum edge size value to 0.05 .
6 Initialize the mesh by selecting Mesh > Initialize Mesh.
7 Specify the eigenvalue range by selecting Solve > Parameters. In the resulting dialog box, use the default eigenvalue range [0 100].
8 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar. By default, the app plots the first eigenfunction.

9 Plot other eigenfunctions by selecting Plot > Parameters and then selecting the corresponding eigenvalue from the drop-down list at the bottom of the dialog box. For example, plot the fifth eigenfunction in the specified range.

| 4 PDE Modeler - [Untitled] | | | | | | | | | | | | | | | | | \square | 回 | x |
| :---: |
| File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help | | | | | | | | | | | | | | | | | | | |
| \square | | \bigcirc | (土) | 2 | $\partial \Omega$ | PDE | \triangle | θ | = | -8) | O) | Gen | eric Scalar | \checkmark | | 0.5972 | Y: | 0.9211 | |
| Set formula: | | | | P1 | | | | | | | | | | | | | | | |

Lambda(12)=71.7178 Color: u

L-Shaped Membrane with Rounded Corner: PDE Modeler App

This example shows how to compute all eigenvalues smaller than 100 and their corresponding eigenvectors. Consider the eigenvalue problem
$-\Delta u=\lambda u$
on an L-shaped membrane with a rounded inner corner. The boundary condition is the Dirichlet condition $u=0$.

To solve this problem in the PDE Modeler app, follow these steps:
1 Draw an L-shaped membrane as a polygon with the corners (0,0), ($-1,0$), ($-1,-1$), ($1,-1$), (1,1), and $(0,1)$ by using the pdepoly function.

```
pdepoly([0 -1 -1 1 1 0],[[0 0 -1 -1 1 1])
```

2 Draw a circle and a square as follows.

```
pdecirc(-0.5,0.5,0.5,'C1')
pderect([-0.5 0 0.5 0],'SQ1')
```

3 Model the geometry with the rounded corner by entering P1+SQ1-C1 in the Set formula field.
4 Check that the application mode is set to Generic Scalar.
5 Remove unnecessary subdomain borders by selecting Boundary > Remove All Subdomain Borders.
6 Use the default Dirichlet boundary condition $u=0$ for all boundaries. To check the boundary condition, switch to boundary mode by selecting Boundary > Boundary Mode. Use Edit > Select all to select all boundaries. Select Boundary > Specify Boundary Conditions and verify that the boundary condition is the Dirichlet condition with $h=1, r=0$.
7 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. This is an eigenvalue problem, so select the Eigenmodes as the type of PDE. The general eigenvalue PDE is described by $-\nabla \cdot(c \nabla u)+a u=\lambda d u$. Thus, for this problem, use the default coefficients $c=1, a=0$, and $d=1$.
8 Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the maximum edge size value to 0.05 .
9 Initialize the mesh by selecting Mesh > Initialize Mesh.
10 Specify the eigenvalue range by selecting Solve > Parameters. In the resulting dialog box, use the default eigenvalue range [0 100].
11 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar. By default, the app plots the first eigenfunction as a color plot.

Lambda(1)=8.4159 Color: u

12 Plot the same eigenfunction as a contour plot. To do this:
a Select Plot > Parameters.
b Clear the Color option and select the Contour option.

Eigenvalues and Eigenmodes of Square

This example shows how to compute the eigenvalues and eigenmodes of a square domain.
The eigenvalue PDE problem is $-\Delta u=\lambda u$. This example finds the eigenvalues smaller than 10 and the corresponding eigenmodes.

Create a model. Import and plot the geometry. The geometry description file for this problem is called squareg.m.

```
model = createpde();
geometryFromEdges(model,@squareg);
pdegplot(model,'EdgeLabels','on')
ylim([-1.5,1.5])
axis equal
```


Specify the Dirichlet boundary condition $u=0$ for the left boundary.
applyBoundaryCondition(model,'dirichlet','Edge', 4, 'u', 0) ;
Specify the zero Neumann boundary condition for the upper and lower boundary.
applyBoundaryCondition(model,'neumann','Edge',[1,3],'g',0,' ' ' , 0);
Specify the generalized Neumann condition $\frac{\partial u}{\partial n}-\frac{3}{4} u=0$ for the right boundary.
applyBoundaryCondition(model,'neumann','Edge',2,'g',0,'q',-3/4);
The eigenvalue PDE coefficients for this problem are $c=1, a=0$, and $d=1$. You can enter the eigenvalue range r as the vector [-Inf 10].

```
specifyCoefficients(model,'m',0,'d',1,'c',1,'a',0,'f',0);
r = [-Inf,10];
```

Create a mesh and solve the problem.
generateMesh(model, 'Hmax', 0.05) ; results = solvepdeeig(model,r);


```
    Basis= 17, Time= 2.48, New conv eig= 0
End of sweep: Basis= 17, Time= 2.48, New conv eig= 0
```

There are six eigenvalues smaller than 10 for this problem.

```
l = results.Eigenvalues
l = 5\times1
    0.4146
    2.0528
    4.8019
    7.2693
    9.4550
```

Plot the first and last eigenfunctions in the specified range.
u = results.Eigenvectors;
pdeplot(model,'XYData',u(:,1));

pdeplot(model,'XYData',u(:,length(l)));

This problem is separable, meaning

$$
u(x, y)=f(x) g(y) .
$$

The functions f and g are eigenfunctions in the x and y directions, respectively. In the x direction, the first eigenmode is a slowly increasing exponential function. The higher modes include sinusoids. In the y direction, the first eigenmode is a straight line (constant), the second is half a cosine, the third is a full cosine, the fourth is one and a half full cosines, etc. These eigenmodes in the y direction are associated with the eigenvalues

$$
0, \frac{\Pi^{2}}{4}, \frac{4 \pi^{2}}{4}, \frac{9 \Pi^{2}}{4}, \ldots
$$

It is possible to trace the preceding eigenvalues in the eigenvalues of the solution. Looking at a plot of the first eigenmode, you can see that it is made up of the first eigenmodes in the x and y directions. The second eigenmode is made up of the first eigenmode in the x direction and the second eigenmode in the y direction.

Look at the difference between the first and the second eigenvalue compared to $\pi^{2} / 4$:

```
l(2) - l(1) - pi^2/4
ans = 1.6751e-07
```

Likewise, the fifth eigenmode is made up of the first eigenmode in the x direction and the third eigenmode in the y direction. As expected, $l(5)-l(1)$ is approximately equal to Π^{2} :
$l(5)-l(1)-\mathrm{pi}^{\wedge} 2$
ans $=6.2135 \mathrm{e}-06$
You can explore higher modes by increasing the search range to include eigenvalues greater than 10.

Eigenvalues and Eigenmodes of Square: PDE Modeler App

This example shows how to compute the eigenvalues and eigenmodes of a square with the corners $(-1,-1),(-1,1),(1,1)$, and $(1,-1)$. This example uses the PDE Modeler app. For programmatic workflow, see "Eigenvalues and Eigenmodes of Square" on page 3-270.

The eigenvalue PDE problem is $-\Delta u=\lambda u$. Find the eigenvalues smaller than 10 and the corresponding eigenmodes.

To solve this problem in the PDE Modeler app, follow these steps:
1 Draw a square with the corners ($-1,-1$), ($-1,1$), (1,1), and ($1,-1$) by using the pderect function.

```
pderect([-1 1 -1 1])
```

2 Check that the application mode is set to Generic Scalar.
3 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary > Boundary Mode. Double-click the boundary to specify the boundary condition.

- Specify the Dirichlet condition $u=0$ for the left boundary. To do this, specify $h=1, r=0$.
- Specify the Neumann condition $\frac{\partial u}{\partial n}=0$ for the upper and lower boundary. To do this, specify g $=0, q=0$.
- Specify the generalized Neumann condition $\frac{\partial u}{\partial n}-\frac{3}{4} u=0$ for the right boundary. To do this, specify $\mathrm{g}=0, \mathrm{q}=-3 / 4$.
4 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. This is a eigenvalue problem, so select the Eigenmodes type of PDE. The general eigenvalue PDE is described by $-\nabla \cdot(c \nabla u)+a u=\lambda d u$. Thus, for this problem, the coefficients are $\mathrm{c}=1, \mathrm{a}=0$, and $\mathrm{d}=1$.
5 Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the maximum edge size value to 0.05 .
6 Initialize the mesh by selecting Mesh > Initialize Mesh.
7 Specify the eigenvalue range by selecting Solve > Parameters. In the resulting dialog box, enter the eigenvalue range as the MATLAB vector [-Inf 10].
8 Solve the PDE by selecting Solve > Solve PDE or clicking the $=$ button on the toolbar. By default, the app plots the first eigenfunction.

9 Plot other eigenfunctions by selecting Plot > Parameters and then selecting the corresponding eigenvalue from the drop-down list at the bottom of the dialog box. For example, plot the last eigenfunction in the specified range.

10 Export the eigenfunctions and eigenvalues to the MATLAB workspace by using the Solve > Export Solution.

Vibration of Circular Membrane

This example shows how to calculate the vibration modes of a circular membrane.
The calculation of vibration modes requires the solution of the eigenvalue partial differential equation. This example compares the solution obtained by using the solvepdeeig solver from Partial Differential Toolbox ${ }^{T \mathrm{TM}}$ and the eigs solver from MATLAB®. Eigenvalues calculated by solvepdeeig and eigs are practically identical, but in some cases one solver is more convenient than the other. For example, eigs is more convenient when calculating a specified number of eigenvalues in the vicinity of a particular target value. While solvepdeeig requires that a lower and upper bound surrounding this target, eigs requires only the target eigenvalue and the desired number of eigenvalues.

Create a PDE model.
model = createpde;
Create the circle geometry and include it in the model.

```
radius = 2;
g = decsg([1 0 0 radius]','C1',('C1')');
geometryFromEdges(model,g);
```

Plot the geometry with the edge labels.

```
figure
pdegplot(model,'EdgeLabels','on')
axis equal
title 'Geometry with Edge Labels'
```


Specify the coefficients.
c = 1e2;
a $=0$;
f = 0;
d = 10;
specifyCoefficients(model,'m',0,'d',d,'c',c,'a',a,'f',f);
Specify that the solution is zero at all four outer edges of the circle.
bOuter = applyBoundaryCondition(model,'dirichlet','Edge',(1:4),'u',0);
Generate a mesh.
generateMesh(model,'Hmax', 0.2);
Use assembleFEMatrices to calculate the global finite element mass and stiffness matrices with boundary conditions imposed using the nullspace approach.

FEMatrices = assembleFEMatrices(model,'nullspace');
K = FEMatrices.Kc;
B = FEMatrices.B;
M = FEMatrices.M;
Solve the eigenvalue problem by using the eigs function.

```
sigma = 1e2;
numberEigenvalues = 5;
[eigenvectorsEigs,eigenvaluesEigs] = eigs(K,M,numberEigenvalues,sigma);
```

Reshape the diagonal eigenvaluesEigs matrix into a vector.

```
eigenvaluesEigs = diag(eigenvaluesEigs);
```

Find the largest eigenvalue and its index in the eigenvalues vector.

```
[maxEigenvaluesEigs,maxIndex] = max(eigenvaluesEigs);
```

Add the constraint values to get the full eigenvector.

```
eigenvectorsEigs = B*eigenvectorsEigs;
```

Now, solve the same eigenvalue problem using solvepdeeig. Set the range for solvepdeeig to be slightly larger than the range from eigs.

```
r = [min(eigenvaluesEigs)*0.99 max(eigenvaluesEigs)*1.01];
result = solvepdeeig(model,r);
```



```
eigenvectorsPde = result.Eigenvectors;
eigenvaluesPde = result.Eigenvalues;
```

Compare the solutions.

```
eigenValueDiff = sort(eigenvaluesPde) - sort(eigenvaluesEigs);
fprintf('Maximum difference in eigenvalues from solvepdeeig and eigs: %e\n', ...
    norm(eigenValueDiff,inf));
Maximum difference in eigenvalues from solvepdeeig and eigs: 1.989520e-13
```

Both functions calculate the same eigenvalues. For any eigenvalue, you can multiply the eigenvector by an arbitrary scalar. The eigs and solvepdeeig functions might choose a different arbitrary scalar for normalizing their eigenvectors.

```
h = figure;
h.Position = [1 1 2 1].*h.Position;
subplot(1,2,1)
axis equal
pdeplot(model,'XYData', eigenvectorsEigs(:,maxIndex),'Contour','on')
title(sprintf('eigs eigenvector, eigenvalue: %12.4e', eigenvaluesEigs(maxIndex)))
xlabel('x')
ylabel('y')
subplot(1,2,2)
axis equal
pdeplot(model,'XYData',eigenvectorsPde(:,end),'Contour','on')
```

```
title(sprintf('solvepdeeig eigenvector, eigenvalue: %12.4e',eigenvaluesPde(end)))
xlabel('x')
ylabel('y')
```


Solution and Gradient Plots with pdeplot and pdeplot3D

2-D Solution and Gradient Plots

To visualize a 2-D scalar PDE solution, you can use the pdeplot function. This function lets you plot the solution without explicitly interpolating the solution. For example, solve the scalar elliptic problem $-\nabla u=1$ on the L-shaped membrane with zero Dirichlet boundary conditions and plot the solution.

Create the PDE model, 2-D geometry, and mesh. Specify boundary conditions and coefficients. Solve the PDE problem.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
c = 1;
a = 0;
f = 1;
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
generateMesh(model);
results = solvepde(model);
```

Use pdeplot to plot the solution.

```
u = results.NodalSolution;
pdeplot(model,'XYData',u,'ZData',u,'Mesh','on')
xlabel('x')
ylabel('y')
```


To get a smoother solution surface, specify the maximum size of the mesh triangles by using the Hmax argument. Then solve the PDE problem using this new mesh, and plot the solution again.
generateMesh(model,'Hmax', 0.05);
results = solvepde(model);
u = results. NodalSolution;

```
pdeplot(model,'XYData',u,'ZData',u,'Mesh','on')
xlabel('x')
ylabel('y')
```


Access the gradient of the solution at the nodal locations.
ux = results. XGradients;
uy = results. YGradients;
Plot the gradient as a quiver plot.

```
pdeplot(model,'FlowData',[ux,uy])
```


3-D Surface and Gradient Plots

Obtain a surface plot of a solution with 3-D geometry and $\mathrm{N}>1$.
First, import a tetrahedral geometry to a model with $\mathrm{N}=2$ equations and view its faces.

```
model = createpde(2);
importGeometry(model,'Tetrahedron.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
view(-40,24)
```


Create a problem with zero Dirichlet boundary conditions on face 4.
applyBoundaryCondition(model,'dirichlet','Face',4,'u',[0,0]);
Create coefficients for the problem, where $f=[1 ; 10]$ and c is a symmetric matrix in 6 N form.
f = [1;10];
a $=0$;
c $=[2 ; 0 ; 4 ; 1 ; 3 ; 8 ; 1 ; 0 ; 2 ; 1 ; 2 ; 4]$;
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
Create a mesh for the solution.
generateMesh(model,'Hmax' , 20) ;
Solve the problem.

```
results = solvepde(model);
u = results.NodalSolution;
```

Plot the two components of the solution.

```
pdeplot3D(model,'ColorMapData',u(:,1))
view(-175,4)
title('u(1)')
```


figure
pdeplot3D(model,'ColorMapData', u(:,2))
view(-175,4)
title('u(2)')

Compute the flux of the solution and plot the results for both components.

```
[cgradx,cgrady,cgradz] = evaluateCGradient(results);
```

figure
pdeplot3D(model,'FlowData',[cgradx(:,1) cgrady(:,1) cgradz(:,1)])

figure
pdeplot3D(model,'FlowData',[cgradx(:,2) cgrady(:,2) cgradz(:,2)])

2-D Solution and Gradient Plots with MATLAB® Functions

You can interpolate the solution and, if needed, its gradient in separate steps, and then plot the results by using MATLAB® functions, such as surf, mesh, quiver, and so on. For example, solve the same scalar elliptic problem $-\Delta u=1$ on the L-shaped membrane with zero Dirichlet boundary conditions. Interpolate the solution and its gradient, and then plot the results.

Create the PDE model, 2-D geometry, and mesh. Specify boundary conditions and coefficients. Solve the PDE problem.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet','edge',1:model.Geometry.NumEdges,'u',0);
c = 1;
a = 0;
f = 1;
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
generateMesh(model,'Hmax',0.05);
results = solvepde(model);
```

Interpolate the solution and its gradients to a dense grid from -1 to 1 in each direction.

```
v = linspace(-1,1,101);
[X,Y] = meshgrid(v);
querypoints = [X(:),Y(:)]';
uintrp = interpolateSolution(results,querypoints);
```

Plot the resulting solution on a mesh.

```
uintrp = reshape(uintrp,size(X));
mesh(X,Y,uintrp)
xlabel('x')
ylabel('y')
```


Interpolate gradients of the solution to the grid from -1 to 1 in each direction. Plot the result using quiver.

```
[gradx,grady] = evaluateGradient(results,querypoints);
figure
quiver(X(:),Y(:),gradx,grady)
xlabel('x')
ylabel('y')
```

Zoom in to see more details. For example, restrict the range to [-0.2, 0.2] in each direction.

```
axis([-0.2 0.2 -0.2 0.2])
```


Plot the solution and the gradients on the same range.

```
figure
h1 = meshc(X,Y,uintrp);
set(h1,'FaceColor','g','EdgeColor','b')
xlabel('x')
ylabel('y')
alpha(0.5)
hold on
Z = -0.05*ones(size(X));
gradz = zeros(size(gradx));
h2 = quiver3(X(:),Y(:),Z(:),gradx,grady,gradz);
set(h2,'Color','r')
axis([-0.2,0.2,-0.2,0.2])
```


Slice of the solution plot along the line $\mathrm{x}=\mathrm{y}$.

```
figure
mesh(X,Y,uintrp)
xlabel('x')
ylabel('y')
alpha(0.25)
hold on
z = linspace(0,0.15,101);
Z = meshgrid(z);
surf(X,X,Z')
view([-20 -45 15])
colormap winter
```


Plot the interpolated solution along the line.

```
figure
xq = v;
yq = v;
uintrp = interpolateSolution(results,xq,yq);
plot3(xq,yq,uintrp)
grid on
xlabel('x')
ylabel('y')
```

Interpolate gradients of the solution along the same line and add them to the solution plot.
[gradx,grady] = evaluateGradient(results, $x q, y q$);
gradx = reshape(gradx, size(xq));
grady = reshape(grady,size(yq));
hold on
quiver($x q, y q, g r a d x, g r a d y)$
view([-20 -45 75])

3-D Solution and Gradient Plots with MATLAB® Functions

Types of 3-D Solution Plots Available in MATLAB

In addition to surface and gradient plots available with the PDE plotting functions, you can use MATLAB graphics capabilities to create more types of plots for your 3-D model.

- Plot on a 2-D slice - To examine the solution on the interior of the geometry, define a 2-D grid that intersects the geometry, and interpolate the solution onto the grid. For examples, see "2-D Slices Through 3-D Geometry" on page 3-297 and "Contour Slices Through 3-D Solution" on page 3-300. While these two examples show planar grid slices, you can also slice on a curved grid.
- Streamline or quiver plots - Plot the gradient of the solution as streamlines or a quiver. See "Plots of Gradients and Streamlines" on page 3-304.
- You can use any MATLAB plotting command to create 3-D plots. See "Techniques for Visualizing Scalar Volume Data" and "Visualizing Vector Volume Data".

2-D Slices Through 3-D Geometry

This example shows how to obtain plots from 2-D slices through a 3-D geometry.
The problem is

$$
\frac{\partial u}{\partial t}-\Delta u=f
$$

on a 3-D slab with dimensions 10 -by-10-by-1, where $u=0$ at time $t=0$, boundary conditions are Dirichlet, and

$$
f(x, y, z)=1+y+10 z^{2}
$$

Set Up and Solve the PDE

Define a function for the nonlinear f coefficient in the syntax as given in " f Coefficient for specifyCoefficients" on page 2-74.
function bcMatrix = myfffun(region,state)
bcMatrix = 1+10*region.z.^2+region.y;
Import the geometry and examine the face labels.

```
model = createpde;
g = importGeometry(model,'Plate10x10x1.stl');
pdegplot(g,'FaceLabels','on','FaceAlpha',0.5)
```


The faces are numbered 1 through 6 .
Create the coefficients and boundary conditions.

```
c = 1;
a = 0;
d = 1;
f = @myfffun;
specifyCoefficients(model,'m',0,'d',d,'c',c,'a',a,'f',f);
applyBoundaryCondition(model,'dirichlet','face',1:6,'u',0);
```

Set a zero initial condition.

```
setInitialConditions(model,0);
```

Create a mesh with sides no longer than 0.3 .
generateMesh(model,'Hmax', 0.3);
Set times from 0 through 0.2 and solve the PDE.

```
tlist = 0:0.02:0.2;
results = solvepde(model,tlist);
```


Plot Slices Through the Solution

Create a grid of (x, y, z) points, where $x=5$, y ranges from 0 through 10 , and z ranges from 0 through 1. Interpolate the solution to these grid points and all times.

```
yy = 0:0.5:10;
zz = 0:0.25:1;
[YY,ZZ] = meshgrid(yy,zz);
XX = 5*ones(size(YY));
uintrp = interpolateSolution(results,XX,YY,ZZ,1:length(tlist));
```

The solution matrix uintrp has 11 columns, one for each time in t list. Take the interpolated solution for the second column, which corresponds to time 0.02.

```
usol = uintrp(:,2);
```

The elements of usol come from interpolating the solution to the XX, YY, and ZZ matrices, which are each 5-by-21, corresponding to z -by-y variables. Reshape usol to the same 5 -by- 21 size, and make a surface plot of the solution. Also make surface plots corresponding to times $0.06,0.10$, and 0.20 .

```
figure
usol = reshape(usol,size(XX));
subplot(2,2,1)
surf(usol)
title('t = 0.02')
zlim([0,1.5])
xlim([1,21])
ylim([1,5])
usol = uintrp(:,4);
usol = reshape(usol,size(XX));
subplot(2,2,2)
surf(usol)
title('t = 0.06')
zlim([0,1.5])
xlim([1,21])
ylim([1,5])
usol = uintrp(:,6);
usol = reshape(usol,size(XX));
subplot(2,2,3)
surf(usol)
title('t = 0.10')
zlim([0,1.5])
xlim([1,21])
ylim([1,5])
usol = uintrp(:,11);
usol = reshape(usol,size(XX));
subplot(2,2,4)
surf(usol)
title('t = 0.20')
zlim([0,1.5])
xlim([1,21])
ylim([1,5])
```


Contour Slices Through 3-D Solution

This example shows how to create contour slices in various directions through a solution in 3-D geometry.

Set Up and Solve the PDE

The problem is to solve Poisson's equation with zero Dirichlet boundary conditions for a complicated geometry. Poisson's equation is

$$
-\nabla \cdot \nabla u=f
$$

Partial Differential Equation Toolbox ${ }^{\mathrm{TM}}$ solves equations in the form

$$
-\nabla \cdot \nabla(c u)+a u=f .
$$

So you can represent the problem by setting $c=1$ and $a=0$. Arbitrarily set $f=10$.
c = 1;
a $=0$;
f = 10;
The first step in solving any 3-D PDE problem is to create a PDE Model. This is a container that holds the number of equations, geometry, mesh, and boundary conditions for your PDE. Create the model, then import the 'ForearmLink.stl' file and view the geometry.

```
N = 1;
model = createpde(N);
importGeometry(model,'ForearmLink.stl');
pdegplot(model,'FaceAlpha',0.5)
view(-42,24)
```


Specify PDE Coefficients

Include the PDE coefficients in model.
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
Create zero Dirichlet boundary conditions on all faces.
applyBoundaryCondition(model,'dirichlet','Face',1:model.Geometry.NumFaces, 'u', 0);
Create a mesh and solve the PDE.
generateMesh(model);
result = solvepde(model);
Plot the Solution as Contour Slices
Because the boundary conditions are $u=0$ on all faces, the solution u is nonzero only in the interior. To examine the interior, take a rectangular grid that covers the geometry with a spacing of one unit in each coordinate direction.
$[\mathrm{X}, \mathrm{Y}, \mathrm{Z}]=$ meshgrid(0:135,0:35,0:61);

For plotting and analysis, create a PDEResults object from the solution. Interpolate the result at every grid point.
$\mathrm{V}=$ interpolateSolution(result, $\mathrm{X}, \mathrm{Y}, \mathrm{Z})$;
V = reshape(V,size(X));
Plot contour slices for various values of z.
figure
colormap jet
contourslice(X,Y,Z,V,[],[], 0:5:60)
xlabel('x')
ylabel('y')
zlabel('z')
colorbar
view(-11,14)
axis equal

Plot contour slices for various values of y.

```
figure
colormap jet
contourslice(X,Y,Z,V,[],1:6:31,[])
xlabel('x')
ylabel('y')
zlabel('z')
colorbar
```

view(-62,34)
axis equal

Save Memory by Evaluating As Needed

For large problems you can run out of memory when creating a fine 3-D grid. Furthermore, it can be time-consuming to evaluate the solution on a full grid. To save memory and time, evaluate only at the points you plot. You can also use this technique to interpolate to tilted grids, or to other surfaces.

For example, interpolate the solution to a grid on the tilted plane $0 \leq x \leq 135,0 \leq y \leq 35$, and $z=x / 10+y / 2$. Plot both contours and colored surface data. Use a fine grid, with spacing 0.2 .
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(0:0.2:135,0:0.2:35);
$Z=X / 10+Y / 2$;
$\mathrm{V}=$ interpolateSolution(result, $\mathrm{X}, \mathrm{Y}, \mathrm{Z})$;
V = reshape(V,size(X));
figure
subplot (2,1,1)
contour (X,Y,V);
axis equal
title('Contour Plot on Tilted Plane')
xlabel('x')
ylabel('y')
colorbar
subplot (2,1,2)
surf(X,Y,V,'LineStyle','none');
axis equal

```
view(0,90)
title('Colored Plot on Tilted Plane')
xlabel('x')
ylabel('y')
colorbar
```


Plots of Gradients and Streamlines

This example shows how to calculate the approximate gradients of a solution, and how to use those gradients in a quiver plot or streamline plot.

The problem is the calculation of the mean exit time of a Brownian particle from a region that contains absorbing (escape) boundaries and reflecting boundaries. For more information, see Narrow escape problem. The PDE is Poisson's equation with constant coefficients. The geometry is a simple rectangular solid. The solution $u(x, y, z)$ represents the mean time it takes a particle starting at position (x, y, z) to exit the region.

Import and View the Geometry

```
model = createpde;
importGeometry(model,'Block.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
view(-42,24)
```


Set Boundary Conditions

Set faces 1,2 , and 5 to be the places where the particle can escape. On these faces, the solution $u=0$. Keep the default reflecting boundary conditions on faces 3,4 , and 6 .
applyBoundaryCondition(model,'dirichlet','Face',[1,2,5],'u', 0);

Create PDE Coefficients

The PDE is

$$
-\Delta u=-\nabla \cdot \nabla u=2
$$

In Partial Differential Equation Toolbox ${ }^{\mathrm{TM}}$ syntax,

$$
-\nabla \cdot(c \nabla u)+a u=f
$$

This equation translates to coefficients $c=1, a=0$, and $f=2$. Enter the coefficients.
c = 1;
a $=0$;
f = 2;
specifyCoefficients(model,'m',0,'d',0,'c',c','a',a,'f',f);

Create Mesh and Solve PDE

Initialize the mesh.

```
generateMesh(model);
```

Solve the PDE.

```
results = solvepde(model);
```


Examine the Solution in a Contour Slice Plot

Create a grid and interpolate the solution to the grid.

```
[X,Y,Z] = meshgrid(0:135,0:35,0:61);
V = interpolateSolution(results,X,Y,Z);
V = reshape(V,size(X));
```

Create a contour slice plot for five fixed values of the y-coordinate.

```
figure
colormap jet
contourslice(X,Y,Z,V,[],0:4:16,[])
xlabel('x')
ylabel('y')
zlabel('z')
xlim([0,100])
ylim([0,20])
zlim([0,50])
axis equal
view(-50,22)
colorbar
```


The particle has the largest mean exit time near the point $(x, y, z)=(100,0,0)$.

Use Gradients for Quiver and Streamline Plots

Examine the solution in more detail by evaluating the gradient of the solution. Use a rather coarse mesh so that you can see the details on the quiver and streamline plots.

```
[X,Y,Z] = meshgrid(1:9:99,1:3:20,1:6:50);
[gradx,grady,gradz] = evaluateGradient(results,X,Y,Z);
```

Plot the gradient vectors. First reshape the approximate gradients to the shape of the mesh.

```
gradx = reshape(gradx,size(X));
grady = reshape(grady,size(Y));
gradz = reshape(gradz,size(Z));
figure
quiver3(X,Y,Z,gradx,grady,gradz)
axis equal
xlabel 'x'
ylabel 'y'
zlabel 'z'
title('Quiver Plot of Estimated Gradient of Solution')
```


Quiver Plot of Estimated Gradient of Solution

Plot the streamlines of the approximate gradient. Start the streamlines from a sparser set of initial points.
hold on
[sx,sy,sz] = meshgrid([1,46],1:6:20,1:12:50);
streamline($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{gradx}, \mathrm{grady}, \mathrm{gradz}, \mathrm{sx}, \mathrm{sy}, \mathrm{sz})$
title('Quiver Plot with Streamlines')
hold off

Quiver Plot with Streamlines

The streamlines show that small values of y and z give larger mean exit times. They also show that the x -coordinate has a significant effect on u when x is small, but when x is greater than 40 , the larger values have little effect on u. Similarly, when z is less than 20 , its values have little effect on u.

Dimensions of Solutions, Gradients, and Fluxes

solvepde returns a StationaryResults or TimeDependentResults object whose properties contain the solution and its gradient at the mesh nodes. You can interpolate the solution and its gradient to other points in the geometry by using interpolateSolution and evaluateGradient. You also can compute flux of the solution at the mesh nodes and at arbitrary points by using evaluateCGradient.

Note solvepde does not compute components of flux of a PDE solution. To compute flux of the solution at the mesh nodes, use evaluateCGradient.
solvepdeeig returns an EigenResults object whose properties contain the solution eigenvectors calculated at the mesh nodes. You can interpolate the solution to other points by using interpolateSolution.

The dimensions of the solution, its gradient, and flux of the solution depend on:

- The number of geometric evaluation points.
- For results returned by solvepde or solvepdeeig, this is the number of mesh nodes.
- For results returned by interpolateSolution,evaluateGradient, and evaluateCGradient this is the number of query points.
- The number of equations.
- For results returned by solvepde or solvepdeeig, this is the number of equations in the system.
- For results returned by interpolateSolution,evaluateGradient, and evaluateCGradient, this is the number of query equation indices.
- The number of times for a time-dependent problem or number of modes for an eigenvalue problem.
- For results returned by solvepde, this is the number of solution times (specified as an input to solvepde).
- For results returned by solvepdeeig, this is the number of eigenvalues.
- For results returned by interpolateSolution, evaluateGradient, and evaluateCGradient, this is the number of query times for time-dependent problems or query modes for eigenvalue problems.

Stationary

Scalar Problem

Time-Dependent or Eigenvalue Scalar Problem

Stationary System

Equation Number

Time-Dependent or Eigenvalue System

Equation Number

Suppose you have a problem in which:

- $N p$ is the number of nodes in the mesh.
- Nt is the number of times for a time-dependent problem or number of modes for an eigenvalue problem.
- N is the number of equations in the system.

Suppose you also compute the solution, its gradient, or flux of the solution at other points ("query points") in the geometry by using interpolateSolution, evaluateGradient, or evaluateCGradient, respectively. Here:

- Nqp is the number of query points.
- Nqt is the number of query times for a time-dependent problem or number of query modes for an eigenvalue problem.
- Nq is the number of query equations indices.

The tables show how to index into the solution returned by solvepde or solvepdeeig, where:

- iP contains the indices of nodes.
- iT contains the indices of times for a time-dependent problem or mode numbers for an eigenvalue problem.
- iN contains the indices of equations.

The tables also show the dimensions of solutions, gradients, and flux of the solution at nodal locations (returned by solvepde,solvepdeeig, and evaluateCGradient) and the dimensions of interpolated solutions and gradients (returned by interpolateSolution, evaluateGradient, and evaluateCGradient).

| Stationary
 PDE problem | Access solution and components of
 gradient | Size of NodalSolution,
 XGradients,
 YGradients,
 ZGradients, and
 components of flux at
 nodal points | components of,
 gradient, and
 components of flux at
 query points |
| :--- | :--- | :--- | :--- |
| Scalar | result. NodalSolution(iP)
 result.XGradients(iP)
 result.YGradients(iP)
 result.ZGradients(iP) | Np-by-1 | Nqp-by-1 |
| System, N > 1 | result.NodalSolution(iP, iN)
 result.XGradients(iP, iN)
 result.YGradients(iP, iN)
 result.ZGradients(iP,iN) | Np-by-N | Nqp-by-N |

| Timedependent PDE problem | Access solution and components of gradient | Size of NodalSolution, XGradients, YGradients, ZGradients, and components of flux at nodal points | Size of solution, components of gradient, and components of flux at query points |
| :---: | :---: | :---: | :---: |
| Scalar | ```result.NodalSolution(iP,iT) result.XGradients(iP,iT) result.YGradients(iP,iT) result.ZGradients(iP,iT)``` | Np-by-Nt | Nqp-by-Nqt |
| System, N > 1 | result.NodalSolution(iP, iN, iT) result.XGradients(iP, iN, iT) result.YGradients(iP,iN,iT) result.ZGradients(iP,iN,iT) | Np-by-N-by-Nt | Nqp-by-Nq-by-Nqt |

| PDE
 eigenvalue
 problem | Access eigenvectors | Size of Eigenvectors | Size of interpolated
 eigenvectors |
| :--- | :--- | :--- | :--- |
| Scalar | result.Eigenvectors(iP,iT) | Np-by-Nt | Nqp-by-Nqt |
| System, N > 1 | result.Eigenvectors(iP,iN,iT) | Np-by-N-by-Nt | Nqp-by-Nq-by-Nqt |

See Also
 EigenResults | StationaryResults | TimeDependentResults|evaluateGradient | interpolateSolution | solvepde | solvepdeeig

PDE Modeler App

You open the PDE Modeler app by entering pdeModeler at the command line. The main components of the PDE Modeler app are the menus, the dialog boxes, and the toolbar.

- "Open the PDE Modeler App" on page 4-2
- "2-D Geometry Creation in PDE Modeler App" on page 4-3
- "Specify Boundary Conditions in the PDE Modeler App" on page 4-12
- "Specify Coefficients in PDE Modeler App" on page 4-14
- "Specify Mesh Parameters in the PDE Modeler App" on page 4-24
- "Adjust Solve Parameters in the PDE Modeler App" on page 4-26
- "Plot the Solution in the PDE Modeler App" on page 4-31

Open the PDE Modeler App

You can open the PDE Modeler app using the Apps tab or typing the commands in the MATLAB Command Window.

Use the Apps Tab

1 On the MATLAB Toolstrip, click the Apps tab.
2 On the Apps tab, click the down arrow at the end of the Apps section.
3 Under Math, Statistics and Optimization, click the PDE button.

Use Commands

- To open a blank PDE Modeler app window, type pdeModeler in the MATLAB Command Window.
- To open the PDE Modeler app with a circle already drawn in it, type pdecirc in the MATLAB Command Window.
- To open the PDE Modeler app with an ellipse already drawn in it, type pdeellip in the MATLAB Command Window.
- To open the PDE Modeler app with a rectangle already drawn in it, type pderect in the MATLAB Command Window.
- To open the PDE Modeler app with a polygon already drawn in it, type pdepoly in the MATLAB Command Window.

You can use a sequence of drawing commands to create several basic shapes. For example, the following commands create a circle, a rectangle, an ellipse, and a polygon:

```
pderect([-1.5,0,-1,0])
pdecirc(0,0,1)
pdepoly([-1,0,0,1,1,-1],[0,0,1,1,-1,-1])
pdeellip(0,0,1,0.3,pi)
```


2-D Geometry Creation in PDE Modeler App

Create Basic Shapes

The PDE Modeler app lets you draw four basic shapes: a circle, an ellipse, a rectangle, and a polygon. To draw a basic shape, use the Draw menu or one of the following buttons on the toolbar. To cut, clear, copy, and paste the solid objects, use the Edit menu.

| \square | Draw a rectangle/square starting at a corner.
 Using the left mouse button, drag to create a rectangle. Using the right mouse button (or Ctrl
 +click), drag to create a square. |
| :--- | :--- |
| + | Draw a rectangle/square starting at the center.
 Using the left mouse button, drag to create a rectangle. Using the right mouse button (or Ctrl
 +click), drag to create a square. |
| | Draw an ellipse/circle starting at the perimeter.
 Using the left mouse button, drag to create an ellipse. Using the right mouse button (or Ctrl
 +click), drag to create a circle. |
| Φ | Draw an ellipse/circle starting at the center.
 Using the left mouse button, drag to create an ellipse. Using the right mouse button (or Ctrl
 +click), drag to create a circle. |
| Σ | Draw a polygon.
 Using the left mouse button, drag to create polygon edges. You can close the polygon by
 pressing the right mouse button. Clicking at the starting vertex also closes the polygon. |

Alternatively, you can create a basic shape by typing one of the following commands in the MATLAB Command Window:

- pdecirc draws a circle.
- pdeellip draws an ellipse.
- pderect draws a rectangle.
- pdepoly draws a polygon.

These commands open the PDE Modeler app with the requested shape already drawn in it. If the app is already open, these commands add the requested shape to the app window without deleting any existing shapes.

You can use a sequence of drawing commands to create several basic shapes. For example, these commands create a circle, a rectangle, an ellipse, and a polygon:

```
pderect([-1.5,0,-1,0])
pdecirc(0,0,1)
pdepoly([-1,0,0,1,1,-1],[0,0,1,1,-1,-1])
pdeellip(0,0,1,0.3,pi)
```


Select Several Shapes

- To select a single shape, click it using the left mouse button.
- To select several shapes and to deselect shapes, use Shift+click (or click using the middle mouse button). Clicking outside of all shapes, deselects all shapes.
- To select all the intersecting shapes, click the intersection of these shapes.
- To select all shapes, use the Select All option from the Edit menu.

Rotate Shapes

To rotate a shape:
1 Select the shapes.
2 Select Rotate from the Draw menu.
3 In the resulting Rotate dialog box, enter the rotation angle in degrees. To rotate counterclockwise, use positive values of rotation angles. To rotate clockwise, use negative values.

4 By default, the rotation center is the center-of-mass of the selected shapes. To use a different rotation center, clear the Use center-of-mass option and enter a rotation center ($x \mathrm{c}, \mathrm{yc}$) as a 1-by-2 vector, for example, [-0.4 0.3].

Create Complex Geometries

You can specify complex geometries by overlapping basic shapes. This approach is called Constructive Solid Geometry (CSG). The PDE Modeler app lets you combine basic shapes by using their unique names.

The app assigns a unique name to each shape. The names depend on the type of the shape:

- For circles, the default names are C1, C2, C3, and so on.
- For ellipses, the default names are E1, E2, E3, and so on.
- For polygons, the default names are P1, P2, P3, and so on.
- For rectangles, the default names are R1, R2, R3, and so on.
- For squares, the default names are SQ1, SQ2, SQ3, and so on.

To change the name and parameters of a shape, first switch to the draw mode and then double-click the shape. (Select Draw Mode from the Draw menu to switch to the draw mode.) The resulting
dialog box lets you change the name and parameters of the selected shape. The name cannot contain spaces.

| A Object Dialog | | |
| :--- | :--- | :--- |
| Object type: Circle
 X-center: -0.76864244741873811
 Y-center: 0.18642447418738062
 Radius: 0.29254302103250485
 Name: C1
 OK | \square | |

Now you can combine basic shapes to create a complex geometry. To do this, use the Set formula field located under the toolbar. Here you can specify a geometry by using the names of basic shapes and the following operators:

- + is the set union operator.

For example, SQ1+C2 creates a geometry comprised of all points of the square SQ1 and all points of the circle C2.

- * is the set intersection operator.

For example, SQ1*C2 creates a geometry comprised of the points that belong to both the square SQ1 and the circle C2.

- - is the set difference operator.

For example, SQ1-C2 creates a geometry comprised of the points of the square SQ1 that do not belong to the circle C2.

The operators + and * have the same precedence. The operator - has a higher precedence. You can control the precedence by using parentheses. The resulting geometrical model (called decomposed geometry) is the set of points for which the set formula evaluates to true. By default, it is the union of all basic shapes.

Adjust Axes Limits and Grid

To adjust axes limits:

- Select Axes Limits from the Options menu
- Specify the range of the x-axis and the y-axis as a 1 -by-2 vector such as [-10 10]. If you select Auto, the app uses automatic scaling for the corresponding axis.

- Apply the specified axes ranges by clicking Apply.
- Close the dialog box by clicking Close.

To add axis grid, the snap-to-grid feature, and zoom, use the Options menu. To adjust the grid spacing:

- Select Grid Spacing from the Options menu.
- By default, the app uses automatic linear grid spacing. To enable editing the fields for linear spacing and extra ticks, clear Auto.

- Specify the grid spacing for the x-axis and y-axis. For example, change the default linear spacing -1.5:0.5:1.5 to -1:0.2:1.

You also can add extra ticks to customize the grid and aid in drawing. To separate extra tick entries, use spaces, commas, semicolons, or brackets.

| 4 Grid Spacing | \square Auto |
| :--- | :---: |
| X-axis linear spacing: \square Auto
 $-1.5: 0.2: 1.5$
 X-axis extra ticks:
 Y-axis linear spacing: \square
 $-1: 0.2: 1$
 Y-axis extra ticks:
 -0.5 0.5 | |

- Apply the specified grid spacing by clicking Apply.
- Close the dialog box by clicking Done.

Create Geometry with Rounded Corners

1 Open the PDE Modeler app by using the pdeModeler command.
2 Display grid lines by selecting Options > Grid.
3 Align new shapes to the grid lines by selecting Options > Snap.
4 Set the grid spacing for x-axis to -1.5:0.1:1.5 and for y-axis to -1:0.1:1. To do this, select Options > Grid Spacing, clear the Auto checkboxes, and set the corresponding ranges.
5 Draw a rectangle with the width 2 , the height 1 , and the top left corner at ($-1,0.5$). To do this,
first click the button. Then click the point $(-1,0.5)$ and drag to draw a rectangle.

To edit the parameters of the rectangle, double-click it. In the resulting dialog box, specify the exact parameters.

6 Draw four circles with the radius 0.2 and the centers at ($-0.8,-0.3$), ($-0.8,0.3$), ($0.8,-0.3$), and
$(0.8,0.3)$.To do this, first click the + button. Then click the center of a circle using the right mouse button and drag to draw a circle. The right mouse button constrains the shape you draw to be a circle rather than an ellipse. If the circle is not a perfect unit circle, then double-click it. In the resulting dialog box, specify the exact center location and radius of the circle.
7 Add four squares with the side 0.2 , one in each corner.

8 Model the geometry with rounded corners by subtracting the small squares from the rectangle, and then adding the circles. To do this, enter the following formula in the Set formula field.

R1- (SQ1+SQ2+SQ3+SQ4) +C1+C2+C3+C4
9
Switch to the boundary mode by clicking the Mode. The CSG model is now decomposed using the set formula, and you get a rectangle with rounded corners.

10 Because of the intersection of the solid objects used in the initial CSG model, a number of subdomain borders remain. They appear as gray lines. To remove these borders, select Boundary > Remove All Subdomain Borders.

Specify Boundary Conditions in the PDE Modeler App

Select Boundary Mode from the Boundary menu or click the
$\partial \Omega$
button. Then select a boundary or multiple boundaries for which you are specifying the conditions. Note that no if you do not select any boundaries, then the specified conditions apply to all boundaries.

- To select a single boundary, click it using the left mouse button.
- To select several boundaries and to deselect them, use Shift+click (or click using the middle mouse button).
- To select all boundaries, use the Select All option from the Edit menu.

Select Specify Boundary Conditions from the Boundary menu.

Specify Boundary Conditions opens a dialog box where you can specify the boundary condition for the selected boundary segments. There are three different condition types:

- Generalized Neumann conditions, where the boundary condition is determined by the coefficients q and g according to the following equation:

$$
\vec{n} \cdot(c \nabla u)+q u=g .
$$

In the system cases, q is a 2 -by-2 matrix and g is a 2 -by-1 vector.

- Dirichlet conditions: u is specified on the boundary. The boundary condition equation is $h u=r$, where h is a weight factor that can be applied (normally 1).

In the system cases, h is a 2 -by-2 matrix and r is a 2 -by- 1 vector.

- Mixed boundary conditions (system cases only), which is a mix of Dirichlet and Neumann conditions. q is a 2 -by- 2 matrix, g is a 2 -by- 1 vector, h is a 1 -by- 2 vector, and r is a scalar.

The following figure shows the dialog box for the generic system PDE (Options > Application > Generic System).

For boundary condition entries you can use the following variables in a valid MATLAB expression:

- The 2-D coordinates x and y.
- A boundary segment parameter s, proportional to arc length. s is 0 at the start of the boundary segment and increases to 1 along the boundary segment in the direction indicated by the arrow.
- The outward normal vector components $n x$ and ny. If you need the tangential vector, it can be expressed using $n x$ and ny since $t_{x}=-n_{y}$ and $t_{y}=n_{x}$.
- The solution u.
- The time t.

Note If the boundary condition is a function of the solution u, you must use the nonlinear solver. If the boundary condition is a function of the time t, you must choose a parabolic or hyperbolic PDE.

Examples: (100-80*s).*nx, and $\cos \left(x .{ }^{\wedge} 2\right)$
In the nongeneric application modes, the Description column contains descriptions of the physical interpretation of the boundary condition parameters.

Specify Coefficients in PDE Modeler App

Coefficients for Scalar PDEs

To enter coefficients for your PDE, select PDE > PDE Specification.

| (4)PDE Specification | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Equation: | $-\operatorname{div}\left(\mathrm{c}^{*} \mathrm{grad}(\mathrm{u})\right.$) $+\mathrm{a}^{*} u=\mathrm{f}$ | | | |
| Type of PDE: | Coefficient | Value | | |
| (0) Elliptic | c | 1.0 | | |
| - Parabolic | a | 0.0 | | |
| \bigcirc Hyperbolic | f | 10.0 | | |
| - Eigenmodes | d | 1.0 | | |
| OK Cancel | | | | |

Enter text expressions using these conventions:

- $x-x$-coordinate
- $y-y$-coordinate
- $u-$ Solution of equation
- ux - Derivative of u in the x-direction
- uy - Derivative of u in the y-direction
- t - Time (parabolic and hyperbolic equations)
- sd - Subdomain number

For example, you could use this expression to represent a coefficient:
$(x+y) . /(x . \wedge 2+y . \wedge 2+1)+3+\sin (t) . /(1+u . \wedge 4)$
For elliptic problems, when you include u, ux, or uy, you must use the nonlinear solver. Select Solve > Parameters > Use nonlinear solver.

Note

- Do not use quotes or unnecessary spaces in your entries. The parser can misinterpret a space as a vector separator, as when a MATLAB vector uses a space to separate elements of a vector.
- Use .*, ./, and .^ for multiplication, division, and exponentiation operations. The text expressions operate on row vectors, so the operations must make sense for row vectors. The row vectors are the values at the triangle centroids in the mesh.

You can write MATLAB functions for coefficients as well as plain text expressions. For example, suppose your coefficient f is given by the file fcoeff.m.
function $f=f$ coeff $(x, y, t, s d)$

```
f = (x.*y)./(1 + x.^2 + y.^2); % f on subdomain 1
f = f + log(1 + t); % include time
r = (sd == 2); % subdomain 2
f2 = cos(x + y); % coefficient on subdomain 2
f(r) = f2(r); % f on subdomain 2
```

Use fcoeff $(x, y, t, s d)$ as the \mathbf{f} coefficient in the parabolic solver.

| Coefficient | Value |
| :--- | :--- |
| c | 1.0 |
| a | 0.0 |
| f | fcoeff $(x, y, t, s d)$ |
| d | 1.0 |

The coefficient c is a 2-by-2 matrix. You can give 1-, 2-, 3-, or 4-element matrix expressions. Separate the expressions for elements by spaces. These expressions mean:

- 1-element expression: $\left(\begin{array}{ll}C & 0 \\ 0 & C\end{array}\right)$
- 2-element expression: $\left(\begin{array}{cc}c(1) & 0 \\ 0 & c(2)\end{array}\right)$
- 3-element expression: $\left(\begin{array}{ll}c(1) & c(2) \\ c(2) & c(3)\end{array}\right)$
- 4-element expression: $\left(\begin{array}{ll}c(1) & c(3) \\ c(2) & c(4)\end{array}\right)$

For example, c is a symmetric matrix with constant diagonal entries and $\cos (x y)$ as the off-diagonal terms:

$1.1 \cos (x . * y) 5.5$

| Coefficient | Value |
| :--- | :--- |
| c | $1.1 \cos \left(\mathrm{x} .{ }^{\text {y }} \mathrm{y}\right) 5.5$ |
| a | 0.0 |
| f | 10.0 |
| d | 1.0 |

This corresponds to coefficients for the parabolic equation

$$
\frac{\partial u}{\partial t}-\nabla \cdot\left(\left(\begin{array}{cc}
1.1 & \cos (x y) \\
\cos (x y) & 5.5
\end{array}\right) \nabla u\right)=10
$$

Coefficients for Systems of PDEs

You can enter coefficients for a system with $N=2$ equations in the PDE Modeler app. To do so, open the PDE Modeler app and select Generic System.

Then select PDE > PDE Specification.

Enter character expressions for coefficients using the form in "Coefficients for Scalar PDEs" on page 4-14, with additional options for nonlinear equations. The additional options are:

- Represent the ith component of the solution u using ' $u(i)$ ' for $i=1$ or 2 .
- Similarly, represent the ith components of the gradients of the solution u using 'ux(i)' and 'uy(i)' for $i=1$ or 2 .

Note For elliptic problems, when you include coefficients u(i), ux(i), or uy(i), you must use the nonlinear solver. Select Solve > Parameters > Use nonlinear solver.

Do not use quotes or unnecessary spaces in your entries.
For higher-dimensional systems, do not use the PDE Modeler app. Represent your problem coefficients at the command line.

You can enter scalars into the c matrix, corresponding to these equations:
$-\nabla \cdot\left(c_{11} \nabla u_{1}\right)-\nabla \cdot\left(c_{12} \nabla u_{2}\right)+a_{11} u_{1}+a_{12} u_{2}=f_{1}$
$-\nabla \cdot\left(c_{21} \nabla u_{1}\right)-\nabla \cdot\left(c_{22} \nabla u_{2}\right)+a_{21} u_{1}+a_{22} u_{2}=f_{2}$
If you need matrix versions of any of the cij coefficients, enter expressions separated by spaces. You can give 1-, 2-, 3 -, or 4-element matrix expressions. These mean:

- 1-element expression: $\left(\begin{array}{ll}C & 0 \\ 0 & C\end{array}\right)$
- 2-element expression: $\left(\begin{array}{cc}c(1) & 0 \\ 0 & c(2)\end{array}\right)$
- 3-element expression: $\left(\begin{array}{ll}c(1) & c(2) \\ c(2) & c(3)\end{array}\right)$
- 4-element expression: $\left(\begin{array}{ll}c(1) & c(3) \\ c(2) & c(4)\end{array}\right)$

For example, these expressions show one of each type (1-, 2-, 3-, and 4-element expressions)

These expressions correspond to the equations

$$
\begin{aligned}
& -\nabla \cdot\left(\left(\begin{array}{cc}
4+\cos (x y) & 0 \\
0 & 4+\cos (x y)
\end{array}\right) \nabla u_{1}\right)-\nabla \cdot\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \nabla u_{2}\right)=1 \\
& -\nabla \cdot\left(\left(\begin{array}{cc}
1 & .2 \\
.2 & .3
\end{array}\right) \nabla u_{1}\right)-\nabla \cdot\left(\left(\begin{array}{cc}
7 & .6 \\
.5 & \exp (x-y)
\end{array}\right) \nabla u_{2}\right)=2
\end{aligned}
$$

Coefficients That Depend on Time and Space

This example shows how to enter time- and coordinate-dependent coefficients in the PDE Modeler app.

Solve the parabolic PDE,

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

with the following coefficients:

- $d=5$
- $a=0$
- f is a linear ramp up to 10 , holds at 10 , then ramps back down to 0 :

$$
f=10 * \begin{cases}10 t & 0 \leq t \leq 0.1 \\ 1 & 0.1 \leq t \leq 0.9 \\ 10-10 t & 0.9 \leq t \leq 1\end{cases}
$$

- $c=1+. x^{2}+y^{2}$

To solve this equation in the PDE Modeler app, follow these steps:

1 Write the file framp.m and save it on your MATLAB path.

```
function f = framp(t)
if t <= 0.1
    f = 10*t;
elseif t <= 0.9
    f = 1;
else
    f = 10-10*t;
end
f = 10*f;
```

2 Open the PDE Modeler app by using the pdeModeler command.
3 Display grid lines by selecting Options > Grid.
4 Align new shapes to the grid lines by selecting Options $>$ Snap.
5 Draw a rectangle with the corners at ($-1,-0.4$), ($-1,0.4$), (1,0.4), and (1,-0.4). To do this, first click
the button. Then click one of the corners using the left mouse button and drag to draw a rectangle.
6
Draw a circle with the radius 0.2 and the center at ($0.5,0$). To do this, first click the button. Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape you draw so that it is a circle rather than an ellipse. If the circle is not a perfect unit circle, double-click it. In the resulting dialog box, specify the exact center location and radius of the circle.
7 Model the geometry by entering R1-C1 in the Set formula field.

8 Check that the application mode is set to Generic Scalar.
9 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary > Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary > Specify Boundary Conditions.

- For the rectangle, use the Dirichlet boundary condition with $h=1$ and $r=t^{*}(x-y)$.
- For the circle, use the Neumann boundary condition with $g=x .^{\wedge} 2+y . \wedge 2$ and $q=1$.

10 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on the toolbar. Select the Parabolic type of PDE. Specify c = 1+x. ${ }^{\wedge} 2+y . \wedge^{\wedge} 2, a=0, f=$ framp(t), and d = 5 .

Note Do not include quotes or spaces when you specify your coefficients the PDE Modeler app. The parser interprets all inputs as vectors of characters. It can misinterpret a space as a vector separator, as when a MATLAB vector uses a space to separate elements of a vector.
11 Initialize the mesh by selecting Mesh > Initialize Mesh.
12 Refine the mesh twice by selecting Mesh > Refine Mesh.
13 Improve the triangle quality by selecting Mesh $>$ Jiggle Mesh.

14 Set the initial value and the solution time. To do this, select Solve >Parameters.
In the resulting dialog box, set the time to linspace $(0,1,50)$ and the initial value $u\left(t_{0}\right)$ to 0 .
15 Solve the equation by selecting Solve $>$ Solve PDE or clicking the $=$ button on the toolbar.

Time=1 Color: \mathbf{u}

16 Visualize the solution as a 3-D static plot. To do this:
a Select Plot > Parameters.
b In the resulting dialog box, select the Color and Height (3-D plot) options.
c Select the Show mesh option.
d Change the colormap to jet by using the corresponding drop-down menu in the same dialog box.

Specify Mesh Parameters in the PDE Modeler App

Select Parameters from the Mesh menu to open the following dialog box containing mesh generation parameters.

The parameters used by the mesh initialization algorithm are:

- Maximum edge size: Largest triangle edge length (approximately). This parameter is optional and must be a real positive number.
- Mesh growth rate: The rate at which the mesh size increases away from small parts of the geometry. The value must be between 1 and 2 . The default value is 1.3 , i.e., the mesh size increases by 30%.
- Mesher version: Choose the geometry triangulation algorithm. R2013a is faster, and can mesh more geometries. preR2013a gives the same mesh as previous toolbox versions.
- Jiggle mesh: Toggles automatic jiggling of the initial mesh on/off.

The parameters used by the mesh jiggling algorithm are:

- Jiggle mode: Select a jiggle mode from a pop-up menu. Available modes are on, optimize minimum, and optimize mean. on jiggles the mesh once. Using the jiggle mode optimize minimum, the jiggling process is repeated until the minimum triangle quality stops increasing or until the iteration limit is reached. The same applies for the optimize mean option, but it tries to increase the mean triangle quality.
- Number of jiggle iterations: Iteration limit for the optimize minimum and optimize mean modes. Default: 20.

For the mesh refinement algorithm refinemesh, the Refinement method can be regular or longest. The default refinement method is regular, which results in a uniform mesh. The refinement method longest always refines the longest edge on each triangle.

To initialize a triangular mesh, select Initialize Mesh from the Mesh menu or click the $\left.\Delta\right|_{\text {button. }}$
To refine a mesh, select Refine Mesh from the Mesh menu or click the

Adjust Solve Parameters in the PDE Modeler App

To specify parameters for solving a PDE, select Parameters from the Solve menu. The set of solve parameters differs depending on the type of PDE. After you adjust the parameters, solve the PDE by selecting Solve PDE from the Solve menu or by clicking the $=$ button.

Elliptic Equations

By default, no specific solve parameters are used, and the elliptic PDEs are solved using the basic elliptic solver assempde. Optionally, the adaptive mesh generator and solver adaptmesh can be used. For the adaptive mode, the following parameters are available:

- Adaptive mode. Toggle the adaptive mode on/off.
- Maximum number of triangles. The maximum number of new triangles allowed (can be set to Inf). A default value is calculated based on the current mesh.
- Maximum number of refinements. The maximum number of successive refinements attempted.
- Triangle selection method. There are two triangle selection methods, described below. You can also supply your own function.
- Worst triangles. This method picks all triangles that are worse than a fraction of the value of the worst triangle (default: 0.5).
- Relative tolerance. This method picks triangles using a relative tolerance criterion (default: 1E-3).
- User-defined function. Enter the name of a user-defined triangle selection method. See "Poisson's Equation with Point Source and Adaptive Mesh Refinement" on page 3-202 for an example of a user-defined triangle selection method.
- Function parameter. The function parameter allows fine-tuning of the triangle selection methods. For the worst triangle method (pdeadworst), it is the fraction of the worst value that is used to determine which triangles to refine. For the relative tolerance method, it is a tolerance parameter that controls how well the solution fits the PDE.
- Refinement method. Can be regular or longest. See "Specify Mesh Parameters in the PDE Modeler App" on page 4-24.

If the problem is nonlinear, i.e., parameters in the PDE are directly dependent on the solution u, a nonlinear solver must be used. The following parameters are used:

- Use nonlinear solver. Toggle the nonlinear solver on/off.
- Nonlinear tolerance. Tolerance parameter for the nonlinear solver.
- Initial solution. An initial guess. Can be a constant or a function of x and y given as a MATLAB expression that can be evaluated on the nodes of the current mesh.

Examples: 1, and $\exp (x . * y)$. Optional parameter, defaults to zero.

- Jacobian. Jacobian approximation method: fixed (the default), a fixed point iteration, lumped, a "lumped" (diagonal) approximation, or full, the full Jacobian.
- Norm. The type of norm used for computing the residual. Enter as energy for an energy norm, or as a real scalar p to give the lp norm. The default is Inf, the infinity (maximum) norm.

Note The adaptive mode and the nonlinear solver can be used together.

Parabolic Equations

| 4 Solve Parameters | Time: |
| :--- | :--- |
| $0: 10$ | |
| u(t0): | |
| 0.0 | |
| Relative tolerance: | |
| 0.01 | |
| Absolute tolerance: | |
| 0.001 | |
| OK | |

The solve parameters for the parabolic PDEs are:

- Time. A MATLAB vector of times at which a solution to the parabolic PDE should be generated. The relevant time span is dependent on the dynamics of the problem.

Examples: $0: 10$, and logspace ($-2,0,20$)

- u(t0). The initial value $u\left(t_{0}\right)$ for the parabolic PDE problem The initial value can be a constant or a column vector of values on the nodes of the current mesh.
- Relative tolerance. Relative tolerance parameter for the ODE solver that is used for solving the time-dependent part of the parabolic PDE problem.
- Absolute tolerance. Absolute tolerance parameter for the ODE solver that is used for solving the time-dependent part of the parabolic PDE problem.

Hyperbolic Equations

| A Solve Parameters | - $\quad \square$ |
| :--- | :--- |
| Time: | |
| $0: 10$ | |
| $u(t 0):$ | |
| 0.0 | |
| $u^{\prime}(t 0):$ | |
| 0.0 | |
| Relative tolerance: | |
| 0.01 | |
| Absolute tolerance: | |
| 0.001 | |
| OK | |

The solve parameters for the hyperbolic PDEs are:

- Time. A MATLAB vector of times at which a solution to the hyperbolic PDE should be generated. The relevant time span is dependent on the dynamics of the problem.

Examples: 0:10, and logspace(-2,0,20).

- u(t0). The initial value $u\left(t_{0}\right)$ for the hyperbolic PDE problem. The initial value can be a constant or a column vector of values on the nodes of the current mesh.
- u'(t0). The initial value $\dot{u}\left(t_{0}\right)$ for the hyperbolic PDE problem. You can use the same formats as for $\mathbf{u}(\mathbf{t 0})$.
- Relative tolerance. Relative tolerance parameter for the ODE solver that is used for solving the time-dependent part of the hyperbolic PDE problem.
- Absolute tolerance. Absolute tolerance parameter for the ODE solver that is used for solving the time-dependent part of the hyperbolic PDE problem.

Eigenvalue Equations

For the eigenvalue PDE, the only solve parameter is the Eigenvalue search range, a two-element vector, defining an interval on the real axis as a search range for the eigenvalues. The left side can be - Inf.

Examples: [0 100], [-Inf 50]

Nonlinear Equations

Before solving a nonlinear elliptic PDE in the PDE Modeler app, select SolveParameters. Then select Use nonlinear solver and click OK.

Plot the Solution in the PDE Modeler App

To plot a solution property, use the Plot menu. Use the Plot Selection dialog box to select which property to plot, which plot style to use, and several other plot parameters. If you have recorded a movie (animation) of the solution, you can export it to the workspace.

To open the Plot Selection dialog box, select Parameters from the Plot menu or click the button.

Parameters opens a dialog box containing options controlling the plotting and visualization.
The upper part of the dialog box contains four columns:

- Plot type (far left) contains a row of six different plot types, which can be used for visualization:
- Color. Visualization of a scalar property using colored surface objects.
- Contour. Visualization of a scalar property using colored contour lines. The contour lines can also enhance the color visualization when both plot types (Color and Contour) are checked. The contour lines are then drawn in black.
- Arrows. Visualization of a vector property using arrows.
- Deformed mesh. Visualization of a vector property by deforming the mesh using the vector property. The deformation is automatically scaled to 10% of the problem domain. This plot type is primarily intended for visualizing x - and y-displacements (u and v) for problems in structural mechanics. If no other plot type is selected, the deformed triangular mesh is displayed.
- Height (3-D plot). Visualization of a scalar property using height (z-axis) in a 3-D plot. 3-D plots are plotted in separate figure windows. If the Color and Contour plot types are not used,
the 3-D plot is simply a mesh plot. You can visualize another scalar property simultaneously using Color and/or Contour, which results in a 3-D surface or contour plot.
- Animation. Animation of time-dependent solutions to parabolic and hyperbolic problems. If you select this option, the solution is recorded and then animated in a separate figure window using the MATLAB movie function.

A color bar is added to the plots to map the colors in the plot to the magnitude of the property that is represented using color or contour lines.

- Property contains four pop-up menus containing lists of properties that are available for plotting using the corresponding plot type. From the first pop-up menu you control the property that is visualized using color and/or contour lines. The second and third pop-up menus contain vector valued properties for visualization using arrows and deformed mesh, respectively. From the fourth pop-up menu, finally, you control which scalar property to visualize using z-height in a 3-D plot. The lists of properties are dependent on the current application mode. For the generic scalar mode, you can select the following scalar properties:
- u. The solution itself.
- $\mathbf{a b s}(\boldsymbol{g r a d}(\mathbf{u}))$. The absolute value of ∇u, evaluated at the center of each triangle.
- abs($\left.\mathbf{c}^{*} \mathbf{g r a d}(\mathbf{u})\right)$. The absolute value of $c \cdot \nabla u$, evaluated at the center of each triangle.
- user entry. A MATLAB expression returning a vector of data defined on the nodes or the triangles of the current triangular mesh. The solution u, its derivatives $u x$ and $u y$, the x and y components of $c \cdot \nabla u$, cux and cuy, and x and y are all available in the local workspace. You enter the expression into the edit box to the right of the Property pop-up menu in the User entry column.

Examples: u.*u, $\mathrm{x}+\mathrm{y}$
The vector property pop-up menus contain the following properties in the generic scalar case:

- $\quad-\operatorname{grad}(\mathbf{u})$. The negative gradient of $u,-\nabla u$.
- - $\mathbf{c}^{*} \operatorname{grad}(\mathbf{u}) . c$ times the negative gradient of $u,-c \cdot \nabla u$.
- user entry. A MATLAB expression [px; py] returning a 2-by-ntri matrix of data defined on the triangles of the current triangular mesh (ntri is the number of triangles in the current mesh). The solution u, its derivatives $u x$ and $u y$, the x and y components of $c \cdot \nabla u$, cux and cuy, and x and y are all available in the local workspace. Data defined on the nodes is interpolated to triangle centers. You enter the expression into the edit field to the right of the Property pop-up menu in the User entry column.

Examples: [ux;uy], [x;y]
For the generic system case, the properties available for visualization using color, contour lines, or z height are $\mathbf{u}, \mathbf{v}, \mathbf{a b s}(\mathbf{u}, \mathbf{v})$, and a user entry. For visualization using arrows or a deformed mesh, you can choose (\mathbf{u}, \mathbf{v}) or a user entry. For applications in structural mechanics, u and v are the x - and y displacements, respectively.

The variables available in the local workspace for a user entered expression are the same for all scalar and system modes (the solution is always referred to as u and, in the system case, v).

- User entry contains four edit fields where you can enter your own expression, if you select the user entry property from the corresponding pop-up menu to the left of the edit fields. If the user entry property is not selected, the corresponding edit field is disabled.
- Plot style contains three pop-up menus from which you can control the plot style for the color, arrow, and height plot types respectively. The available plot styles for color surface plots are
- Interpolated shading. A surface plot using the selected colormap and interpolated shading, i.e., each triangular area is colored using a linear, interpolated shading (the default).
- Flat shading. A surface plot using the selected colormap and flat shading, i.e., each triangular area is colored using a constant color.

You can use two different arrow plot styles:

- Proportional. The length of the arrow corresponds to the magnitude of the property that you visualize (the default).
- Normalized. The lengths of all arrows are normalized, i.e., all arrows have the same length. This is useful when you are interested in the direction of the vector field. The direction is clearly visible even in areas where the magnitude of the field is very small.

For height (3-D plots), the available plot styles are:

- Continuous. Produces a "smooth" continuous plot by interpolating data from triangle midpoints to the mesh nodes (the default).
- Discontinuous. Produces a discontinuous plot where data and z-height are constant on each triangle.

A total of three properties of the solution-two scalar properties and one vector field-can be visualized simultaneously. If the Height (3-D plot) option is turned off, the solution plot is a 2-D plot and is plotted in the main axes of the PDE Modeler app. If the Height (3-D plot) option is used, the solution plot is a 3-D plot in a separate figure window. If possible, the 3-D plot uses an existing figure window. If you would like to plot in a new figure window, simply type figure at the MATLAB command line.

Additional Plot Control Options

In the middle of the dialog box are a number of additional plot control options:

- Plot in \mathbf{x}-y grid. If you select this option, the solution is converted from the original triangular grid to a rectangular $x-y$ grid. This is especially useful for animations since it speeds up the process of recording the movie frames significantly.
- Show mesh. In the surface plots, the mesh is plotted using black color if you select this option. By default, the mesh is hidden.
- Contour plot levels. For contour plots, the number of level curves, e.g., 15 or 20 can be entered. Alternatively, you can enter a MATLAB vector of levels. The curves of the contour plot are then drawn at those levels. The default is 20 contour level curves.

Examples: [0:100:1000], logspace(-1,1,30)

- Colormap. Using the Colormap pop-up menu, you can select from a number of different color maps: cool, gray, bone, pink, copper, hot, jet, hsv, prism, and parula.
- Plot solution automatically. This option is normally selected. If turned off, there will not be a display of a plot of the solution immediately upon solving the PDE. The new solution, however, can be plotted using this dialog box.

For the parabolic and hyperbolic PDEs, the bottom right portion of the Plot Selection dialog box contains the Time for plot parameter.

Time for plot. A pop-up menu allows you to select which of the solutions to plot by selecting the corresponding time. By default, the last solution is plotted.

Also, the Animation plot type is enabled. In its property field you find an Options button. If you press it, an additional dialog box appears. It contains parameters that control the animation:

- Animation rate (fps). For the animation, this parameter controls the speed of the movie in frames per second (fps).
- Number of repeats. The number of times the movie is played.
- Replay movie. If you select this option, the current movie is replayed without rerecording the movie frames. If there is no current movie, this option is disabled.

For eigenvalue problems, the bottom right part of the dialog box contains a pop-up menu with all eigenvalues. The plotted solution is the eigenvector associated with the selected eigenvalue. By default, the smallest eigenvalue is selected.

You can rotate the 3-D plots by clicking the plot and, while keeping the mouse button down, moving the mouse. For guidance, a surrounding box appears. When you release the mouse, the plot is redrawn using the new viewpoint. Initially, the solution is plotted using -37.5 degrees horizontal rotation and 30 degrees elevation.

If you click the Plot button, the solution is plotted immediately using the current plot setup. If there is no current solution available, the PDE is first solved. The new solution is then plotted. The dialog box remains on the screen.

If you click the Done button, the dialog box is closed. The current setup is saved but no additional plotting takes place.

If you click the Cancel button, the dialog box is closed. The setup remains unchanged since the last plot.

Tooltip Displays for Mesh and Plots

In mesh mode, you can use the mouse to display the node number and the triangle number at the position where you click. Press the left mouse button to display the node number on the information line. Use the left mouse button and the Shift key to display the triangle number on the information line.

In plot mode, you can use the mouse to display the numerical value of the plotted property at the position where you click. Press the left mouse button to display the triangle number and the value of the plotted property on the information line.

The information remains on the information line until you release the mouse button.

Functions

adaptmesh

Package: pde
Create adaptive 2-D mesh and solve PDE

Note This page describes the legacy workflow. New features might not be compatible with the legacy workflow. In the recommended workflow, see generateMesh for mesh generation and solvepde for PDE solution.

Syntax

```
[u,p,e,t] = adaptmesh(g,b,c,a,f)
[u,p,e,t] = adaptmesh(g,b,c,a,f,Name,Value)
```


Description

$[u, p, e, t]=\operatorname{adaptmesh}(g, b, c, a, f)$ generates an adaptive $[p, e, t]$ mesh and returns the solution u for an elliptic 2-D PDE problem
$-\nabla \cdot(c \nabla u)+a u=f$
for $(x, y) \epsilon \Omega$, or the elliptic system PDE problem
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
with the problem geometry and boundary conditions given by g and b. The mesh is described by the p, e, and t matrices.

Upon termination, the function issues one of these messages:

- Adaption completed. (This means that the Tripick function returned zero triangles to refine.)
- Maximum number of triangles obtained.
- Maximum number of refinement passes obtained.
$[u, p, e, t]=\operatorname{adaptmesh}(g, b, c, a, f, N a m e, V a l u e)$ performs adaptive mesh generation and PDE solution for elliptic 2-D PDE problems using one or more Name, Value pair arguments.

Examples

Adaptive Mesh Generation and Mesh Refinement

Solve the Laplace equation over a circle sector, with Dirichlet boundary conditions $u=$ $\cos (2 / 3 \operatorname{atan} 2(y, x))$ along the arc and $u=0$ along the straight lines, and compare the resulting solution to the exact solution. Set the options so that adaptmesh refines the triangles using the worst error criterion until it obtains a mesh with at least 500 triangles.

```
c45 = cos(pi/4);
L1 = [2 -c45 0 c45 0 1 0 0 0 0]';
```

```
L2 = [2 -c45 0 -c45 0 1 0 0 0 0]';
C1 = [1 -c45 c45 -c45 -c45 1 0 0 0 1]';
C2 = [1 c45 c45 -c45 c45 1 0 0 0 1]';
C3 = [1 c45 -c45 c45 c45 1 0 0 0 1]';
g = [L1 L2 C1 C2 C3];
[u,p,e,t] = adaptmesh(g,'cirsb',1,0,0,'Maxt',500,\ldots
    'Tripick','pdeadworst','Ngen',Inf);
Number of triangles: 204
Number of triangles: 208
Number of triangles: 217
Number of triangles: 230
Number of triangles: 265
Number of triangles: 274
Number of triangles: 332
Number of triangles: 347
Number of triangles: 460
Number of triangles: 477
Number of triangles: 699
Maximum number of triangles obtained.
```

Find the maximal absolute error.

```
x = p(1,:); y = p(2,:);
exact = ((x.^2 + y.^2).^(1/3).* cos(2/3*atan2(y,x)))';
max(abs(u - exact))
ans = 0.0028
```

Find the number of triangles.

```
size(t,2)
```

ans $=699$

Plot the mesh.
pdemesh ($\mathrm{p}, \mathrm{e}, \mathrm{t}$)

Test how many refinements you need with a uniform triangle mesh.

```
[p,e,t] = initmesh(g);
[p,e,t] = refinemesh(g,p,e,t);
u = assempde('cirsb',p,e,t,1,0,0);
x = p(1,:);
y = p(2,:);
exact = ((x.^2 + y.^2).^(1/3).* cos(2/3*atan2(y,x)))';
max(abs(u - exact))
ans = 0.0116
```

Find the number of triangles in this case.

```
size(t,2)
```

ans $=816$
Refine the mesh one more time. The maximal absolute error for uniform meshing is still greater than for adaptive meshing.

```
[p,e,t] = refinemesh(g,p,e,t);
u = assempde('cirsb',p,e,t,1,0,0);
x = p(1,:);
y = p(2,:);
exact = ((x.^2 + y.^2).^(1/3).* cos(2/3*atan2(y,x)))';
max(abs(u - exact))
ans = 0.0075
```

Find the number of triangles in this case.
size(t,2)
ans $=3264$
Plot the mesh.
pdemesh(p,e,t)

Uniform refinement with more triangles produces a larger error. Typically, a problem with regular solution has an $O\left(h^{2}\right)$ error. However, this solution is singular since $u \approx r^{1 / 3}$ at the origin.

Input Arguments

g - Geometry description

decomposed geometry matrix | geometry function | handle to geometry function
Geometry description, specified as a decomposed geometry matrix, a geometry function, or a handle to the geometry function. For details about a decomposed geometry matrix, see decsg. For details about a geometry function, see "Parametrized Function for 2-D Geometry Creation" on page 2-10.

A geometry function must return the same result for the same input arguments in every function call. Thus, it must not contain functions and expressions designed to return a variety of results, such as random number generators.

Data Types: double|char|string|function_handle

b - Boundary conditions

boundary matrix | boundary file
Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a function handle or as a file name. Typically, you export a boundary matrix from the PDE Modeler app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double|char|string|function_handle

c - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. c represents the c coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=f$
or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
The coefficients c, a, and f can depend on the solution u if you use the nonlinear solver by setting the value of 'Nonlin' to 'on'. The coefficients cannot be functions of the time t.
Example: ' $\cosh (x+y . \wedge 2)^{\prime}$
Data Types: double |char|string|function_handle

a - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. a represents the a coefficient in the scalar PDE

$$
-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
The coefficients c, a, and f can depend on the solution u if you use the nonlinear solver by setting the value of 'Nonlin' to 'on'. The coefficients cannot be functions of the time t.
Example: 2*eye (3)
Data Types: double | char| string | function_handle
f - PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. f represents the f coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=f$
or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
The coefficients c, a, and f can depend on the solution u if you use the nonlinear solver by setting the value of 'Nonlin' to 'on'. The coefficients cannot be function of the time t.
Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double|char|string|function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: [u,p,e,t] =
adaptmesh(g,'cirsb',1,0,0,'Maxt',500,'Tripick', 'pdeadworst', 'Ngen' ,Inf)

Maxt - Maximum number of new triangles

Inf (default) | positive integer
Maximum number of new triangles, specified as the comma-separated pair consisting of 'Maxt ' and a positive integer.
Data Types: double

Ngen - Maximum number of triangle generations

10 (default) | positive integer
Maximum number of triangle generations, specified as the comma-separated pair consisting of ' Ngen ' and a positive integer.

Data Types: double

Mesh - Initial mesh

mesh generated by initmesh (default) | [p,e,t] mesh
Initial mesh, specified as the comma-separated pair consisting of 'Mesh' and a mesh specified by [p, e, t] triples. By default, the function uses the mesh generated by the initmesh function.
Data Types: double

Tripick - Triangle selection method

indices of triangles returned by pdeadworst (default) | MATLAB function
Triangle selection method, specified as the comma-separated pair consisting of 'Tripick' and a MATLAB function. By default, the function uses the indices of triangles returned by the pdeadworst function.

Given the error estimate computed by the function pdejmps, the triangle selection method identifies the triangles to be refined in the next triangle generation. The function is called using the arguments $p, t, c c, a a, f f, u$, errf, and Par.

- p and t represent the current generation of triangles.
- cc, aa, and ff are the current coefficients for the PDE problem, expanded to the triangle midpoints.
- u is the current solution.
- errf is the computed error estimate.
- Par is the optional argument of adaptmesh.

The matrices cc, aa, $f f$, and errf all have $N t$ columns, where $N t$ is the current number of triangles.
The numbers of rows in $C c$, aa, and ff are exactly the same as the input arguments c, a, and f. errf has one row for each equation in the system. The two standard triangle selection methods are pdeadworst and pdeadgsc.

- pdeadworst identifies triangles where errf exceeds a fraction of the worst value. The default fraction value is 0.5 . You can change it by specifying the Par argument value when calling adaptmesh.
- pdeadgsc selects triangles using a relative tolerance criterion.

Data Types: double

Par - Function parameter for triangle selection method

0.5 (default) | number

Function parameter for the triangle selection method, specified as the comma-separated pair consisting of 'Par' and a number between 0 and 1. The pdeadworst triangle selection method uses it as its wlevel argument. The pdeadgsc triangle selection method uses it as its tol argument.

Data Types: double

Rmethod - Triangle refinement method
 'longest' (default) | 'regular'

Triangle refinement method, specified as the comma-separated pair consisting of 'Rmethod ' and either 'longest' or 'regular'. For details on the refinement method, see refinemesh.
Data Types: char|string

Nonlin - Toggle to use a nonlinear solver

'off' (default)|'on'
Toggle to use a nonlinear solver, specified as the comma-separated pair consisting of 'Nonlin' and 'on' or 'off'.

Data Types: char | string

Toln - Nonlinear tolerance

1e-4 (default) | positive number
Nonlinear tolerance, specified as the comma-separated pair consisting of 'Toln' and a positive number. The function passes this argument to pdenonlin, which iterates until the magnitude of the residual is less than Toln.

Data Types: double

Init - Nonlinear initial value

0 (default) | scalar | vector of characters | vector of numbers
Nonlinear initial value, specified as the comma-separated pair consisting of 'Init ' and a scalar, a vector of characters, or a vector of numbers. The function passes this argument to pdenonlin, which uses it as an initial guess in its 'U0' argument.

Data Types: double

Jac - Nonlinear Jacobian calculation

'fixed ' (default) | 'lumped ' | 'full'
Nonlinear Jacobian calculation, specified as the comma-separated pair consisting of ' Jac' and either 'fixed', 'lumped', or 'full'. The function passes this argument to pdenonlin, which uses it as an initial guess in its 'Jacobian' argument.

Data Types: char | string

Norm - Nonlinear solver residual norm

Inf (default) $\mid p$ value for L^{p} norm
Nonlinear solver residual norm, specified as the comma-separated pair consisting of 'Norm' and p value for L^{p} norm. p can be any positive real value, Inf, or - Inf. The p norm of a vector v is $\operatorname{sum}\left(a b s(v)^{\wedge} p\right)^{\wedge}(1 / p)$. The function passes this argument to pdenonlin, which uses it as an initial guess in its 'Norm' argument.
Data Types: double | char | string
MesherVersion - Algorithm for generating initial mesh
'preR2013a' (default)|'R2013a'
Algorithm for generating initial mesh, specified as the comma-separated pair consisting of 'MesherVersion' and either 'R2013a' or 'preR2013a'. The 'R2013a' algorithm runs faster, and can triangulate more geometries than the 'preR2013a' algorithm. Both algorithms use Delaunay triangulation.
Data Types: char|string

Output Arguments

u - PDE solution

vector
PDE solution, returned as a vector.

- If the PDE is scalar, meaning that it has only one equation, then u is a column vector representing the solution u at each node in the mesh.
- If the PDE is a system of $N>1$ equations, then u is a column vector with $\mathrm{N} * \mathrm{~Np}$ elements, where Np is the number of nodes in the mesh. The first Np elements of u represent the solution of equation 1 , the next Np elements represent the solution of equation 2 , and so on.

p - Mesh points

2-by-Np matrix
Mesh points, returned as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k of p consists of the x-coordinate of point k in $p(1, k)$ and the y-coordinate of point k in $p(2, k)$. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

e - Mesh edges

7-by-Ne matrix

Mesh edges, returned as a 7-by-Ne matrix. Ne is the number of edges in the mesh. An edge is a pair of points in p containing a boundary between subdomains, or containing an outer boundary. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

t - Mesh elements

4-by-Nt matrix
Mesh elements, returned as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.
The $t(i, k)$, with i ranging from 1 through end -1 , contain indices to the corner points of element k. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150. The last row, t (end, k), contains the subdomain numbers of the elements.

Algorithms

Mesh Refinement for Improving Solution Accuracy

Partial Differential Equation Toolbox provides the refinemesh function for global, uniform mesh refinement for 2-D geometries. It divides each triangle into four similar triangles by creating new corners at the mid-sides, adjusting for curved boundaries. You can assess the accuracy of the numerical solution by comparing results from a sequence of successively refined meshes. If the solution is smooth enough, more accurate results can be obtained by extrapolation.

The solutions of equations often have geometric features such as localized strong gradients. An example of engineering importance in elasticity is the stress concentration occurring at reentrant corners, such as the MATLAB L-shaped membrane. In such cases, it is more efficient to refine the mesh selectively. The selection that is based on estimates of errors in the computed solutions is called adaptive mesh refinement.

The adaptive refinement generates a sequence of solutions on successively finer meshes, at each stage selecting and refining those elements that are judged to contribute most to the error. The process stops 34 when the maximum number of elements is exceeded, when each triangle contributes less than a preset tolerance, or when an iteration limit is reached. You can provide an initial mesh, or let adaptmesh call initmesh automatically. You also choose selection and termination criteria parameters. The three components of the algorithm are the error indicator function (computes an estimate of the element error contribution), the mesh refiner (selects and subdivides elements), and the termination criteria.

Error Estimate for FEM Solution

The adaptation is a feedback process. It is easily applied to a larger range of problems than those for which its design was tailored. Estimates, selection criteria, and so on must be optimal for giving the most accurate solution at fixed cost or lowest computational effort for a given accuracy. Such results have been proven only for model problems, but generally, the equidistribution heuristic has been found nearly optimal. Element sizes must be chosen so that each element contributes the same to the error. The theory of adaptive schemes makes use of a priori bounds for solutions in terms of the source function f. For nonelliptic problems, such bounds might not exist, while the refinement scheme is still well defined and works.

The error indicator function used in the software is an elementwise estimate of the contribution, based on [1] and [2]. For Poisson's equation $-\Delta u=f$ on Ω, the following error estimate for the FEMsolution u_{h} holds in the L_{2}-norm $\|\cdot\|$:

$$
\left\|\nabla\left(u-u_{h}\right)\right\| \leq \alpha\|h f\|+\beta D_{h}\left(u_{h}\right)
$$

where $h=h(x)$ is the local mesh size, and

$$
D_{h}(v)=\left(\sum_{\tau \in E_{1}} h_{\tau}^{2}\left[\frac{\partial v}{\partial n_{\tau}}\right]^{2}\right)^{1 / 2}
$$

The braced quantity is the jump in normal derivative of v across the edge τ, h_{τ} is the length of the edge τ, and the sum runs over E_{i}, the set of all interior edges of the triangulation. The coefficients α and β are independent of the triangulation. This bound is turned into an elementwise error indicator function $E(K)$ for the element K by summing the contributions from its edges.

The general form of the error indicator function for the elliptic equation

$$
\begin{equation*}
-\nabla \cdot(c \nabla u)+a u=f \tag{5-1}
\end{equation*}
$$

is

$$
E(K)=\alpha\|h(f-a u)\|_{K}+\beta\left(\frac{1}{2} \sum_{\tau \in \partial K} h_{\tau}^{2}\left(\mathbf{n}_{\tau} \cdot c \nabla u_{h}\right)^{2}\right)^{1 / 2}
$$

where \mathbf{n}_{τ} is the unit normal of the edge τ and the braced term is the jump in flux across the element edge. The L_{2} norm is computed over the element K. The pdejmps function computes this error indicator.

Mesh Refinement Functions

Partial Differential Equation Toolbox mesh refinement is geared to elliptic problems. For reasons of accuracy and ill-conditioning, such problems require the elements not to deviate too much from being equilateral. Thus, even at essentially one-dimensional solution features, such as boundary layers, the refinement technique must guarantee reasonably shaped triangles.

When an element is refined, new nodes appear on its midsides, and if the neighbor triangle is not refined in a similar way, it is said to have hanging nodes. The final triangulation must have no hanging nodes, and they are removed by splitting neighbor triangles. To avoid further deterioration of triangle quality in successive generations, the "longest edge bisection" scheme is used in [3], in which the longest side of a triangle is always split, whenever any of the sides have hanging nodes. This guarantees that no angle is ever smaller than half the smallest angle of the original triangulation.

There are two selection criteria. One, pdeadworst, refines all elements with value of the error indicator larger than half the worst of any element. The other, pdeadgsc, refines all elements with an indicator value exceeding a specified dimensionless tolerance. The comparison with the tolerance is properly scaled with respect to domain, solution size, and so on.

Mesh Refinement Termination Criteria

For smooth solutions, error equidistribution can be achieved by the pdeadgsc selection if the maximum number of elements is large enough. The pdeadworst adaptation only terminates when the maximum number of elements has been exceeded or when the iteration limit is reached. This mode is natural when the solution exhibits singularities. The error indicator of the elements next to the singularity might never vanish, regardless of element size, making equidistribution impossible.

References

[1] Johnson, C. Numerical Solution of Partial Differential Equations by the Finite Element Method. Lund, Sweden: Studentlitteratur, 1987.
[2] Johnson, C., and K. Eriksson. Adaptive Finite Element Methods for Parabolic Problems I: A Linear Model Problem. SIAM J. Numer. Anal, 28, (1991), pp. 43-77.
[3] Rosenberg, I.G., and F. Stenger. A lower bound on the angles of triangles constructed by bisecting the longest side. Mathematics of Computation. Vol 29, Number 10, 1975, pp 390-395.

See Also

initmesh|refinemesh

Topics

"Mesh Data as [p,e,t] Triples" on page 2-150

Introduced before R2006a

addCell

Combine two geometries by adding one inside a cell of another

Syntax

g3 = addCell(g1,g2)

Description

$\mathrm{g} 3=$ addCell $(\mathrm{g} 1, \mathrm{~g} 2)$ creates nonempty cells inside g 1 using all cells of g 2 . All cells of the geometry g2 must be contained inside one cell of the geometry g1. Ensure that the geometries do not have enclosed cavities and do not intersect one another.

The combined geometry contains cells from both geometries. The cells from g1 retain their original IDs, while the cells from g 2 are numbered starting with $\mathrm{N}+1$, where N is the number of cells in g 1 .

Note Added cells modify a geometry, but they do not modify the corresponding mesh. After modifying a geometry, always call generateMesh to ensure a proper mesh association with the new geometry.

Examples

Combine Two Geometries

Create and plot a geometry.
g1 = multicuboid(2,2,2,'Zoffset', -1) ;
pdegplot(g1,'CellLabels','on','FaceAlpha',0.5)

Import and plot another geometry.
g2 = importGeometry('DampingMounts.stl');
pdegplot(g2,'CellLabels','on','FaceAlpha', 0.5)

Scale and move the second geometry to fit entirely within the cube g1.

```
g2 = scale(g2,[1/1500 1/1500 1/100]);
g2 = translate(g2,[-0.5 -0.5 -0.5]);
```

Plot the result.

```
pdegplot(g2,'CellLabels','on','FaceAlpha',0.5)
```


Combine the geometries and plot the result. The combined geometry g3 contains cells from both geometries. The cell from g1 keeps its ID, and the cells from g2 are now C2, C3, C4, and C5.
g3 = addCell(g1,g2);
pdegplot(g3,'CellLabels','on','FaceAlpha',0.4)

Input Arguments

g1 - 3-D geometry

DiscreteGeometry object
3-D geometry, specified as a DiscreteGeometry object. For more information, see DiscreteGeometry.

g2 - 3-D geometry

DiscreteGeometry object
3-D geometry, specified as a DiscreteGeometry object. For more information, see DiscreteGeometry.

Output Arguments

g3 - Resulting 3-D geometry

DiscreteGeometry object
Resulting 3-D geometry, returned as a DiscreteGeometry object. For more information, see DiscreteGeometry.

See Also

DiscreteGeometry | addFace | addVertex | addVoid

Introduced in R2021a

addFace

Package: pde
Fill void regions in 2-D and split cells in 3-D geometry

Syntax

h = addFace(g,edges)
[h,FaceID] = addFace(g,edges)

Description

$\mathrm{h}=$ addFace(g , edges) adds a new face to the geometry g . The specified edges must form a closed contour. For a 2-D geometry, adding a new face lets you fill voids in the geometry. For a 3-D geometry, adding a new face lets you split one cell into multiple cells.

You can add several new faces simultaneously by specifying their contours in a cell array. Each contour in the cell array must be unique.

Note New faces modify a geometry, but they do not modify the mesh. After modifying a geometry, always call generateMesh to ensure a proper mesh association with the new geometry.
[h , FaceID] = addFace(g,edges) also returns a row vector containing IDs of the added faces.

Examples

Fill Void Region in 2-D Geometry

Add a face to a 2-D geometry to fill an internal void.
Create a PDE model.
model $=$ createpde();
Import the geometry. This geometry has one face.

```
gm = importGeometry(model,'PlateSquareHolePlanar.stl')
gm =
    DiscreteGeometry with properties:
        NumCells: 0
        NumFaces: 1
        NumEdges: 8
        NumVertices: 8
            Vertices: [8x3 double]
```

Plot the geometry and display the face labels.
pdegplot(gm,'FaceLabels','on')

Zoom in and display the edge labels of the small hole at the center.
figure
pdegplot(gm,'EdgeLabels','on')
axis([49 5199 101])

Fill the hole by adding a face. The number of faces in the geometry changes to 2 .

```
gm = addFace(gm,[lllll
gm =
    DiscreteGeometry with properties:
        NumCells: 0
        NumFaces: 2
        NumEdges: 8
    NumVertices: 8
        Vertices: [8x3 double]
```

Plot the modified geometry and display the face labels.

```
pdegplot(gm,'FaceLabels','on')
```


Split Cells in 3-D Geometry

Add a face in a 3-D geometry to split a cell into two cells.
Create a PDE model.
model = createpde();
Import the geometry. The geometry consists of one cell.

```
gm = importGeometry(model,'MotherboardFragment1.STL')
gm =
    DiscreteGeometry with properties:
        NumCells: 1
        NumFaces: 26
        NumEdges: 46
        NumVertices: 34
            Vertices: [34x3 double]
```

Plot the geometry and display the edge labels. Zoom in on the corresponding part of the geometry to see the edge labels there more clearly.

```
pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.5)
xlim([-0.05 0.05])
ylim([-0.05 0.05])
zlim([0 0.05])
```


Split the cuboid on the right side into a separate cell. For this, add a face bounded by edges $1,3,6$, and 12.

```
[gm,ID] = addFace(gm,[1 3 6 12])
gm =
    DiscreteGeometry with properties:
        NumCells: 2
        NumFaces: 27
        NumEdges: 46
        NumVertices: 34
            Vertices: [34\times3 double]
```

ID $=27$

Plot the modified geometry and display the cell labels.

```
pdegplot(gm,'CellLabels','on','FaceAlpha',0.5)
```


Now split the cuboid on the left side of the board and all cylinders into separate cells by adding a face at the bottom of each shape. To see edge labels more clearly, zoom and rotate the plot. Use a cell array to add several new faces simultaneously.

```
[gm,IDs] = addFace(gm,{[5 7 8 10], ...
    30, ...
    31, ...
    32, ...
    33, ...
    13})
gm =
    DiscreteGeometry with properties:
            NumCells: 8
            NumFaces: 33
            NumEdges: 46
        NumVertices: 34
            Vertices: [34x3 double]
IDs = 6×1
    28
    29
    30
    3 1
    32
```

Plot the modified geometry and display the cell labels.

```
pdegplot(gm,'CellLabels','on','FaceAlpha',0.5)
```


Input Arguments

g - Geometry
DiscreteGeometry object | AnalyticGeometry object
Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

edges - Edges forming unique closed flat contour

vector of positive integers | cell array of vectors of positive integers
Edges forming a unique closed flat contour, specified as a vector of positive integers or a cell array of such vectors. You can specify edges within a vector in any order.

When you use a cell array to add several new faces, each contour in the cell array must be unique.

Output Arguments

h - Resulting geometry
handle
Resulting geometry, returned as a handle.
FaceID - Face ID
positive number | row vector of positive numbers
Face ID, returned as a positive number or a row vector of positive numbers. Each number represents a face ID. When you add a new face to a geometry with N faces, the ID of the added face is $N+1$.

Tips

- addFace errors when the specified contour defines an already existing face.
- addFace always modifies the original geometry g.

See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | addVertex | generateMesh | geometryFromMesh|importGeometry| pdegplot|structuralBC |
structuralBoundaryLoad
Introduced in R2020a

addVertex

Package: pde
Add a vertex on a geometry boundary

Syntax

VertexID = addVertex(g,'Coordinates',Coords)

Description

VertexID = addVertex(g, 'Coordinates',Coords) adds a new isolated vertex at the point with coordinates Coords to a boundary of the geometry g . To add several vertices simultaneously, specify Coords as an N -by-2 matrix for a 2-D geometry or an N -by-3 matrix for a 3-D geometry. Here, N is the number of new points.

If a point with the specified coordinates is slightly offset (within an internally specified tolerance) from a geometry boundary, addVertex approximates it to a point on the boundary. If a vertex already exists at the specified location, addVertex returns the ID of the existing vertex instead of creating one.

Examples

Add Vertices on Edge of Block

Use addVertex to add a single vertex and multiple vertices on a side of a block geometry.
Create a PDE model.
model = createpde();
Import the geometry.
g = importGeometry(model,'Block.stl');
Plot the geometry and display the vertex labels.

```
pdegplot(g, 'VertexLabels', 'on','FaceAlpha',0.5)
```


Add a vertex on the edge of a block.
VertexID = addVertex(g,'Coordinates',[20 0 50])
VertexID = 9
Plot the geometry and display the vertex labels.
pdegplot(g, 'VertexLabels', 'on','FaceAlpha',0.5)

Add three more vertices on the same edge of the block.

```
V = ([40 0 50; 60 0 50; 80 0 50]);
VertexIDs = addVertex(g,'Coordinates',V)
VertexIDs = 3×1
    1 0
    1 1
    12
```

Plot the geometry and display the vertex labels.
pdegplot(g, 'VertexLabels', 'on','FaceAlpha',0.5)

Add a vertex at the corner of the block. Since there is already a vertex at the corner, addVertex does not create a new vertex, but returns the ID of the existing vertex.

VertexID = addVertex(g,'Coordinates',[100 0 50])
VertexID = 5

Input Arguments

g - Geometry

DiscreteGeometry object
Geometry, specified as a DiscreteGeometry object.

Coords - Coordinates of new vertex

N -by-2 numeric matrix | N-by-3 numeric matrix
Coordinates of a new vertex, specified as an N -by-2 or N -by-3 numeric matrix for a 2-D or 3-D geometry, respectively. Here, N is the number of new vertices.

Example: 'Coordinates', [0;0;1]
Data Types: double

Output Arguments

VertexID - Vertex ID

row vector
Vertex ID, returned as a row vector of positive numbers. Each number represents a vertex ID. When you add a new vertex to a geometry with N vertices, the ID of the added vertex is $N+1$. If a vertex already exists at the specified location, addVertex returns the ID of the existing vertex.

Limitations

- addVertex does not work with AnalyticGeometry objects. See AnalyticGeometry.

See Also

DiscreteGeometry Properties \| addFace | generateMesh | geomet ryFromMesh | importGeometry | pdegplot|structuralBC| structuralBoundaryLoad

Introduced in R2019b

addVoid

Create void regions inside 3-D geometry

Syntax

g3 $=$ addVoid(g1,g2)

Description

$\mathrm{g} 3=\operatorname{addVoid}(\mathrm{g} 1, \mathrm{~g} 2)$ creates void regions inside g 1 using all cells of g 2 . All cells of the geometry g 2 must be contained inside one cell of the geometry g1. Ensure that the geometries do not have enclosed cavities and do not intersect one another.

Note Added void regions modify a geometry, but they do not modify the corresponding mesh. After modifying a geometry, always call generateMesh to ensure a proper mesh association with the new geometry.

Examples

Add Void Regions Inside Cube

Create and plot a geometry.
g1 = multicuboid(2,2,2,'Zoffset',-1);
pdegplot(g1,'CellLabels','on','FaceAlpha',0.5)

Import and plot another geometry.
g2 = importGeometry('DampingMounts.stl');
pdegplot(g2,'CellLabels','on','FaceAlpha',0.5)

Scale and move the second geometry to fit entirely within the cube g1.

```
g2 = scale(g2,[1/1500 1/1500 1/100]);
g2 = translate(g2,[-0.5 -0.5 -0.5]);
```

Plot the result.

```
pdegplot(g2,'CellLabels','on','FaceAlpha',0.5)
```


Create void regions inside the cube using the cells of the geometry g2. Plot the result.
g3 = addVoid(g1,g2);
pdegplot(g3,'CellLabels','on','FaceAlpha',0.4)

Input Arguments

g1 - 3-D geometry

DiscreteGeometry object
3-D geometry, specified as a DiscreteGeometry object. For more information, see DiscreteGeometry.

g2 - 3-D geometry

DiscreteGeometry object
3-D geometry, specified as a DiscreteGeometry object. For more information, see DiscreteGeometry.

Output Arguments

g3 - Resulting 3-D geometry

DiscreteGeometry object
Resulting 3-D geometry, returned as a DiscreteGeometry object. For more information, see DiscreteGeometry.

See Also

DiscreteGeometry | addCell | addFace | addVertex

Introduced in R2021a

AnalyticGeometry Properties

Analytic 2-D geometry description

Description

AnalyticGeomet ry describes a 2-D geometry in the form of an analytic geometry object. PDEModel, StructuralModel, and ThermalModel objects have a Geometry property, which can be an AnalyticGeometry or DiscreteGeometry object.

Add a 2-D analytic geometry to your model by using decsg to create the geometry and geometryFromEdges to attach it to the model.

Properties

Properties

NumEdges - Number of geometry edges
positive integer
Number of geometry edges, returned as a positive integer.
Data Types: double

NumFaces - Number of geometry faces

positive integer
Number of geometry faces, returned as a positive integer. If your geometry is one connected region, then NumFaces $=1$.

Data Types: double

NumVertices - Number of geometry vertices

positive integer
Number of geometry vertices, returned as a positive integer.
Data Types: double

Vertices - Coordinates of geometry vertices

N -by-2 numeric matrix | N -by-3 numeric matrix
Coordinates of geometry vertices, specified as an N -by-2 or N -by-3 numeric matrix for a 2-D or 3-D geometry, respectively. Here, N is the number of vertices.
Data Types: double

See Also

DiscreteGeometry Properties | PDEModel | StructuralModel | ThermalModel | decsg | geometryFromEdges

Topics

"Solve Problems Using PDEModel Objects" on page 2-2

Introduced in R2015a

applyBoundaryCondition

Package: pde
Add boundary condition to PDEModel container

Syntax

applyBoundaryCondition(model,'dirichlet',RegionType, RegionID,Name, Value)
applyBoundaryCondition(model,' $n e u m a n n ', R e g i o n T y p e, R e g i o n I D, N a m e, V a l u e) ~$
applyBoundaryCondition(model,'mixed',RegionType,RegionID,Name, Value) bc = applyBoundaryCondition(\qquad)

Description

applyBoundaryCondition(model,'dirichlet',RegionType,RegionID,Name,Value) adds a Dirichlet boundary condition to model. The boundary condition applies to boundary regions of type RegionType with ID numbers in RegionID, and with arguments r, h, u, EquationIndex specified in the Name, Value pairs. For Dirichlet boundary conditions, specify either both arguments r and h, or the argument u. When specifying u, you can also use EquationIndex.
applyBoundaryCondition(model,'neumann',RegionType,RegionID,Name,Value) adds a Neumann boundary condition to model. The boundary condition applies to boundary regions of type RegionType with ID numbers in RegionID, and with values g and q specified in the Name, Value pairs.
applyBoundaryCondition(model,'mixed', RegionType, RegionID, Name, Value) adds an individual boundary condition for each equation in a system of PDEs. The boundary condition applies to boundary regions of type RegionType with ID numbers in RegionID, and with values specified in the Name, Value pairs. For mixed boundary conditions, you can use Name, Value pairs from both Dirichlet and Neumann boundary conditions as needed.
bc = applyBoundaryCondition(__) returns the boundary condition object.

Examples

Dirichlet Boundary Conditions

Create a PDE model and geometry.

```
model = createpde(1);
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
g = decsg(R1);
geometryFromEdges(model,g);
```

View the edge labels.

```
pdegplot(model,'EdgeLabels','on')
xlim([-1.2,1.2])
axis equal
```


Apply zero Dirichlet condition on the edge 1.
applyBoundaryCondition(model,'dirichlet','Edge', 1, 'u', 0);
On other edges, apply Dirichlet condition $h * u=r$, where $h=1$ and $r=1$.
applyBoundaryCondition(model,'dirichlet','Edge',2:4,'r',1,'h',1);

Neumann Boundary Conditions

Create a PDE model and geometry.
model = createpde(2);
R1 = $[3,4,-1,1,1,-1,-.4,-.4, .4, .4]^{\prime} ;$
$\mathrm{g}=\operatorname{decsg}(\mathrm{R} 1)$;
geometryFromEdges(model,g);
View the edge labels.

```
pdegplot(model,'EdgeLabels','on')
```

$x \lim ([-1.2,1.2])$
axis equal

Apply the following Neumann boundary conditions on the edge 4.
applyBoundaryCondition(model,'neumann', 'Edge', 4, 'g', [0;.123], 'q', [0;0;0;0]);

Dirichlet and Neumann Boundary Conditions for Different Boundaries

Apply both types of boundary conditions to a scalar problem. First, create a PDE model and import a simple block geometry.
model = createpde;
importGeometry(model,'Block.stl');
View the face labels.
pdegplot(model,'FaceLabels','on','FaceAlpha', 0.5)

Set zero Dirichlet conditions on the narrow faces, which are labeled 1 through 4.

```
applyBoundaryCondition(model,'dirichlet','Face',1:4,'u',0);
```

Set Neumann boundary conditions with opposite signs on faces 5 and 6 .

```
applyBoundaryCondition(model,'neumann','Face',5,'g',1);
applyBoundaryCondition(model,'neumann','Face',6,'g', -1);
```

Solve an elliptic PDE with these boundary conditions, and plot the result.

```
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',0);
generateMesh(model);
results = solvepde(model);
u = results.NodalSolution;
pdeplot3D(model,'ColorMapData',u)
```


Individual Boundary Conditions for Equations in a System

Create a PDE model and import a simple block geometry.
model = createpde(3);
importGeometry(model,'Block.stl');
View the face labels.
pdegplot(model,'FaceLabels','on', 'FaceAlpha', 0.5)

Set zero Dirichlet conditions on faces 1 and 2.

```
applyBoundaryCondition(model,'dirichlet','Face',1:2,'u',[0,0,0]);
```

Set Neumann boundary conditions with opposite signs on faces 4,5 , and 6 .

```
applyBoundaryCondition(model,'neumann','Face',4:5,'g',[1;1;1]);
applyBoundaryCondition(model,'neumann','Face',6,'g',[-1;-1;-1]);
```

For face 3, apply generalized Neumann boundary condition for the first equation and Dirichlet boundary conditions for the second and third equations.
$\mathrm{h}=[000 ; 010 ; 001] ;$
r $=[0 ; 3 ; 3] ;$
$\mathrm{q}=[100 ; 000 ; 000] ;$
$\mathrm{g}=[10 ; 0 ; 0]$;
applyBoundaryCondition(model,'mixed','Face', 3,'h',h,'r',r,'g',g,'q', q);
Solve an elliptic PDE with these boundary conditions, and plot the result.

```
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',[0;0;0]);
generateMesh(model);
results = solvepde(model);
u = results.NodalSolution;
pdeplot3D(model,'ColorMapData',u(:,1))
```


Input Arguments

model - PDE model

PDEModel object
PDE model, specified as a PDEModel object.
Example: model = createpde

RegionType - Geometric region type

'Face' for 3-D geometry | 'Edge' for 2-D geometry
Geometric region type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Example: applyBoundaryCondition(model,'dirichlet','Face', 3, 'u', 0)
Data Types: char|string

RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs using pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example: applyBoundaryCondition(model,'dirichlet','Face', 3:6,'u', 0)
Data Types: double

Name-Value Pair Arguments

Example: applyBoundaryCondition(model,'dirichlet','Face',1:4,'u',0)
\mathbf{r} - Dirichlet condition $\mathbf{h * u}=\mathbf{r}$
zeros ($\mathrm{N}, 1$) (default) | vector with N elements | function handle
Dirichlet condition $\mathrm{h}^{*} \mathrm{u}=\mathrm{r}$, specified as a vector with N elements or a function handle. N is the number of PDEs in the system. For the syntax of the function handle form of r, see "Nonconstant Boundary Conditions" on page 2-116.
Example: 'r', [0;4;-1]
Data Types: double|function_handle
Complex Number Support: Yes
\mathbf{h} - Dirichlet condition $\mathbf{h * u}=\mathbf{r}$
eye(N) (default) | N-by- N matrix | vector with $N^{\wedge} 2$ elements | function handle
Dirichlet condition $\mathrm{h}^{*} \mathrm{u}=\mathrm{r}$, specified as an N-by- N matrix, a vector with $N^{\wedge} 2$ elements, or a function handle. N is the number of PDEs in the system. For the syntax of the function handle form of h, see "Nonconstant Boundary Conditions" on page 2-116.
Example: 'h' , [2, 1; 1, 2]
Data Types: double|function_handle
Complex Number Support: Yes
\mathbf{g} - Generalized Neumann condition $\mathbf{n} \cdot(\mathbf{c} \times \nabla \mathbf{u})+\mathbf{q u}=\mathbf{g}$
zeros $(N, 1)$ (default) | vector with N elements | function handle
Generalized Neumann condition $\mathrm{n} \cdot(\mathrm{c} \times \nabla \mathrm{u})+\mathrm{qu}=\mathrm{g}$, specified as a vector with N elements or a function handle. N is the number of PDEs in the system. For scalar PDEs, the generalized Neumann condition is $\mathrm{n} \cdot(\mathrm{c} \nabla \mathrm{u})+\mathrm{qu}=\mathrm{g}$. For the syntax of the function handle form of g , see "Nonconstant Boundary Conditions" on page 2-116.
Example: 'g',[3;2;-1]
Data Types: double | function_handle
Complex Number Support: Yes
\mathbf{q} - Generalized Neumann condition $\mathbf{n} \cdot(\mathbf{c} \times \nabla \mathbf{u})+\mathbf{q u}=\mathbf{g}$
zeros (N) (default) | N-by- N matrix | vector with $N^{\wedge} 2$ elements | function handle
Generalized Neumann condition $\mathrm{n} \cdot(\mathrm{c} \times \nabla \mathrm{u})+\mathrm{qu}=\mathrm{g}$, specified as an N-by- N matrix, a vector with $N^{\wedge} 2$ elements, or a function handle. N is the number of PDEs in the system. For the syntax of the function handle form of q, see "Nonconstant Boundary Conditions" on page 2-116.
Example: 'q',eye(3)
Data Types: double | function_handle
Complex Number Support: Yes

u - Dirichlet conditions

zeros $(N, 1)$ (default) | vector of up to N elements | function handle
Dirichlet conditions, specified as a vector of up to N elements or as a function handle. If u has less than N elements, then you must also use EquationIndex. The u and EquationIndex arguments must have the same length. If u has N elements, then specifying EquationIndex is optional.

For the syntax of the function handle form of u, see "Nonconstant Boundary Conditions" on page 2116.

Example: applyBoundaryCondition(model,'dirichlet','Face', [2,4,11],'u', 0)
Data Types: double
Complex Number Support: Yes
EquationIndex - Index of the known u components
1:N (default) | vector of integers with entries from 1 to N
Index of the known u components, specified as a vector of integers with entries from 1 to N. EquationIndex and u must have the same length.

When using EquationIndex to specify Dirichlet boundary conditions for a subset of components, use the mixed argument instead of dirichlet. The remaining components satisfy the default Neumann boundary condition with the zero values for ' g ' and ' q '.
Example: applyBoundaryCondition(model,'mixed','Face',[2,4,11],'u', [3,-1],'EquationIndex', [2,3])

Data Types: double

Vectorized - Vectorized function evaluation

'off' (default)|'on'
Vectorized function evaluation, specified as 'on' or 'off'. This evaluation applies when you pass a function handle as an argument. To save time in function handle evaluation, specify ' on ' , assuming that your function handle computes in a vectorized fashion. See "Vectorization". For details of this evaluation, see "Nonconstant Boundary Conditions" on page 2-116.
Example: applyBoundaryCondition(model, 'dirichlet', 'Face', [2,4,11],'u',@ucalculator,'Vectorized','on')

Data Types: char \| string

Output Arguments

bc - Boundary condition
 BoundaryCondition object

Boundary condition, returned as a BoundaryCondition object. The model object contains a vector of BoundaryCondition objects. bc is the last element of this vector.

Tips

- When there are multiple boundary condition assignments to the same geometric region, the toolbox uses the last applied setting.
- To avoid assigning boundary conditions to a wrong region, ensure that you are using the correct geometric region IDs by plotting and visually inspecting the geometry.
- If you do not specify a boundary condition for an edge or face, the default is the Neumann boundary condition with the zero values for ' g ' and ' q '.

See Also

BoundaryCondition | PDEModel | findBoundaryConditions

Topics

"Solve Problems Using PDEModel Objects" on page 2-2
Introduced in R2015a

area

Package: pde
Area of 2-D mesh elements

Syntax

A = area(mesh)
[A,AE] = area(mesh)
A = area(mesh,elements)

Description

$A=\operatorname{area}($ mesh $)$ returns the area A of the entire mesh.
$[\mathrm{A}, \mathrm{AE}]=$ area(mesh) also returns a row vector AE containing areas of each individual element of the mesh.
$\mathrm{A}=\mathrm{area}(\mathrm{mesh}, \mathrm{e}$ lements) returns the combined area of the specified elements of the mesh.

Examples

Area of Entire 2-D Mesh

Generate a 2-D mesh and find its area.
Create a PDE model.
model = createpde;
Include the geometry of the built-in function lshapeg. Plot the geometry.
geometryFromEdges(model, @lshapeg);
pdegplot(model,'FaceLabels','on')

Generate a mesh and plot it.
mesh = generateMesh(model);
figure
pdemesh(model)

Compute the area of the entire mesh.

```
ma = area(mesh)
ma = 3.0000
```


Area of Individual Elements of 2-D Mesh

Generate a 2-D mesh and find the area of each element.
Create a PDE model.
model = createpde;
Include the geometry of the built-in function lshapeg. Plot the geometry.

```
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
```


Generate a mesh and plot it.
mesh = generateMesh(model);
figure
pdemesh(model)

Compute the area of the entire mesh and the area of each individual element of the mesh. Display the areas of the first 5 elements.

```
[ma,mi] = area(mesh);
mi(1:5)
ans = 1\times5
    0.0047 0.0054 0.0053 0.0048 0.0061
```


Total Area of Group of Elements

Find the combined area of the elements associated with a particular face of a 2-D mesh.
Create a PDE model.
model = createpde;
Include the geometry of the built-in function lshapeg. Plot the geometry.

```
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
```


Generate a mesh and plot it.
mesh = generateMesh(model);
figure
pdemesh(model)

Find the elements associated with face 1 and compute the total area of these elements.

```
Ef1 = findElements(mesh,'region','Face',1);
maf1 = area(mesh,Ef1)
maf1 = 1.0000
```

Find how much of the total mesh area belongs to these elements. Return the result as a percentage.

```
maf1_percent = maf1/area(mesh)*100
```

maf1_percent = 33.3333

Input Arguments

mesh - Mesh object
Mesh property of a PDEModel object | output of generateMesh
Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.
Example: model.Mesh

elements - Element IDs

positive integer | matrix of positive integers
Element IDs, specified as a positive integer or a matrix of positive integers.

Example: [10 6818197113130136164$]$

Output Arguments

A - Area

positive number
Area of the entire mesh or the combined area of the specified elements of the mesh, returned as a positive number.

AE - Areas of individual elements
row vector of positive numbers
Areas of individual elements, returned as a row vector of positive numbers.

See Also

FEMesh Properties | findElements | findNodes |meshQuality | volume
Topics
"Finite Element Method Basics" on page 1-11

Introduced in R2018a

assema

(Not recommended) Assemble area integral contributions

Note assema is not recommended. Use assembleFEMatrices instead.

Syntax

$[K, M, F]=$ assema(model, $, \mathrm{C}, \mathrm{a}, \mathrm{f})$
$[K, M, F]=\operatorname{assema}(p, t, c, a, f)$

Description

$[K, M, F]=$ assema(model $, C, a, f)$ assembles the stiffness matrix K, the mass matrix M, and the load vector F using the mesh contained in model, and the PDE coefficients c, a, and f.
$[K, M, F]=\operatorname{assema}(p, t, c, a, f)$ assembles the matrices from the mesh data in p and t.

Examples

Assemble Finite Element Matrices

Assemble finite element matrices for an elliptic problem on complicated geometry.
The PDE is Poisson's equation,
$-\nabla \cdot \nabla u=1$.
Partial Differential Equation Toolbox ${ }^{\mathrm{TM}}$ solves equations of the form

$$
-\nabla \cdot(c \nabla u)+a u=f .
$$

So, represent Poisson's equation in toolbox syntax by setting $c=1, a=0$, and $f=1$.

```
c = 1;
a = 0;
f = 1;
```

Create a PDE model container. Import the ForearmLink.stl file into the model and examine the geometry.
model = createpde;
importGeometry(model,'ForearmLink.stl');
pdegplot(model,'FaceAlpha',0.5)

Create a mesh for the model.
generateMesh(model);
Create the finite element matrices from the mesh and the coefficients.
[K, M, F] = assema(model, $\mathrm{C}, \mathrm{a}, \mathrm{f})$;
The returned matrix K is quite sparse. M has no nonzero entries.

```
disp(['Fraction of nonzero entries in K is ',num2str(nnz(K)/numel(K))])
Fraction of nonzero entries in K is 0.001094
disp(['Number of nonzero entries in M is ',num2str(nnz(M))])
Number of nonzero entries in M is 0
```


Assemble Finite Element Matrices Using [p,e,t] Mesh

Assemble finite element matrices for the 2-D L-shaped region, using the [p,e,t] mesh representation.
Define the geometry using the lshapeg function included your software.
g = @lshapeg;

```
Use coefficients \(c=1, a=0\), and \(f=1\).
```

```
c = 1;
a = 0;
f = 1;
```

Create a mesh and assemble the finite element matrices.
[$\mathrm{p}, \mathrm{e}, \mathrm{t}]=$ initmesh(g);
$[K, M, F]=\operatorname{assema}(p, t, c, a, f)$;
The returned matrix M has all zeros. The K matrix is quite sparse.

```
disp(['Fraction of nonzero entries in K is ',num2str(nnz(K)/numel(K))])
Fraction of nonzero entries in K is 0.042844
disp(['Number of nonzero entries in M is ',num2str(nnz(M))])
Number of nonzero entries in M is 0
```


Input Arguments

model - PDE model

PDEModel object
PDE model, specified as a PDEModel object.
Example: model = createpde

c - PDE coefficient

scalar | matrix | character vector \mid character array \mid string scalar \mid string vector \mid coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. c represents the c coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=f$
or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
Example: ' $\cosh (x+y . \wedge 2)^{\prime}$
Data Types: double|char|string|function_handle
Complex Number Support: Yes

a - PDE coefficient

scalar | matrix | character vector \mid character array \mid string scalar \mid string vector \mid coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. a represents the a coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=f$
or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$

Example: 2*eye(3)
Data Types: double|char|string|function_handle Complex Number Support: Yes

f - PDE coefficient

scalar | matrix | character vector \| character array \| string scalar \| string vector \| coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. f represents the f coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=f$
or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double|char|string|function_handle
Complex Number Support: Yes
p - Mesh points
matrix
Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh. For a description of the (p, e, t) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double
t - Mesh triangles
matrix
Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the mesh. For a description of the (p, e, t) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

Output Arguments

K - Stiffness matrix

sparse matrix
Stiffness matrix, returned as a sparse matrix. See "Elliptic Equations" on page 5-93.
Typically, you use K in a subsequent call to assempde.

M - Mass matrix

sparse matrix
Mass matrix. returned as a sparse matrix. See "Elliptic Equations" on page 5-93.
Typically, you use M in a subsequent call to a solver such as assempde or hyperbolic.

F - Load vector

vector
Load vector, returned as a vector. See "Elliptic Equations" on page 5-93.
Typically, you use F in a subsequent call to assempde.

See Also

assembleFEMatrices

Introduced before R2006a

assemb

(Not recommended) Assemble boundary condition contributions

Note assemb is not recommended. Use assembleFEMatrices instead.

Syntax

$[Q, G, H, R]=$ assemb(model)
$[Q, G, H, R]=\operatorname{assemb}(b, p, e)$
$[Q, G, H, R]=\operatorname{assemb}(\ldots,[], s d l)$

Description

[$\mathrm{Q}, \mathrm{G}, \mathrm{H}, \mathrm{R}$] = assemb(model) assembles the matrices Q and H , and the vectors G and $\mathrm{R} . \mathrm{Q}$ should be added to the system matrix and contains contributions from mixed boundary conditions.
$[Q, G, H, R]=\operatorname{assemb}(b, p, e)$ assembles the matrices based on the boundary conditions specified in b and the mesh data in p and e.
[Q,G,H,R] = assemb(\qquad , [] , sdl), for any of the previous input arguments, restricts the finite element matrices to those that include the subdomain specified by the subdomain labels in sdl. The empty argument is required in this syntax for historic and compatibility reasons.

Examples

Assemble Boundary Condition Matrices

Assemble the boundary condition matrices for an elliptic PDE.
The PDE is Poisson's equation,
$-\nabla \cdot \nabla u=1$.
Partial Differential Equation Toolbox ${ }^{\mathrm{TM}}$ solves equations of the form
$-\nabla \cdot(c \nabla u)+a u=f$.
So, represent Poisson's equation in toolbox syntax by setting $c=1, a=0$, and $f=1$.
c = 1;
a $=0$;
f = 1;
Create a PDE model container. Import the ForearmLink.stl file into the model and examine the geometry.
model = createpde;
importGeometry(model,'Block.stl');

```
h = pdegplot(model,'FaceLabels','on');
```

h(1). FaceAlpha = 0.5;

Set zero Dirichlet boundary conditions on the narrow faces (numbered 1 through 4).
applyBoundaryCondition(model,'Face',1:4,'u',0);
Set a Neumann condition with $\mathrm{g}=-1$ on face 6 , and $\mathrm{g}=1$ on face 5 .
applyBoundaryCondition(model,'Face', 6,'g',-1);
applyBoundaryCondition(model,'Face', 5, 'g',1);
Create a mesh for the model.
generateMesh(model);
Create the boundary condition matrices for the model.
$[\mathrm{Q}, \mathrm{G}, \mathrm{H}, \mathrm{R}]=$ assemb(model);
The H matrix is quite sparse. The Q matrix has no nonzero entries.

```
disp(['Fraction of nonzero entries in H is ',num2str(nnz(H)/numel(H))])
Fraction of nonzero entries in H is 7.8796e-05
disp(['Number of nonzero entries in Q is ',num2str(nnz(Q))])
Number of nonzero entries in Q is 0
```


Assemble Boundary Matrices Using [p,e,t] Mesh

Assemble boundary condition matrices for the 2-D L-shaped region with Dirichlet boundary conditions, using the [$\mathrm{p}, \mathrm{e}, \mathrm{t}]$ mesh representation.

Define the geometry and boundary conditions using functions included in your software.

```
g = @lshapeg;
b = @lshapeb;
```

Create a mesh for the geometry.
[p,e,t] = initmesh(g);
Create the boundary matrices.

$$
[Q, G, H, R]=\operatorname{assemb}(b, p, e) ;
$$

Only one of the resulting matrices is nonzero, namely H . The H matrix is quite sparse.

```
disp(['Fraction of nonzero entries in H is ',num2str(nnz(H)/numel(H))])
Fraction of nonzero entries in H is 0.0066667
```


Input Arguments

model - PDE model

PDEModel object
PDE model, specified as a PDEModel object.
Example: model $=$ createpde

b - Boundary conditions

boundary matrix | boundary file
Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double |char|string|function_handle
p - Mesh points
matrix
Mesh points, specified as a 2 -by-Np matrix of points, where Np is the number of points in the mesh. For a description of the (p, e, t) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: $[\mathrm{p}, \mathrm{e}, \mathrm{t}]=$ initmesh(gd)

Data Types: double
e-Mesh edges
matrix
Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For a description of the (p, e, t) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

sdl - Subdomain labels

vector of positive integers
Subdomain labels, specified as a vector of positive integers. For 2-D geometry only. View the subdomain labels in your geometry using the command
pdegplot(g,'SubdomainLabels','on')
Example: $s d l=[1,3: 5]$;
Data Types: double

Output Arguments

Q - Neumann boundary condition matrix

sparse matrix
Neumann boundary condition matrix, returned as a sparse matrix. See "Elliptic Equations" on page 593.

Typically, you use \mathbf{Q} in a subsequent call to a solver such as assempde or hyperbolic.

G - Neumann boundary condition vector

sparse vector
Neumann boundary condition vector, returned as a sparse vector. See "Elliptic Equations" on page 593.

Typically, you use G in a subsequent call to a solver such as assempde or hyperbolic.

H - Dirichlet matrix

sparse matrix
Dirichlet matrix, returned as a sparse matrix. See "Algorithms" on page 5-67.
Typically, you use H in a subsequent call to assempde.

R - Dirichlet vector
 sparse vector

Dirichlet vector, returned as a sparse vector. See "Algorithms" on page 5-67.

Typically, you use R in a subsequent call to assempde.

Algorithms

As explained in "Elliptic Equations" on page 5-93, the finite element matrices and vectors correspond to the reduced linear system and are the following.

- Q is the integral of the q boundary condition against the basis functions.
- G is the integral of the g boundary condition against the basis functions.
- H is the Dirichlet condition matrix representing $h u=r$.
- R is the Dirichlet condition vector for $\mathrm{Hu}=\mathrm{R}$.

For more information on the reduced linear system form of the finite element matrices, see the assempde "More About" on page 5-93 section, and the linear algebra approach detailed in "Systems of PDEs" on page 5-99.

See Also
 assembleFEMatrices

Introduced before R2006a

assembleFEMatrices

Assemble finite element matrices

Syntax

FEM = assembleFEMatrices(model)
FEM = assembleFEMatrices(model, matrices)
FEM = assembleFEMatrices(model,bcmethod)
FEM = assembleFEMatrices(\qquad ,state)

Description

FEM = assembleFEMatrices(model) returns a structural array containing all finite element matrices for a PDE problem specified as a model.

FEM = assembleFEMatrices(model, matrices) returns a structural array containing only the specified finite element matrices.

FEM = assembleFEMatrices(model,bcmethod) assembles finite element matrices and imposes boundary conditions using the method specified by bcmethod.

FEM = assembleFEMatrices(\qquad , state) assembles finite element matrices using the input time or solution specified in the state structure array. The function uses the time field of the structure for time-dependent models and the solution field u for nonlinear models. You can use this argument with any of the previous syntaxes.

Examples

Finite Element Matrices for 2-D Problem

Create a PDE model for the Poisson equation on an L-shaped membrane with zero Dirichlet boundary conditions.

```
model = createpde(1);
geometryFromEdges(model,@lshapeg);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);
applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges, 'u',0);
```

Generate a mesh and obtain the default finite element matrices for the problem and mesh.

```
generateMesh(model,'Hmax',0.2);
FEM = assembleFEMatrices(model)
FEM = struct with fields:
    K: [401x401 double]
    A: [401x401 double]
    F: [401x1 double]
    Q: [401x401 double]
    G: [401x1 double]
    H: [80x401 double]
```

R: [80x1 double]
M: [401x401 double]
T: [401×401 double]

Specified Set of Finite Element Matrices

Make computations faster by specifying which finite element matrices to assemble.
Create a transient thermal model and include the geometry of the built-in function squareg.

```
thermalmodel = createpde('thermal','steadystate');
```

geometryFromEdges(thermalmodel,@squareg);
Plot the geometry with the edge labels.
pdegplot(thermalmodel,'EdgeLabels','on')
$x \lim ([-1.11 .1])$
$y \lim ([-1.11 .1])$

Specify the thermal conductivity of the material and the internal heat source.

```
thermalProperties(thermalmodel,'ThermalConductivity',0.2);
internalHeatSource(thermalmodel,10);
```

Set the boundary conditions.

```
thermalBC(thermalmodel,'Edge',[1,3],'Temperature',100);
```

Generate a mesh.

```
generateMesh(thermalmodel);
```

Assemble the stiffness and mass matrices.

```
FEM_KM = assembleFEMatrices(thermalmodel,'KM')
FEM_KM = struct with fields:
    K: [1541x1541 double]
    M: [1541x1541 double]
```

Now, assemble the finite element matrices $\mathrm{M}, \mathrm{K}, \mathrm{A}$, and F .

```
FEM_MKAF = assembleFEMatrices(thermalmodel,'MKAF')
FEM_MKAF = struct with fields:
    M: [1541x1541 double]
    K: [1541x1541 double]
    A: [1541\times1541 double]
    F: [1541x1 double]
```

The four matrices M, K, A, and F correspond to discretized versions of the PDE coefficients m, c, a, and f . These four matrices also represent the domain of the finite-element model of the PDE. Instead of specifying them explicitly, you can use the domain argument.

```
FEMd = assembleFEMatrices(thermalmodel,'domain')
FEMd = struct with fields:
    M: [1541x1541 double]
    K: [1541x1541 double]
    A: [1541x1541 double]
    F: [1541x1 double]
```

The four matrices Q, G, H, and R, correspond to discretized versions of q, g, h, and r in the Neumann and Dirichlet boundary condition specification. These four matrices also represent the boundary of the finite-element model of the PDE. Use the boundary argument to assemble only these matrices.

```
FEMb = assembleFEMatrices(thermalmodel,'boundary')
FEMb = struct with fields:
    H: [74x1541 double]
    R: [74x1 double]
    G: [1541x1 double]
    Q: [1541x1541 double]
```


Finite Element Matrices with nullspace and stiff-spring Methods

Create a PDE model for the Poisson equation on an L-shaped membrane with zero Dirichlet boundary conditions.

```
model = createpde(1);
geometryFromEdges(model,@lshapeg);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);
applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges,'u',0);
```

Generate a mesh.

```
generateMesh(model,'Hmax',0.2);
```

Obtain the finite element matrices after imposing the boundary condition using the null-space approach. This approach eliminates the Dirichlet degrees of freedom and provides a reduced system of equations.

```
FEMn = assembleFEMatrices(model,'nullspace')
FEMn = struct with fields:
    Kc: [321x321 double]
    Fc: [321\times1 double]
        B: [401\times321 double]
    ud: [401x1 double]
        M: [321x321 double]
```

Obtain the solution to the PDE using the nullspace finite element matrices.
$u n=F E M n . B^{*}(F E M n . K c \backslash F E M n . F c)+$ FEMn. ud;
Compare this result to the solution given by solvepde. The two solutions are identical.

```
ul = solvepde(model);
norm(un - u1.NodalSolution)
ans = 0
```

Obtain the finite element matrices after imposing the boundary condition using the stiff-spring approach. This approach retains the Dirichlet degrees of freedom, but imposes a large penalty on them.

```
FEMs = assembleFEMatrices(model,'stiff-spring')
FEMs = struct with fields:
    Ks: [401\times401 double]
    Fs: [401x1 double]
        M: [401x401 double]
```

Obtain the solution to the PDE using the stiff-spring finite element matrices. This technique gives a less accurate solution.

```
us = FEMs.Ks\FEMs.Fs;
norm(us - ul.NodalSolution)
ans = 0.0098
```


Finite Element Matrices for Time-Dependent Problem

Assemble finite element matrices for the first and last time steps of a transient structural problem.

Create a transient structural model for solving a solid (3-D) problem.
structuralmodel = createpde('structural','transient-solid');
Create the geometry and include it in the model. Plot the geometry.
gm = multicylinder(0.01,0.05) ;
addVertex(gm,'Coordinates',[0,0,0.05]);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', 'FaceAlpha', 0.5)

Specify the Young's modulus and Poisson's ratio.

```
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',201E9, ...
    'PoissonsRatio',0.3, ...
    'MassDensity',7800);
```

Specify that the bottom of the cylinder is a fixed boundary.

```
structuralBC(structuralmodel,'Face',1,'Constraint','fixed');
```

Specify the harmonic pressure on the top of the cylinder.
structuralBoundaryLoad(structuralmodel,'Face',2,'Pressure',5E7,'Frequency',50);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel, 'Displacement', [0;0;0], 'Velocity', [0;0;0]);

Generate a linear mesh.

```
generateMesh(structuralmodel,'Geometric0rder','linear');
tlist = linspace(0,1,300);
```

Assemble the finite element matrices for the initial time step.

```
state.time = tlist(1);
FEM_domain = assembleFEMatrices(structuralmodel,state)
FEM domain = struct with fields:
    K: [6633x6633 double]
    A: [6633x6633 double]
    F: [6633x1 double]
    Q: [6633x6633 double]
    G: [6633x1 double]
    H: [249x6633 double]
    R: [249x1 double]
    M: [6633x6633 double]
```

Pressure applied at the top of the cylinder is the only time-dependent quantity in the model. To model the dynamics of the system, assemble the boundary-load finite element matrix G for the initial, intermediate, and final time steps.

```
state.time = tlist(1);
FEM_boundary_init = assembleFEMatrices(structuralmodel,'G',state)
FEM_boundary_init = struct with fields:
    G: [6633x1 double]
state.time = tlist(floor(length(tlist)/2));
FEM_boundary_half = assembleFEMatrices(structuralmodel,'G',state)
FEM_boundary_half = struct with fields:
    G: [6633x1 double]
state.time = tlist(end);
FEM_boundary_final = assembleFEMatrices(structuralmodel,'G',state)
FEM_boundary_final = struct with fields:
    G: [6633\times̄1 double]
```


Finite Element Matrices for Nonlinear Problem

Assemble finite element matrices for a heat transfer problem with temperature-dependent thermal conductivity.

Create a steady-state thermal model.

```
thermalmodelS = createpde('thermal','steadystate');
```

Create a 2-D geometry by drawing one rectangle the size of the block and a second rectangle the size of the slot.

```
r1 = [3 4 -. 5 .5 .5 -.5 -. 8 -. 8 . 8 .8];
r2 = [3 4 -.05 .05 . 05 -.05 -..4 -.4 .4 .4];
gdm = [r1; r2]';
```

Subtract the second rectangle from the first to create the block with a slot.
g = decsg(gdm, 'R1-R2',['R1'; 'R2']');
Convert the decsg format into a geometry object. Include the geometry in the model and plot the geometry.

```
geometryFromEdges(thermalmodelS,g);
figure
pdegplot(thermalmodelS,'EdgeLabels','on');
axis([-.9 .9 -.9 .9]);
```


Set the temperature on the left edge to 100 degrees. Set the heat flux out of the block on the right edge to -10 . The top and bottom edges and the edges inside the cavity are all insulated: there is no heat transfer across these edges.

```
thermalBC(thermalmodelS,'Edge',6,'Temperature',100);
thermalBC(thermalmodelS,'Edge',1,'HeatFlux',-10);
```

Specify the thermal conductivity of the material as a simple linear function of temperature u.

```
k = @(~,state) 0.7+0.003*state.u;
thermalProperties(thermalmodelS,'ThermalConductivity',k);
```

Generate a mesh.
generateMesh(thermalmodelS) ;
Calculate the steady-state solution.
Rnonlin = solve(thermalmodelS);
Because the thermal conductivity is nonlinear (depends on the temperature), compute the system matrices corresponding to the converged temperature. Assign the temperature distribution to the u field of the state structure array. Because the u field must contain a row vector, transpose the temperature distribution.

```
state.u = Rnonlin.Temperature.';
```

Assemble finite element matrices using the temperature distribution at the nodal points.

```
FEM = assembleFEMatrices(thermalmodelS,'nullspace',state)
FEM = struct with fields:
    Kc: [1277\times1277 double]
    Fc: [1277x1 double]
        B: [1320x1277 double]
    ud: [1320x1 double]
        M: [1277\times1277 double]
```

Compute the solution using the system matrices to verify that they yield the same temperature as Rnonlin.
$u=$ FEM. $B^{*}(F E M . K c \backslash F E M . F c)+$ FEM. ud;
Compare this result to the solution given by solve.

```
norm(u - Rnonlin.Temperature)
ans = 5.9035e-05
```


Input Arguments

model - Model object

PDEModel object | ThermalModel object | StructuralModel object|ElectroMagneticModel object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or ElectroMagneticModel object.
Example: model = createpde(1)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

bcmethod - Method for including boundary conditions

'none' (default)|'nullspace'|'stiff-spring'

Method for including boundary conditions, specified as 'none', 'nullspace', or 'stiffspring '. For more information, see "Algorithms" on page 5-77.
Example: FEM = assembleFEMatrices(model,'nullspace')
Data Types: char|string
matrices - Matrices to assemble
matrix identifiers |'boundary'|'domain'
Matrices to assemble, specified as:

- Matrix identifiers, such as ' F^{\prime}, 'MKF ', ' K ', and so on - Assemble the corresponding matrices. Each uppercase letter represents one matrix: K, A, F, Q, G, H, R, M, and T. You can combine several letters into one character vector or string, such as 'MKF'.
- 'boundary' - Assemble all matrices related to geometry boundaries.
- 'domain' - Assemble all domain-related matrices.

Example: FEM = assembleFEMatrices(model, 'KAF')
Data Types: char|string

state - Time for time-dependent models and solution for nonlinear models

structure array
Time for time-dependent models and solution for nonlinear models, specified in a structure array. The array fields represent the following values:

- state.time contains a nonnegative number specifying the time value for time-dependent models.
- state. u contains a solution matrix of size N-by- $N p$ that can be used to assemble matrices in a nonlinear problem setup, where coefficients are functions of state.u. Here, N is the number of equations in the system, and $N p$ is the number of nodes in the mesh.

Example: state.time $=$ tlist(end); FEM = assembleFEMatrices(model, 'boundary', state)

Output Arguments

FEM - Finite element matrices

structural array
Finite element matrices, returned as a structural array. Use the bcmethod and matrices arguments to specify which finite element matrices you want to assemble.

The fields in the structural array depend on bcmethod:

- If the value is 'none', then the fields are K, A, F, Q, G, H, R, and M.
- If the value is 'nullspace', then the fields are $\mathrm{Kc}, \mathrm{Fc}, \mathrm{B}, \mathrm{ud}$, and M .
- If the value is 'stiff-spring', then the fields are Ks, Fs, and M.

The fields in the structural array also depend on matrices:

- If the value is boundary, then the fields are all matrices related to geometry boundaries.
- If the value is domain, then the fields are all domain-related matrices.
- If the value is a matrix identifier or identifiers, such as ' F^{\prime}, ' MKF ', ' K^{\prime} ', and so on, then the fields are the corresponding matrices.

For more information, see "Algorithms" on page 5-77.

Algorithms

Partial Differential Equation Toolbox solves equations of the form

$$
\mathbf{m} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}+\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

and eigenvalue equations of the form

$$
\begin{aligned}
& -\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\lambda \mathbf{d u} \\
& \text { or }
\end{aligned}
$$

$$
-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\lambda^{2} \mathbf{m} \mathbf{u}
$$

with the Dirichlet boundary conditions, $\mathbf{h u}=\mathbf{r}$, and Neumann boundary conditions, $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{q u}=\mathbf{g}$.
assembleFEMatrices returns the following full finite element matrices and vectors that represent the corresponding PDE problem:

- K is the stiffness matrix, the integral of the discretized version of the coefficient.
- M is the mass matrix, the integral of the discretized version of the m or d coefficients. M is nonzero for time-dependent and eigenvalue problems.
- A is the integral of the discretized version of the a coefficient.
- F is the integral of the discretized version of the f coefficient. For thermal, electromagnetic, and structural problems, F is a source or body load vector.
- \mathbf{Q} is the integral of the discretized version of the q term in a Neumann boundary condition.
- G is the integral of the discretized version of the g term in a Neumann boundary condition. For structural problems, G is a boundary load vector.
- The H and R matrices come directly from the Dirichlet conditions and the mesh.

Imposing Dirichlet Boundary Conditions

The 'nullspace' technique eliminates Dirichlet conditions from the problem using a linear algebra approach. It generates the combined finite-element matrices Kc, Fc, B, and vector ud corresponding to the reduced system $K c * u=F c$, where $K c=B^{\prime *}(K+A+Q) * B$, and $F c=B^{\prime *}(F+G)$. The B matrix spans the null space of the columns of H (the Dirichlet condition matrix representing $h * u d=$ $r)$. The R vector represents the Dirichlet conditions in $H^{*} u d=R$. The ud vector has the size of the solution vector. Its elements are zeros everywhere except at Dirichlet degrees-of-freedom (DoFs) locations where they contain the prescribed values.

From the ' nullspace' matrices, you can compute the solution u as
$u=B^{*}(K c \backslash F c)+u d$.

If you assembled a particular set of matrices, for example G and M, you can impose the boundary conditions on G and M as follows. First, compute the nullspace of columns of H .

```
[B,Or] = pdenullorth(H);
ud = Or*((H*Or\R)); % Vector with known value of the constraint DoF.
```

Then use the B matrix as follows. To eliminate Dirichlet degrees of freedom from the load vector G, use:

GwithBC = B'*G
To eliminate Dirichlet degrees of freedom from mass matrix, use:
$M=B^{\prime *} M^{*} B$
You can eliminate Dirichlet degrees of freedom from other vectors and matrices using the same technique.

The 'stiff-spring' technique converts Dirichlet boundary conditions to Neumann boundary conditions using a stiff-spring approximation. It returns a matrix Ks and a vector Fs that together represent a different type of combined finite element matrices. The approximate solution is $u=K s$ \Fs. Compared to the 'nullspace' technique, the 'stiff-spring' technique generates matrices more quickly, but generally gives less accurate solutions.

Note Internally, the toolbox uses the 'nullspace' approach to impose Dirichlet boundary conditions while computing the solution using solvepde and solve.

Degrees of Freedom (DoFs)

If the number of nodes in a model is NumNodes, and the number of equations is N, then the length of column vectors u and $u d$ is $N *$ NumNodes. The toolbox assigns the IDs to the degrees of freedom in u and ud:

- Entries from 1 to NumNodes correspond to the first equation.
- Entries from NumNodes+1 to $2 *$ NumNodes correspond to the second equation.
- Entries from 2*NumNodes+1 to $3 *$ NumNodes correspond to the third equation.

The same approach applies to all other entries, up to N^{*} NumNodes.
For example, in a 3-D structural model, the length of a solution vector u is 3*NumNodes. The first NumNodes entries correspond to the x-displacement at each node, the next NumNodes entries correspond to the y-displacement, and the next NumNodes entries correspond to the z-displacement.

Thermal, Structural, and Electromagnetic Analysis

In thermal analysis, the m and a coefficients are zeros. The thermal conductivity maps to the c coefficient. The product of the mass density and the specific heat maps to the d coefficient. The internal heat source maps to the f coefficient. The temperature on a boundary corresponds to the Dirichlet boundary condition term r with $h=1$. Various forms of boundary heat flux, such as the heat flux itself, emissivity, and convection coefficient, map to the Neumann boundary condition terms q and g.

In structural analysis, the a coefficient is zero. The Young's modulus and Poisson's ratio map to the c coefficient. The mass density maps to the m coefficient. The body loads map to the f coefficient.

Displacements, constraints, and components of displacement along the axes, map to the Dirichlet boundary condition terms h and r. Boundary loads, such as pressure, surface tractions, and translational stiffnesses, correspond to the Neumann boundary condition terms q and g. When you specify the damping model by using the Rayleigh damping parameters Alpha and Beta, the discretized damping matrix C is computed by using the mass matrix M and the stiffness matrix K as C $=$ Alpha*M + Beta*K.

In electrostatic and magnetostatic analyses, the m, a, and d coefficients are zeros. The relative permittivity and relative permeability map to the c coefficient. The charge density and current density map to the f coefficient. The voltage and magnetic potential on a boundary correspond to the Dirichlet boundary condition term r with $h=1$.

See Also

ElectromagneticModel|PDEModel|StructuralModel|ThermalModel|solve|solvepde

Topics

"Finite Element Method Basics" on page 1-11
"Equations You Can Solve Using PDE Toolbox" on page 1-3

Introduced in R2016a

assempde

(Not recommended) Assemble finite element matrices and solve elliptic PDE

Note assempde is not recommended. Use solvepde instead.

Syntax

```
u = assempde(model,c,a,f)
u = assempde(b,p,e,t,c,a,f)
[Kc,Fc,B,ud] = assempde( ___ )
[Ks,Fs] = assempde(
```

\qquad

```
[K,M,F,Q,G,H,R]= assempde(___)
[K,M,F,Q,G,H,R] = assempde(___,[],sdl)
u = assempde(K,M,F,Q,G,H,R)
[Ks,Fs] = assempde(K,M,F,Q,G,H,R)
[Kc,Fc,B,ud] = assempde(K,M,F,Q,G,H,R)
```


Description

$u=$ assempde(model, $\mathrm{c}, \mathrm{a}, \mathrm{f})$ solves the PDE
$-\nabla \cdot(c \nabla u)+a u=f$
with geometry, boundary conditions, and finite element mesh in model, and coefficients c , a, and f . If the PDE is a system of equations (model. PDESystemSize > 1), then assempde solves the system of equations
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
$u=$ assempde ($b, p, e, t, c, a, f)$ solves the PDE with boundary conditions b, and finite element mesh (p, e, t).
[Kc, Fc, B, ud] = assempde(___), for any of the previous input syntaxes, assembles finite element matrices using the reduced linear system form, which eliminates any Dirichlet boundary conditions from the system of linear equations. You can calculate the solution u at node points by the command $u=B^{*}(K c \backslash F c)+u d$. See "Reduced Linear System" on page 5-93.
[Ks,Fs] = assempde(___) assembles finite element matrices that represent any Dirichlet boundary conditions using a stiff-spring approximation. You can calculate the solution u at node points by the command $u=K s \backslash F s$. See "Stiff-Spring Approximation" on page 5-93.
$[K, M, F, Q, G, H, R]=$ assempde (__) assembles finite element matrices that represent the PDE problem. This syntax returns all the matrices involved in converting the problem to finite element form. See "Algorithms" on page 5-93.
[K, M, F, Q, G, H, R] = assempde(__ , [], sdl) restricts the finite element matrices to those that include the subdomain specified by the subdomain labels in sdl. The empty argument is required in this syntax for historic and compatibility reasons.
$u=$ assempde ($K, M, F, Q, G, H, R)$ returns the solution u based on the full collection of finite element matrices.
$[K s, F s]=\operatorname{assempde}(K, M, F, Q, G, H, R)$ returns finite element matrices that approximate Dirichlet boundary conditions using the stiff-spring approximation. See "Algorithms" on page 5-93.
$[K c, F c, B, u d]=\operatorname{assempde}(K, M, F, Q, G, H, R)$ returns finite element matrices that eliminate any Dirichlet boundary conditions from the system of linear equations. See "Algorithms" on page 5-93.

Examples

Solve a Scalar PDE

Solve an elliptic PDE on an L-shaped region.
Create a scalar PDE model. Incorporate the geometry of an L-shaped region.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
```

Apply zero Dirichlet boundary conditions to all edges.

```
applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges,'u',0);
```

Generate a finite element mesh.

```
generateMesh(model,'GeometricOrder','linear');
```

Solve the $\mathrm{PDE}-\nabla \cdot(c \nabla u)+a u=f$ with parameters $\mathrm{c}=1$, $\mathrm{a}=0$, and $\mathrm{f}=5$.
$\mathrm{c}=1$;
a $=0$;
$\mathrm{f}=5$;
u = assempde(model, c,a,f);
Plot the solution.

```
pdeplot(model,'XYData',u)
```


3-D Elliptic Problem

Solve a 3-D elliptic PDE using a PDE model.
Create a PDE model container, import a 3-D geometry description, and view the geometry.
model = createpde;
importGeometry(model,'Block.stl');
pdegplot(model, 'FaceLabels', 'on','FaceAlpha', 0.5)

Set zero Dirichlet conditions on faces 1 through 4 (the edges). Set Neumann conditions with g = - 1 on face 6 and $\mathrm{g}=1$ on face 5 .
applyBoundaryCondition(model, 'Face',1:4,'u',0);
applyBoundaryCondition(model,'Face', 6, 'g', -1);
applyBoundaryCondition(model,'Face',5,'g',1);
Set coefficients c = 1, a = 0, and f = 0.1.
c = 1;
a = 0;
f = 0.1;
Create a mesh and solve the problem.
generateMesh(model);
u = assempde(model,c,a,f);
Plot the solution on the surface.

```
pdeplot3D(model,'ColorMapData',u)
```


2-D PDE Using [p,e,t] Mesh

Solve a 2-D PDE using the older syntax for mesh.
Create a circle geometry.
g = @circleg;
Set zero Dirichlet boundary conditions.
b = @circleb1;
Create a mesh for the geometry.
[p,e,t] = initmesh(g);
Solve the $\operatorname{PDE}-\nabla \cdot(c \nabla u)+a u=f$ with parameters $c=1, a=0$, and $f=\sin (x)$.
c = 1;
a = 0;
$\mathrm{f}=\mathrm{sin}(\mathrm{x}) \mathrm{\prime}$;
$u=$ assempde(b, p,e,t, c, a,f);
Plot the solution.

```
pdeplot(p,e,t,'XYData',u)
```


Finite Element Matrices

Obtain the finite-element matrices that represent the problem using a reduced linear algebra representation of Dirichlet boundary conditions.

Create a scalar PDE model. Import a simple 3-D geometry.
model = createpde;
importGeometry(model,'Block.stl');
Set zero Dirichlet boundary conditions on all the geometry faces.
applyBoundaryCondition(model,'dirichlet','Face',1:model.Geometry.NumFaces,'u',0);
Generate a mesh for the geometry.
generateMesh(model);
Obtain finite element matrices $\mathrm{K}, \mathrm{F}, \mathrm{B}$, and ud that represent the equation $-\nabla \cdot(c \nabla u)+a u=f$ with parameters $c=1, a=0$, and $f=\log \left(1+x+\frac{y}{1+z}\right)$.
$\mathrm{c}=1$;
a = 0;

```
f = 'log(1+x+y./(1+z))';
[K,F,B,ud] = assempde(model,c,a,f);
```

You can obtain the solution u of the PDE at mesh nodes by executing the command

```
u = B* (K\F) + ud;
```

Generally, this solution is slightly more accurate than the stiff-spring solution, as calculated in the next example.

Stiff-Spring Finite Element Solution

Obtain the stiff-spring approximation of finite element matrices.
Create a scalar PDE model. Import a simple 3-D geometry.

```
model = createpde;
importGeometry(model,'Block.stl');
```

Set zero Dirichlet boundary conditions on all the geometry faces.

```
applyBoundaryCondition(model,'Face',1:model.Geometry.NumFaces,'u',0);
```

Generate a mesh for the geometry.

```
generateMesh(model);
```

Obtain finite element matrices Ks and Fs that represent the equation $-\nabla \cdot(c \nabla u)+a u=f$ with parameters $c=1, a=0$, and $f=\log \left(1+x+\frac{y}{1+z}\right)$.
$\mathrm{c}=1$;
$\mathrm{a}=0$;
f = ' $\log (1+x+y . /(1+z))$ ';
[Ks,Fs] = assempde(model, c,a,f);
You can obtain the solution u of the PDE at mesh nodes by executing the command
$u=K s \backslash F s ;$
Generally, this solution is slightly less accurate than the reduced linear algebra solution, as calculated in the previous example.

Full Collection of Finite Element Matrices

Obtain the full collection of finite element matrices for an elliptic problem.
Import geometry and set up an elliptic problem with Dirichlet boundary conditions. The Torus.stl geometry has only one face, so you need set only one boundary condition.

```
model = createpde();
importGeometry(model,'Torus.stl');
applyBoundaryCondition(model,'face',1,'u',0);
```

```
c = 1;
a = 0;
f = 1;
generateMesh(model);
```

Create the finite element matrices that represent this problem.
$[K, M, F, Q, G, H, R]=$ assempde(model, $, \mathrm{C}, \mathrm{a}, \mathrm{f})$;
Most of the resulting matrices are quite sparse. G, M, Q, and R are all zero sparse matrices.

```
howsparse = @(x)nnz(x)/numel(x);
disp(['Maximum fraction of nonzero entries in K or H is ',...
    num2str(max(howsparse(K),howsparse(H)))])
Maximum fraction of nonzero entries in K or H is 0.002006
```

To find the solution to the PDE, call assempde again.

```
u = assempde(K,M,F,Q,G,H,R);
```


Input Arguments

model - PDE model

PDEModel object
PDE model, specified as a PDEModel object.
Example: model = createpde

c - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. c represents the c coefficient in the scalar PDE

$$
-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
Example: ' $\cosh (x+y . \wedge 2)^{\prime}$
Data Types: double|char|string|function_handle
Complex Number Support: Yes

a - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. a represents the a coefficient in the scalar PDE

$$
-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
Example: 2*eye (3)
Data Types: double|char|string|function_handle
Complex Number Support: Yes

f - PDE coefficient

scalar \mid matrix \mid character vector \mid character array \mid string scalar \mid string vector \mid coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. f represents the f coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=f$
or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double|char|string|function_handle
Complex Number Support: Yes

b - Boundary conditions

boundary matrix | boundary file
Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double|char|string|function_handle

p - Mesh points

matrix
Mesh points, specified as a 2-by-Np matrix of points, where $N p$ is the number of points in the mesh. For a description of the (p, e, t) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

e - Mesh edges

matrix
Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For a description of the (p, e, t) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)

Data Types: double

t - Mesh triangles

matrix
Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the mesh. For a description of the (p, e, t) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

K - Stiffness matrix

sparse matrix | full matrix
Stiffness matrix, specified as a sparse matrix or full matrix. Generally, you obtain K from a previous call to assema or assempde. For the meaning of stiffness matrix, see "Elliptic Equations" on page 593.

Example: [K, M, F, Q, G, H,R] = assempde(model, c, a, f)
Data Types: double
Complex Number Support: Yes
M - Mass matrix
sparse matrix | full matrix
Mass matrix, specified as a sparse matrix or full matrix. Generally, you obtain M from a previous call to assema or assempde. For the meaning of mass matrix, see "Elliptic Equations" on page 5-93.
Example: $[K, M, F, Q, G, H, R]=$ assempde(model, $\mathrm{C}, \mathrm{a}, \mathrm{f})$
Data Types: double
Complex Number Support: Yes

F - Finite element frepresentation

vector
Finite element f representation, specified as a vector. Generally, you obtain F from a previous call to assema or assempde. For the meaning of this representation, see "Elliptic Equations" on page 5-93.
Example: $[K, M, F, Q, G, H, R]=$ assempde(model, $\mathrm{C}, \mathrm{a}, \mathrm{f})$
Data Types: double
Complex Number Support: Yes

Q - Neumann boundary condition matrix

sparse matrix | full matrix
Neumann boundary condition matrix, specified as a sparse matrix or full matrix. Generally, you obtain Q from a previous call to assemb or assempde. For the meaning of this matrix, see "Elliptic Equations" on page 5-93.
Example: $[K, M, F, Q, G, H, R]=$ assempde(model, $\mathrm{C}, \mathrm{a}, \mathrm{f})$
Data Types: double

Complex Number Support: Yes

G - Neumann boundary condition vector

sparse vector \mid full vector
Neumann boundary condition vector, specified as a sparse vector or full vector. Generally, you obtain G from a previous call to assemb or assempde. For the meaning of this vector, see "Elliptic Equations" on page 5-93.

Example: $[\mathrm{K}, \mathrm{M}, \mathrm{F}, \mathrm{Q}, \mathrm{G}, \mathrm{H}, \mathrm{R}]=$ assempde(model, $\mathrm{C}, \mathrm{a}, \mathrm{f})$
Data Types: double
Complex Number Support: Yes

H - Dirichlet boundary condition matrix

sparse matrix | full matrix
Dirichlet boundary condition matrix, specified as a sparse matrix or full matrix. Generally, you obtain H from a previous call to assemb or assempde. For the meaning of this matrix, see "Algorithms" on page 5-93.

Example: [K, M, F, Q, G,H,R] = assempde(model, c,a,f)
Data Types: double
Complex Number Support: Yes

R - Dirichlet boundary condition vector

sparse vector | full vector
Dirichlet boundary condition vector, specified as a sparse vector or full vector. Generally, you obtain R from a previous call to assemb or assempde. For the meaning of this vector, see "Algorithms" on page 5-93.
Example: [K,M,F,Q,G,H,R] = assempde(model, c,a,f)
Data Types: double
Complex Number Support: Yes

sdl - Subdomain labels

vector of positive integers
Subdomain labels, specified as a vector of positive integers. For 2-D geometry only. View the subdomain labels in your geometry using the command
pdegplot(g,'SubdomainLabels','on')
Example: sdl = [1,3:5];
Data Types: double

Output Arguments

u - PDE solution

vector
PDE solution, returned as a vector.

- If the PDE is scalar, meaning only one equation, then u is a column vector representing the solution u at each node in the mesh. $u(i)$ is the solution at the ith column of model. Mesh. Nodes or the ith column of p.
- If the PDE is a system of $N>1$ equations, then u is a column vector with $N^{*} N p$ elements, where Np is the number of nodes in the mesh. The first $N p$ elements of u represent the solution of equation 1, then next Np elements represent the solution of equation 2 , etc.

To obtain the solution at an arbitrary point in the geometry, use pdeInterpolant.
To plot the solution, use pdeplot for 2-D geometry, or see "3-D Solution and Gradient Plots with MATLAB® Functions" on page 3-297.

Kc - Stiffness matrix

sparse matrix
Stiffness matrix, returned as a sparse matrix. See "Elliptic Equations" on page 5-93.
$\mathrm{u} 1=\mathrm{Kc} \backslash \mathrm{Fc}$ returns the solution on the non-Dirichlet points. To obtain the solution u at the nodes of the mesh,
$u=B^{*}(K c \backslash F c)+u d$
Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

Fc - Load vector

vector
Load vector, returned as a vector. See "Elliptic Equations" on page 5-93.
$u=B^{*}(K c \backslash F c)+u d$
Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

B - Dirichlet nullspace

sparse matrix
Dirichlet nullspace, returned as a sparse matrix. See "Algorithms" on page 5-93.
$u=B^{*}(K c \backslash F c)+u d$
Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

ud - Dirichlet vector

vector
Dirichlet vector, returned as a vector. See "Algorithms" on page 5-93.
$u=B^{*}(K c \backslash F c)+u d$
Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

Ks - Stiffness matrix corresponding to the stiff-spring approximation for Dirichlet boundary condition

sparse matrix

Finite element matrix for stiff-spring approximation, returned as a sparse matrix. See "Algorithms" on page 5-93.

To obtain the solution u at the nodes of the mesh,
$\mathrm{u}=\mathrm{Ks} \backslash \mathrm{Fs}$.
Generally, Ks and Fs make a quicker but less accurate solution than $\mathrm{Kc}, \mathrm{Fc}, \mathrm{B}$, and ud.
Fs - Load vector corresponding to the stiff-spring approximation for Dirichlet boundary condition
vector
Load vector corresponding to the stiff-spring approximation for Dirichlet boundary condition, returned as a vector. See "Algorithms" on page 5-93.

To obtain the solution u at the nodes of the mesh,
$u=K s \backslash F s$.
Generally, Ks and Fs make a quicker but less accurate solution than $\mathrm{Kc}, \mathrm{Fc}, \mathrm{B}$, and ud.
K - Stiffness matrix
sparse matrix
Stiffness matrix, returned as a sparse matrix. See "Elliptic Equations" on page 5-93.
K represents the stiffness matrix alone, unlike Kc or K , which are stiffness matrices combined with other terms to enable immediate solution of a PDE.

Typically, you use K in a subsequent call to a solver such as assempde or hyperbolic.
M - Mass matrix
sparse matrix
Mass matrix. returned as a sparse matrix. See "Elliptic Equations" on page 5-93.
Typically, you use M in a subsequent call to a solver such as assempde or hyperbolic.

F - Load vector

vector
Load vector, returned as a vector. See "Elliptic Equations" on page 5-93.
F represents the load vector alone, unlike Fc or Fs, which are load vectors combined with other terms to enable immediate solution of a PDE.

Typically, you use F in a subsequent call to a solver such as assempde or hyperbolic.

Q - Neumann boundary condition matrix

sparse matrix
Neumann boundary condition matrix, returned as a sparse matrix. See "Elliptic Equations" on page 593.

Typically, you use Q in a subsequent call to a solver such as assempde or hyperbolic.

G - Neumann boundary condition vector
 sparse vector

Neumann boundary condition vector, returned as a sparse vector. See "Elliptic Equations" on page 593.

Typically, you use G in a subsequent call to a solver such as assempde or hyperbolic.

H - Dirichlet matrix

sparse matrix
Dirichlet matrix, returned as a sparse matrix. See "Algorithms" on page 5-93.
Typically, you use H in a subsequent call to a solver such as assempde or hyperbolic.

R - Dirichlet vector

sparse vector
Dirichlet vector, returned as a sparse vector. See "Algorithms" on page 5-93.
Typically, you use R in a subsequent call to a solver such as assempde or hyperbolic.

More About

Reduced Linear System

This form of the finite element matrices eliminates Dirichlet conditions from the problem using a linear algebra approach. The finite element matrices reduce to the solution $u=B *(K c \backslash F c)+u d$, where B spans the null space of the columns of H (the Dirichlet condition matrix representing $h u=r$). R is the Dirichlet condition vector for $\mathrm{Hu}=\mathrm{R}$. ud is the vector of boundary condition solutions for the Dirichlet conditions. $\mathrm{ul}=\mathrm{Kc} \backslash \mathrm{Fc}$ returns the solution on the non-Dirichlet points.

See "Systems of PDEs" on page 5-99 for details on the approach used to eliminate Dirichlet conditions.

Stiff-Spring Approximation

This form of the finite element matrices converts Dirichlet boundary conditions to Neumann boundary conditions using a stiff-spring approximation. Using this approximation, assempde returns a matrix Ks and a vector Fs that represent the combined finite element matrices. The approximate solution u is $u=K s \backslash F s$.

See "Elliptic Equations" on page 5-93. For details of the stiff-spring approximation, see "Systems of PDEs" on page 5-99.

Algorithms

Elliptic Equations

Partial Differential Equation Toolbox solves equations of the form

$$
m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

When the m and d coefficients are 0 , this reduces to

$$
-\nabla \cdot(c \nabla u)+a u=f
$$

which the documentation calls an elliptic equation, whether or not the equation is elliptic in the mathematical sense. The equation holds in Ω, where Ω is a bounded domain in two or three dimensions. c, a, f, and the unknown solution u are complex functions defined on $\Omega . c$ can also be a 2-by-2 matrix function on Ω. The boundary conditions specify a combination of u and its normal derivative on the boundary:

- Dirichlet: $h u=r$ on the boundary $\partial \Omega$.
- Generalized Neumann: $\vec{n} \cdot(c \nabla u)+q u=g$ on $\partial \Omega$.
- Mixed: Only applicable to systems. A combination of Dirichlet and generalized Neumann.
\vec{n} is the outward unit normal. g, q, h, and r are functions defined on $\partial \Omega$.
Our nomenclature deviates slightly from the tradition for potential theory, where a Neumann condition usually refers to the case $q=0$ and our Neumann would be called a mixed condition. In some contexts, the generalized Neumann boundary conditions is also referred to as the Robin boundary conditions. In variational calculus, Dirichlet conditions are also called essential boundary conditions and restrict the trial space. Neumann conditions are also called natural conditions and arise as necessary conditions for a solution. The variational form of the Partial Differential Equation Toolbox equation with Neumann conditions is given below.

The approximate solution to the elliptic PDE is found in three steps:
1 Describe the geometry of the domain Ω and the boundary conditions. For 2-D geometry, create geometry using the PDE Modeler app or through MATLAB files. For 3-D geometry, import the geometry in STL file format.
2 Build a triangular mesh on the domain Ω. The software has mesh generating and mesh refining facilities. A mesh is described by three matrices of fixed format that contain information about the mesh points, the boundary segments, and the elements.
3 Discretize the PDE and the boundary conditions to obtain a linear system $K u=F$. The unknown vector u contains the values of the approximate solution at the mesh points, the matrix K is assembled from the coefficients c, a, h, and q and the right-hand side F contains, essentially, averages of f around each mesh point and contributions from g. Once the matrices K and F are assembled, you have the entire MATLAB environment at your disposal to solve the linear system and further process the solution.

More elaborate applications make use of the Finite Element Method (FEM) specific information returned by the different functions of the software. Therefore we quickly summarize the theory and technique of FEM solvers to enable advanced applications to make full use of the computed quantities.

FEM can be summarized in the following sentence: Project the weak form of the differential equation onto a finite-dimensional function space. The rest of this section deals with explaining the preceding statement.

We start with the weak form of the differential equation. Without restricting the generality, we assume generalized Neumann conditions on the whole boundary, since Dirichlet conditions can be approximated by generalized Neumann conditions. In the simple case of a unit matrix h, setting $g=q r$ and then letting $q \rightarrow \infty$ yields the Dirichlet condition because division with a very large q
cancels the normal derivative terms. The actual implementation is different, since the preceding procedure may create conditioning problems. The mixed boundary condition of the system case requires a more complicated treatment, described in "Systems of PDEs" on page 5-99.

Assume that u is a solution of the differential equation. Multiply the equation with an arbitrary test function v and integrate on Ω :

$$
\int_{\Omega}(-(\nabla \cdot c \nabla u) v+a u v) d x=\int_{\Omega} f v d x
$$

Integrate by parts (i.e., use Green's formula) to obtain

$$
\int_{\Omega}((c \nabla u) \cdot \nabla v+a u v) d x-\int_{\partial \Omega} \vec{n} \cdot(c \nabla u) v d s=\int_{\Omega} f v d x
$$

The boundary integral can be replaced by the boundary condition:

$$
\int_{\Omega}((c \nabla u) \cdot \nabla v+a u v) d x-\int_{\partial \Omega}(-q u+g) v d s=\int_{\Omega} f v d x
$$

Replace the original problem with Find u such that

$$
\int_{\Omega}((c \nabla u) \cdot \nabla v+a u v-f v) d x-\int_{\partial \Omega}(-q u+g) v d s=0 \forall v
$$

This equation is called the variational, or weak, form of the differential equation. Obviously, any solution of the differential equation is also a solution of the variational problem. The reverse is true under some restrictions on the domain and on the coefficient functions. The solution of the variational problem is also called the weak solution of the differential equation.

The solution u and the test functions v belong to some function space V. The next step is to choose an Np -dimensional subspace $V_{N_{p}} \subset V$. Project the weak form of the differential equation onto a finitedimensional function space simply means requesting u and v to lie in $V_{N_{p}}$ rather than V. The solution of the finite dimensional problem turns out to be the element of $V_{N_{p}}$ that lies closest to the weak solution when measured in the energy norm. Convergence is guaranteed if the space $V_{N_{p}}$ tends to V as $N_{p} \rightarrow \infty$. Since the differential operator is linear, we demand that the variational equation is satisfied for N_{p} test-functions $\Phi_{i} \in V_{N_{p}}$ that form a basis, i.e.,

$$
\int_{\Omega}\left((c \nabla u) \cdot \nabla \phi_{i}+a u \phi_{i}-f \phi_{i}\right) d x-\int_{\partial \Omega}(-q u+g) \phi_{i} d s=0, \quad i=1, \ldots, N_{p}
$$

Expand u in the same basis of $V_{N_{p}}$ elements

$$
u(x)=\sum_{j=1}^{N_{p}} U_{j} \phi_{j}(x)
$$

and obtain the system of equations

$$
\sum_{j=1}^{N_{p}}\left(\int_{\Omega}\left(\left(c \nabla \phi_{j}\right) \cdot \nabla \phi_{i}+a \phi_{j} \phi_{i}\right) d x+\int_{\partial \Omega} q \phi_{j} \phi_{i} d s\right) U_{j}=\int_{\Omega} f \phi_{i} d x+\int_{\partial \Omega} g \phi_{i} d s, \quad i=1, \ldots, N_{p}
$$

Use the following notations:

$$
\begin{aligned}
& K_{i, j}=\int_{\Omega}\left(c \nabla \phi_{j}\right) \cdot \nabla \phi_{i} d x \quad \text { (stiffness matrix) } \\
& M_{i, j}=\int_{\Omega} a \phi_{j} \phi_{i} d x \quad \text { (mass matrix) } \\
& Q_{i, j}=\int_{\partial \Omega} q \phi_{j} \phi_{i} d s \\
& F_{i}=\int_{\Omega} f \phi_{i} d x \\
& G_{i}=\int_{\partial \Omega} g \phi_{i} d s
\end{aligned}
$$

and rewrite the system in the form
$(K+M+Q) U=F+G$.
K, M, and Q are N_{p}-by- N_{p} matrices, and F and G are N_{p}-vectors. K, M, and F are produced by assema, while Q, G are produced by assemb. When it is not necessary to distinguish K, M, and Q or F and G, we collapse the notations to $K U=F$, which form the output of assempde.

When the problem is self-adjoint and elliptic in the usual mathematical sense, the matrix $K+M+Q$ becomes symmetric and positive definite. Many common problems have these characteristics, most notably those that can also be formulated as minimization problems. For the case of a scalar equation, K, M, and Q are obviously symmetric. If $c(x) \geq \delta>0, a(x) \geq 0$ and $q(x) \geq 0$ with $q(x)>0$ on some part of $\partial \Omega$, then, if $U \neq 0$.

$$
U^{T}(K+M+Q) U=\int_{\Omega}\left(c|u|^{2}+a u^{2}\right) d x+\int_{\partial \Omega} q u^{2} d s>0, \text { if } U \neq 0
$$

$U^{T}(K+M+Q) U$ is the energy norm. There are many choices of the test-function spaces. The software uses continuous functions that are linear on each element of a 2-D mesh, and are linear or quadratic on elements of a 3-D mesh. Piecewise linearity guarantees that the integrals defining the stiffness matrix K exist. Projection onto $V_{N_{p}}$ is nothing more than linear interpolation, and the evaluation of the solution inside an element is done just in terms of the nodal values. If the mesh is uniformly refined, $V_{N_{p}}$ approximates the set of smooth functions on Ω.

A suitable basis for $V_{N_{p}}$ in 2-D is the set of "tent" or "hat" functions ϕ_{i}. These are linear on each element and take the value 0 at all nodes x_{j} except for x_{i}. For the definition of basis functions for 3-D geometry, see "Finite Element Basis for 3-D" on page 5-101. Requesting $\phi_{i}\left(x_{i}\right)=1$ yields the very pleasant property

$$
u\left(x_{i}\right)=\sum_{j=1}^{N_{p}} U_{j} \phi_{j}\left(x_{i}\right)=U_{i}
$$

That is, by solving the FEM system we obtain the nodal values of the approximate solution. The basis function ϕ_{i} vanishes on all the elements that do not contain the node x_{i}. The immediate consequence
is that the integrals appearing in $K_{i, j}, M_{i, j}, Q_{i, j}, F_{i}$ and G_{i} only need to be computed on the elements that contain the node x_{i}. Secondly, it means that $K_{i, j}$ and $M_{i, j}$ are zero unless x_{i} and x_{j} are vertices of the same element and thus K and M are very sparse matrices. Their sparse structure depends on the ordering of the indices of the mesh points.

The integrals in the FEM matrices are computed by adding the contributions from each element to the corresponding entries (i.e., only if the corresponding mesh point is a vertex of the element). This process is commonly called assembling, hence the name of the function assempde.

The assembling routines scan the elements of the mesh. For each element they compute the so-called local matrices and add their components to the correct positions in the sparse matrices or vectors.

The discussion now specializes to triangular meshes in 2-D. The local 3-by-3 matrices contain the integrals evaluated only on the current triangle. The coefficients are assumed constant on the triangle and they are evaluated only in the triangle barycenter. The integrals are computed using the midpoint rule. This approximation is optimal since it has the same order of accuracy as the piecewise linear interpolation.

Consider a triangle given by the nodes P_{1}, P_{2}, and P_{3} as in the following figure.

The Local Triangle P1P2P3

Note The local 3-by-3 matrices contain the integrals evaluated only on the current triangle. The coefficients are assumed constant on the triangle and they are evaluated only in the triangle barycenter.

The simplest computations are for the local mass matrix m :

$$
m_{i, j}=\int_{\Delta P_{1} P_{2} P_{3}} a\left(P_{c}\right) \phi_{i}(x) \phi_{j}(x) d x=a\left(P_{c}\right) \frac{\operatorname{area}\left(\Delta P_{1} P_{2} P_{3}\right)}{12}\left(1+\delta_{i, j}\right)
$$

where P_{c} is the center of mass of $\Delta P_{1} P_{2} P_{3}$, i.e.,

$$
P_{C}=\frac{P_{1}+P_{2}+P_{3}}{3}
$$

The contribution to the right side F is just

$$
f_{i}=f\left(P_{C}\right) \frac{\operatorname{area}\left(\Delta P_{1} P_{2} P_{3}\right)}{3}
$$

For the local stiffness matrix we have to evaluate the gradients of the basis functions that do not vanish on $P_{1} P_{2} P_{3}$. Since the basis functions are linear on the triangle $P_{1} P_{2} P_{3}$, the gradients are constants. Denote the basis functions ϕ_{1}, ϕ_{2}, and ϕ_{3} such that $\phi\left(P_{i}\right)=1$. If $P_{2}-P_{3}=\left[x_{1}, y_{1}\right]^{T}$ then we have that

$$
\nabla \phi_{1}=\frac{1}{2 \operatorname{area}\left(\Delta P_{1} P_{2} P_{3}\right)}\left[\begin{array}{c}
y_{1} \\
-x_{1}
\end{array}\right]
$$

and after integration (taking c as a constant matrix on the triangle)

$$
k_{i, j}=\frac{1}{4 \operatorname{area}\left(\Delta P_{1} P_{2} P_{3}\right)}\left[y_{j},-x_{j}\right] c\left(P_{C}\right)\left[\begin{array}{c}
y_{1} \\
-x_{1}
\end{array}\right]
$$

If two vertices of the triangle lie on the boundary $\partial \Omega$, they contribute to the line integrals associated to the boundary conditions. If the two boundary points are P_{1} and P_{2}, then we have

$$
Q_{i, j}=q\left(P_{b}\right) \frac{\left\|P_{1}-P_{2}\right\|}{6}\left(1+\delta_{i, j}\right), \quad i, j=1,2
$$

and

$$
G_{i}=g\left(P_{b}\right) \frac{\left\|P_{1}-P_{2}\right\|}{2}, \quad i=1,2
$$

where P_{b} is the midpoint of $P_{1} P_{2}$.
For each triangle the vertices P_{m} of the local triangle correspond to the indices i_{m} of the mesh points. The contributions of the individual triangle are added to the matrices such that, e.g.,

$$
K_{i_{m}, i_{n}} t \leftarrow K_{i_{m}, i_{n}}+k_{m, n}, \quad m, n=1,2,3
$$

This is done by the function assempde. The gradients and the areas of the triangles are computed by the function pdetrg.

The Dirichlet boundary conditions are treated in a slightly different manner. They are eliminated from the linear system by a procedure that yields a symmetric, reduced system. The function assempde can return matrices K, F, B, and $u d$ such that the solution is $u=B v+u d$ where $K v=F$. u is an $N_{p^{-}}$ vector, and if the rank of the Dirichlet conditions is $r D$, then v has $N_{p}-r D$ components.

To summarize, assempde performs the following steps to obtain a solution u to an elliptic PDE:

1 Generate the finite element matrices [K,M,F,Q,G,H,R]. This step is equivalent to calling assema to generate the matrices K, M, and F, and also calling assemb to generate the matrices Q, G, H, and R.

2 Generate the combined finite element matrices [$\mathrm{Kc}, \mathrm{Fc}, \mathrm{B}, \mathrm{ud}]$. The combined stiffness matrix is for the reduced linear system, $\mathrm{Kc}=\mathrm{K}+\mathrm{M}+\mathrm{Q}$. The corresponding combined load vector is $\mathrm{Fc}=$ $F+G$. The B matrix spans the null space of the columns of H (the Dirichlet condition matrix representing $h u=r$). The R vector represents the Dirichlet conditions in $\mathrm{Hu}=\mathrm{R}$. The ud vector represents boundary condition solutions for the Dirichlet conditions.
3 Calculate the solution u via

$$
\mathrm{u}=\mathrm{B}^{*}(\mathrm{Kc} \backslash \mathrm{Fc})+\mathrm{ud} .
$$

assempde uses one of two algorithms for assembling a problem into combined finite element matrix form. A reduced linear system form leads to immediate solution via linear algebra. You choose the algorithm by the number of outputs. For the reduced linear system form, request four outputs:
[Kc,Fc,B,ud] = assempde(_)
For the stiff-spring approximation, request two outputs:
[Ks,Fs] = assempde(_)
For details, see "Reduced Linear System" on page 5-93 and "Stiff-Spring Approximation" on page 593.

Systems of PDEs

Partial Differential Equation Toolbox software can also handle systems of N partial differential equations over the domain Ω. We have the elliptic system

$$
-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

the parabolic system

$$
\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

the hyperbolic system

$$
\mathbf{d} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

and the eigenvalue system

$$
-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\lambda \mathbf{d u}
$$

where \mathbf{c} is an N-by- N-by- D-by- D tensor, and D is the geometry dimensions, 2 or 3.
For 2-D systems, the notation $\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an N-by-1 matrix with an (i,1)-component

$$
\sum_{j=1}^{N}\left(\frac{\partial}{\partial x} c_{i, j, 1,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial x} c_{i, j, 1,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial y} c_{i, j, 2,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial y} c_{i, j, 2,2} \frac{\partial}{\partial y}\right) u_{j}
$$

For 3-D systems, the notation $\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an N-by-1 matrix with an (i,1)-component

$$
\begin{aligned}
& \sum_{j=1}^{N}\left(\frac{\partial}{\partial x} c_{i, j, 1,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial x} c_{i, j, 1,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial x} c_{i, j, 1,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\frac{\partial}{\partial y} c_{i, j, 2,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial y} c_{i, j, 2,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial y} c_{i, j, 2,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\frac{\partial}{\partial z} c_{i, j, 3,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial z} c_{i, j, 3,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial z} c_{i, j, 3,3} \frac{\partial}{\partial z}\right) u_{j}
\end{aligned}
$$

The symbols a and \mathbf{d} denote N-by- N matrices, and \mathbf{f} denotes a column vector of length N.
The elements $c_{i j k l}, a_{i j}, d_{i j}$, and f_{i} of $\mathbf{c}, \mathbf{a}, \mathbf{d}$, and \mathbf{f} are stored row-wise in the MATLAB matrices $\mathrm{c}, \mathrm{a}, \mathrm{d}$, and f. The case of identity, diagonal, and symmetric matrices are handled as special cases. For the tensor $c_{i j k l}$ this applies both to the indices i and j, and to the indices k and l.

Partial Differential Equation Toolbox software does not check the ellipticity of the problem, and it is quite possible to define a system that is not elliptic in the mathematical sense. The preceding procedure that describes the scalar case is applied to each component of the system, yielding a symmetric positive definite system of equations whenever the differential system possesses these characteristics.

The boundary conditions now in general are mixed, i.e., for each point on the boundary a combination of Dirichlet and generalized Neumann conditions,

$$
\begin{aligned}
& \mathbf{h u}=\mathbf{r} \\
& \mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{q u}=\mathbf{g}+\mathbf{h}^{\prime} \mu
\end{aligned}
$$

For 2-D systems, the notation $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an N-by-1 matrix with (i,1)-component

$$
\sum_{j=1}^{N}\left(\cos (\alpha) c_{i, j, 1,1} \frac{\partial}{\partial x}+\cos (\alpha) c_{i, j, 1,2} \frac{\partial}{\partial y}+\sin (\alpha) c_{i, j, 2,1} \frac{\partial}{\partial x}+\sin (\alpha) c_{i, j, 2,2} \frac{\partial}{\partial y}\right) u_{j}
$$

where the outward normal vector of the boundary is $\mathbf{n}=(\cos (\alpha), \sin (\alpha))$.
For 3-D systems, the notation $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an N-by-1 matrix with (i,1)-component

$$
\begin{aligned}
& \sum_{j=1}^{N}\left(\cos (\alpha) c_{i, j, 1,1} \frac{\partial}{\partial x}+\cos (\alpha) c_{i, j, 1,2} \frac{\partial}{\partial y}+\cos (\alpha) c_{i, j, 1,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\cos (\beta) c_{i, j, 2,1} \frac{\partial}{\partial x}+\cos (\beta) c_{i, j, 2,2} \frac{\partial}{\partial y}+\cos (\beta) c_{i, j, 2,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\cos (\gamma) c_{i, j, 3,1} \frac{\partial}{\partial x}+\cos (\gamma) c_{i, j, 3,2} \frac{\partial}{\partial y}+\cos (\gamma) c_{i, j, 3,3} \frac{\partial}{\partial z}\right) u_{j}
\end{aligned}
$$

where the outward normal to the boundary is

$$
\mathbf{n}=(\cos (\alpha), \cos (\beta), \cos (\gamma))
$$

There are M Dirichlet conditions and the \mathbf{h}-matrix is M-by- $N, M \geq 0$. The generalized Neumann condition contains a source $\mathbf{h}^{\prime} \mu$, where the Lagrange multipliers μ are computed such that the Dirichlet conditions become satisfied. In a structural mechanics problem, this term is exactly the reaction force necessary to satisfy the kinematic constraints described by the Dirichlet conditions.

The rest of this section details the treatment of the Dirichlet conditions and may be skipped on a first reading.

Partial Differential Equation Toolbox software supports two implementations of Dirichlet conditions. The simplest is the "Stiff Spring" model, so named for its interpretation in solid mechanics. See "Elliptic Equations" on page 5-93 for the scalar case, which is equivalent to a diagonal \mathbf{h}-matrix. For the general case, Dirichlet conditions
$\mathbf{h u}=\mathbf{r}$
are approximated by adding a term

$$
L\left(\mathbf{h}^{\prime} \mathbf{h} u-\mathbf{h}^{\prime} r\right)
$$

to the equations $\mathbf{K U}=\mathbf{F}$, where L is a large number such as 10^{4} times a representative size of the elements of K.

When this number is increased, $\mathbf{h u}=\mathbf{r}$ will be more accurately satisfied, but the potential illconditioning of the modified equations will become more serious.

The second method is also applicable to general mixed conditions with nondiagonal \mathbf{h}, and is free of the ill-conditioning, but is more involved computationally. Assume that there are N_{p} nodes in the mesh. Then the number of unknowns is $N_{p} N=N_{u}$. When Dirichlet boundary conditions fix some of the unknowns, the linear system can be correspondingly reduced. This is easily done by removing rows and columns when u values are given, but here we must treat the case when some linear combinations of the components of u are given, $\mathbf{h u}=\mathbf{r}$. These are collected into $H U=R$ where H is an M-by- N_{u} matrix and R is an M-vector.

With the reaction force term the system becomes
$K U+H^{\prime} \mu=F$
$H U=R$.
The constraints can be solved for M of the U-variables, the remaining called V, an $N_{u}-M$ vector. The null space of H is spanned by the columns of B, and $U=B V+u_{d}$ makes U satisfy the Dirichlet conditions. A permutation to block-diagonal form exploits the sparsity of H to speed up the following computation to find B in a numerically stable way. μ can be eliminated by pre-multiplying by B^{\prime} since, by the construction, $H B=0$ or $B^{\prime} H^{\prime}=0$. The reduced system becomes
$B^{\prime} K B V=B^{\prime} F-B^{\prime} K u_{d}$
which is symmetric and positive definite if K is.

Finite Element Basis for 3-D

The finite element method for 3-D geometry is similar to the 2-D method described in "Elliptic Equations" on page 5-93. The main difference is that the elements in 3-D geometry are tetrahedra, which means that the basis functions are different from those in 2-D geometry.

It is convenient to map a tetrahedron to a canonical tetrahedron with a local coordinate system (r, s, t).

In local coordinates, the point $p 1$ is at $(0,0,0), p 2$ is at $(1,0,0), p 3$ is at $(0,1,0)$, and $p 4$ is at $(0,0,1)$.
For a linear tetrahedron, the basis functions are

$$
\begin{gathered}
\phi_{1}=1-r-s-t \\
\phi_{2}=r \\
\phi_{3}=s \\
\phi_{4}=t
\end{gathered}
$$

For a quadratic tetrahedron, there are additional nodes at the edge midpoints.

The corresponding basis functions are

$$
\begin{gathered}
\phi_{1}=2(1-r-s-t)^{2}-(1-r-s-t) \\
\phi_{2}=2 r^{2}-r \\
\phi_{3}=2 s^{2}-s \\
\phi_{4}=2 t^{2}-t \\
\phi_{5}=4 r(1-r-s-t) \\
\phi_{6}=4 r s \\
\phi_{7}=4 s(1-r-s-t) \\
\phi_{8}=4 t(1-r-s-t) \\
\phi_{9}=4 r t \\
\phi_{10}=4 s t
\end{gathered}
$$

As in the 2-D case, a 3-D basis function ϕ_{i} takes the value 0 at all nodes j, except for node i, where it takes the value 1 .

See Also

assembleFEMatrices | solvepde

Introduced before R2006a

cellEdges

Find edges attached to specified cells

Syntax

EdgeID = cellEdges(g,RegionID)
EdgeID $=$ cellEdges(g,RegionID,FilterType)

Description

EdgeID = cellEdges(g ,RegionID) finds edges attached to the cells with ID numbers listed in RegionID.

EdgeID = cellEdges(g,RegionID,FilterType) returns internal, external, or all edges attached to the cells with ID numbers listed in RegionID.

Examples

Edges Attached to Specified Cells

Find edges attached to two middle cylinders in a geometry consisting of four stacked cylinders.
Create a geometry that consists of four stacked cylinders.

```
gm = multicylinder(5,[1 2 3 4],'ZOffset',[0 1 3 6])
gm =
    DiscreteGeometry with properties:
```

 NumCells: 4
 NumFaces: 9
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]
 Plot the geometry with the cell and edge labels.
pdegplot(gm,'CellLabels','on','EdgeLabels','on','FaceAlpha', 0.2)

Find edges attached to cells 2 and 3.

```
edgeIDs = cellEdges(gm,[2 3])
edgeIDs = 1\times3
```

234

Cell Edges Attached to Internal and External Faces

Find edges attached to the outer cuboid in a geometry consisting of two nested cuboids.
Create a geometry that consists of two nested cuboids of the same height.

```
gm = multicuboid([2 5],[4 10],3)
gm =
    DiscreteGeometry with properties:
        NumCells: 2
        NumFaces: 12
        NumEdges: 24
        NumVertices: 16
            Vertices: [16x3 double]
```

Plot the geometry with the cell labels.

```
pdegplot(gm,'CellLabels','on','FaceAlpha',0.2)
```


Find all edges attached to the outer cell.

```
edgeIDs = cellEdges(gm,2)
edgeIDs = 1\times24
```

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

From all edges attached to the outer cell, return the edges attached to only the internal faces. Internal faces are faces shared between multiple cells.

```
edgeIDs_int = cellEdges(gm,2,'internal')
edgeIDs_int = 1×4
    9}1010\quad11 12 
```

From all edges attached to the outer cell, return the edges attached to the external faces.
edgeIDs_ext = cellEdges(gm,2,'external')
edgeIDs_ext = 1×20

Input Arguments

g - 3-D geometry

DiscreteGeometry object
3-D geometry, specified as a DiscreteGeometry object.

RegionID - Cell ID

positive number | vector of positive numbers
Cell ID, specified as a positive number or a vector of positive numbers. Each number represents a cell ID.

FilterType - Type of edges to return

'all' (default)|'internal'|'external'
Type of edges to return, specified as 'internal', 'external', or 'all '. Depending on this argument, cellEdges returns these types of faces:

- 'internal' - Edges attached to only internal faces. Internal faces are faces shared between multiple cells.
- ' external' - Edges attached to only external faces. External faces are faces not shared between multiple cells.
- 'all' - All edges attached to the specified cells.

Output Arguments

EdgeID - IDs of edges attached to specified cells

positive number | vector of positive numbers
IDs of edges attached to the specified cells, returned as a positive number or a vector of positive numbers.

See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | cellFaces | faceEdges |
facesAttachedToEdges | nearestEdge | nearestFace
Introduced in R2021a

cellFaces

Find faces attached to specified cells

Syntax

FaceID = cellFaces(g,RegionID)
FaceID $=$ cellFaces(g,RegionID,FilterType)

Description

FaceID = cellFaces(g,RegionID) finds faces attached to the cells with ID numbers listed in RegionID.

FaceID = cellFaces(g,RegionID,FilterType) returns internal, external, or all faces attached to the cells with ID numbers listed in RegionID.

Examples

Faces Attached to Specified Cells

Find faces attached to two cuboids in a geometry consisting of four stacked cuboids.
Create a geometry that consists of four stacked cuboids.

```
gm = multicuboid(5,10,[1 2 3 4],'ZOffset',[0 1 3 6])
gm =
    DiscreteGeometry with properties:
        NumCells: 4
        NumFaces: 21
        NumEdges: 36
    NumVertices: 20
        Vertices: [20x3 double]
```

Plot the geometry with the cell labels.
pdegplot(gm,'CellLabels','on','FaceAlpha',0.2)

Find faces attached to cells 1 and 3.

```
faceIDs = cellFaces(gm,[1 3])
faceIDs = 1\times12
```

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Plot the geometry with the face labels.
pdegplot(gm,'FaceLabels','on','FaceAlpha', 0.2)

Internal and External Faces Attached to Specified Cells

Find faces attached to the outer cuboid in a geometry consisting of two nested cuboids.
Create a geometry that consists of two nested cuboids of the same height.

```
gm = multicuboid([2 5],[4 10],3)
```

gm $=$
DiscreteGeometry with properties:

```
NumCells: 2
```

NumFaces: 12
NumEdges: 24
NumVertices: 16
Vertices: [16x3 double]

Plot the geometry with the cell labels.

```
pdegplot(gm,'CellLabels','on','FaceAlpha',0.2)
```


Find all faces attached to the outer cell.

```
faceIDs = cellFaces(gm,2)
faceIDs = 1×10
\begin{tabular}{llllllllll}
3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{tabular}
```

Find only the internal faces attached to the outer cell. Internal faces are faces shared between multiple cells.

```
faceIDs_int = cellFaces(gm,2,'internal')
faceIDs_int = 1×4
    3 4 4 5 6
```

Find only the external faces attached to the outer cell.

```
faceIDs_ext = cellFaces(gm,2,'external')
```

faceIDs_ext = 1×6
$\begin{array}{llllll}7 & 8 & 9 & 10 & 11 & 12\end{array}$

Plot the geometry with the face labels.

```
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)
```


Input Arguments

g - 3-D geometry

DiscreteGeometry object
3-D geometry, specified as a DiscreteGeometry object.

RegionID - Cell ID

positive number | vector of positive numbers
Cell ID, specified as a positive number or a vector of positive numbers. Each number represents a cell ID.

FilterType - Type of faces to return

'all' (default)|'internal'|'external'
Type of faces to return, specified as 'internal', 'external', or 'all'. Depending on this argument, cellFaces returns these types of faces:

- 'internal' - Internal faces, that is, faces shared between multiple cells.
- 'external ' - External faces, that is, faces not shared between multiple cells.
- 'all' - All faces attached to the specified cells.

Output Arguments

FaceID - IDs of faces attached to specified cells

positive number | vector of positive numbers
IDs of faces attached to the specified cells, returned as a positive number or a vector of positive numbers.

See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | cellEdges | faceEdges | facesAttachedToEdges | nearestEdge | nearestFace

Introduced in R2021a

BodyLoadAssignment Properties

Body load assignments

Description

A BodyLoadAssignment object contains a description of the body loads for a structural analysis model. A StructuralModel container has a vector of BodyLoadAssignment objects in its BodyLoads.BodyLoadAssignments property.

To create body load assignments for your structural analysis model, use the structuralBodyLoad function.

Properties

Properties of BodyLoadAssignment

RegionType - Region type

'Face'|'Cell'
Region type, returned as 'Face' for a 2-D region or 'Cell' for a 3-D region.
Data Types: char | string

RegionID - Region ID

vector of positive integers
Region ID, returned as a vector of positive integers. To determine which ID corresponds to which portion of the geometry, use the pdegplot function, setting 'FaceLabels' to 'on'.
Data Types: double

GravitationalAcceleration - Acceleration due to gravity
 numeric vector

Acceleration due to gravity, returned as a numeric vector. This property must be specified in units consistent with those of the geometry and material properties.
Example: structuralBodyLoad(structuralmodel,' GravitationalAcceleration', [0,0,-9.8])
Data Types: double

AngularVelocity - Angular velocity for axisymmetric model
 positive number

Angular velocity for an axisymmetric model, returned as a positive number. This property must be specified in units consistent with those of the geometry and material properties.
Example: structuralBodyLoad(structuralmodel,'AngularVelocity', 2.3)
Data Types: double

Temperature - Thermal load

real number|StaticThermalResults object|TransientThermalResults object
Thermal load, returned as a real number, a StaticThermalResults object, or a TransientThermalResults object. This property must be specified in units consistent with those of the geometry and material properties.

Example: structuralBodyLoad(structuralmodel, 'Temperature',300)
Data Types: double

TimeStep - Time index for thermal load

 positive integerTime index for thermal load, returned as a positive integer.
Example:
structuralBodyLoad(structuralmodel,'Temperature',Tresults,'TimeStep',21)
Data Types: double

See Also

findBodyLoad | structuralBodyLoad
Introduced in R2017b

BoundaryCondition Properties

Boundary condition for PDE model

Description

A BoundaryCondition object specifies the type of PDE boundary condition on a set of geometry boundaries. A PDEModel object contains a vector of BoundaryCondition objects in its BoundaryConditions property.

Specify boundary conditions for your model using the applyBoundaryCondition function.

Properties

Properties

BCType - Type of boundary condition

'dirichlet'|'neumann'|'mixed'
Boundary type, returned as 'dirichlet', 'neumann', or 'mixed'.
Example: applyBoundaryCondition(model,'dirichlet','Face', 3, 'u' , 0)
Data Types: char

RegionType - Geometric region type

'Face' for 3-D geometry | 'Edge' for 2-D geometry
Geometric region type, returned as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Example: applyBoundaryCondition(model,'dirichlet','Face', 3, 'u', 0)
Data Types: char \| string

RegionID - Geometric region ID

vector of positive integers
Geometric region ID, returned as a vector of positive integers. Find the region IDs by using pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.

Example: applyBoundaryCondition(model,'dirichlet','Face', 3:6,'u', 0)
Data Types: double

\mathbf{r} - Dirichlet condition $\mathbf{h} \boldsymbol{u}=\mathbf{r}$

zeros ($\mathrm{N}, 1$) (default) | vector with N elements | function handle
Dirichlet condition $\mathrm{h} * \mathrm{u}=\mathrm{r}$, returned as a vector with N elements or a function handle. N is the number of PDEs in the system. For the syntax of the function handle form of r, see "Nonconstant Boundary Conditions" on page 2-116.

```
Example: 'r',[0;4;-1]
Data Types: double| function_handle
Complex Number Support: Yes
```


\mathbf{h} - Dirichlet condition $\mathbf{h}^{*} \mathbf{u}=\mathbf{r}$

eye (N) (default) | N-by- N matrix | vector with $N^{\wedge} 2$ elements | function handle
Dirichlet condition $h^{*} \mathrm{u}=\mathrm{r}$, returned as an N-by- N matrix, a vector with $N^{\wedge} 2$ elements, or a function handle. N is the number of PDEs in the system. For the syntax of the function handle form of h, see "Nonconstant Boundary Conditions" on page 2-116.
Example: 'h', [2,1;1,2]
Data Types: double | function_handle
Complex Number Support: Yes

\mathbf{g} - Generalized Neumann condition $\mathbf{n} \cdot(\mathbf{c} \times \nabla \mathbf{u})+\mathbf{q u}=\mathbf{g}$

zeros ($N, 1$) (default) | vector with N elements | function handle
Generalized Neumann condition $\mathrm{n} \cdot(\mathrm{c} \times \nabla \mathrm{u})+\mathrm{qu}=\mathrm{g}$, returned as a vector with N elements or a function handle. N is the number of PDEs in the system. For scalar PDEs, the generalized Neumann condition is $n \cdot(c \nabla u)+q u=g$. For the syntax of the function handle form of g, see "Nonconstant Boundary Conditions" on page 2-116.

Example: 'g',[3;2;-1]
Data Types: double | function_handle
Complex Number Support: Yes

\mathbf{q} - Generalized Neumann condition $\mathbf{n} \cdot(\mathbf{c} \times \nabla \mathbf{u})+\mathbf{q u}=\mathbf{g}$

zeros (N) (default) | N-by- N matrix | vector with $N^{\wedge} 2$ elements | function handle
Generalized Neumann condition $\mathrm{n} \cdot(\mathrm{c} \times \nabla \mathrm{u})+\mathrm{qu}=\mathrm{g}$, returned as an N-by- N matrix, a vector with $N^{\wedge} 2$ elements, or a function handle. N is the number of PDEs in the system. For the syntax of the function handle form of q, see "Nonconstant Boundary Conditions" on page 2-116.
Example: 'q', eye(3)
Data Types: double | function_handle
Complex Number Support: Yes

u - Dirichlet conditions

zeros ($N, 1$) (default) | vector of up to N elements | function handle
Dirichlet conditions, returned as a vector of up to N elements or as a function handle. If u has less than N elements, then you must also use EquationIndex. The u and EquationIndex arguments must have the same length. If u has N elements, then specifying EquationIndex is optional.

For the syntax of the function handle form of u, see "Nonconstant Boundary Conditions" on page 2116.

Example: applyBoundaryCondition(model,'dirichlet','Face', [2,4,11],'u', 0)
Data Types: double
Complex Number Support: Yes

EquationIndex - Index of the known u components

1:N (default) | vector of integers with entries from 1 to N
Index of the known u components, returned as a vector of integers with entries from 1 to N. EquationIndex and u must have the same length.

Example: applyBoundaryCondition(model,'mixed','Face', [2,4,11],'u', [3,-1],'EquationIndex', [2,3])

Data Types: double

Vectorized - Vectorized function evaluation

'off' (default)|'on'
Vectorized function evaluation, returned as 'on' or 'off'. This evaluation applies when you pass a function handle as an argument. To save time in function handle evaluation, specify ' on ', assuming that your function handle computes in a vectorized fashion. See "Vectorization". For details of this evaluation, see "Nonconstant Boundary Conditions" on page 2-116.
Example: applyBoundaryCondition(model,'dirichlet', 'Face', [2,4,11],'u',@ucalculator, 'Vectorized', 'on')

Data Types: char

See Also

PDEModel | applyBoundaryCondition | findBoundaryConditions

Topics

"Specify Boundary Conditions" on page 2-113
"View, Edit, and Delete Boundary Conditions" on page 2-128
"Solve Problems Using PDEModel Objects" on page 2-2
Introduced in R2015a

CoefficientAssignment Properties

Coefficient assignments

Description

A CoefficientAssignment object contains a description of the PDE coefficients. A PDEModel container has a vector of CoefficientAssignment objects in its EquationCoefficients.CoefficientAssignments property.

Coefficients are the m, d, c, a and f variables in the PDE

$$
m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

or the eigenvalue problem

$$
-\nabla \cdot(c \nabla u)+a u=\lambda d u
$$

or
$-\nabla \cdot(c \nabla u)+a u=\lambda^{2} m u$
Create coefficients for your model using the specifyCoefficients function.

Properties

Properties

RegionType - Region type

'face'|'cell'
Region type, returned as 'face' for a 2-D region, or 'cell' for a 3-D region.
Data Types: char|string

RegionID - Region ID

vector of positive integers
Region ID, returned as a vector of positive integers. To determine which ID corresponds to which portion of the geometry, use the pdegplot function. Set the 'FaceLabels ' name-value pair to 'on'.
Data Types: double

m - Second-order time derivative coefficient

scalar | column vector | function handle
Second-order time derivative coefficient, returned as a scalar, column vector, or function handle. For details of the m coefficient specification, see " m, d, or a Coefficient for specifyCoefficients" on page 291.

Data Types: double | function_handle

First-order time derivative coefficient, returned as a scalar, column vector, or function handle. For details of the d coefficient specification, see " m, d, or a Coefficient for specifyCoefficients" on page 291.

Data Types: double | function_handle
Complex Number Support: Yes
c - Second-order space derivative coefficient
scalar | column vector | function handle
Second-order space derivative coefficient, returned as a scalar, column vector, or function handle. For details of the c coefficient specification, see "c Coefficient for specifyCoefficients" on page 2-76.
Data Types: double | function_handle
Complex Number Support: Yes
a - Solution multiplier coefficient
scalar | column vector | function handle
Solution multiplier coefficient, returned as a scalar, column vector, or function handle. For details of the a coefficient specification, see " m , d, or a Coefficient for specifyCoefficients" on page 2-91.

```
Data Types: double | function_handle
Complex Number Support: Yes
```


f - Source coefficient

scalar | column vector | function handle
Source coefficient, returned as a scalar, column vector, or function handle. For details of the f coefficient specification, see "f Coefficient for specifyCoefficients" on page 2-74.
Data Types: double | function_handle
Complex Number Support: Yes

See Also

findCoefficients|specifyCoefficients
Topics
"Solve Problems Using PDEModel Objects" on page 2-2

Introduced in R2016a

createpde

Create model

Syntax

structuralmodel = createpde('structural',StructuralAnalysisType)
thermalmodel = createpde('thermal',ThermalAnalysisType)
emagmodel = createpde('electromagnetic',ElectromagneticAnalysisType)
model = createpde(N)

Description

structuralmodel = createpde('structural', StructuralAnalysisType) returns a structural analysis model for the specified analysis type. This model lets you solve small-strain linear elasticity problems.
thermalmodel = createpde('thermal', ThermalAnalysisType) returns a thermal analysis model for the specified analysis type.
emagmodel = createpde('electromagnetic',ElectromagneticAnalysisType) returns an electromagnetic analysis model for the specified analysis type.
model $=$ createpde (N) returns a PDE model object for a system of N equations. A complete PDE model object contains a description of the problem you want to solve, including the geometry, mesh, and boundary conditions.

Examples

Create Structural Model

Create a static structural model for solving a solid (3-D) problem.

```
staticStructural = createpde('structural','static-solid')
staticStructural =
    StructuralModel with properties:
                AnalysisType: 'static-solid'
                    Geometry: []
            MaterialProperties: []
                            BodyLoads: []
            BoundaryConditions: []
            ReferenceTemperature: []
        SuperelementInterfaces: []
                            Mesh: []
                            SolverOptions: [1x1 pde.PDESolverOptions]
```

Create a transient structural model for solving a plane-stress (2-D) problem.

```
transientStructural = createpde('structural','transient-planestress')
```

```
transientStructural =
    StructuralModel with properties:
            AnalysisType: 'transient-planestress'
                Geometry: []
            MaterialProperties: []
                            BodyLoads: []
            BoundaryConditions: []
                    DampingModels: []
            InitialConditions: []
        SuperelementInterfaces: []
                            Mesh: []
                    SolverOptions: [1x1 pde.PDESolverOptions]
```

Create a modal analysis structural model for solving a plane-strain (2-D) problem.

```
modalStructural = createpde('structural','modal-planestrain')
modalStructural =
    StructuralModel with properties:
                            AnalysisType: 'modal-planestrain'
                Geometry: []
            MaterialProperties: []
            BoundaryConditions: []
        SuperelementInterfaces: []
                            Mesh: []
                    SolverOptions: [1x1 pde.PDESolverOptions]
```

Create a frequency response analysis structural model for solving an axisymmetric problem. An axisymmetric model simplifies a 3-D problem to a 2-D problem using symmetry around the axis of rotation.

```
frStructural = createpde('structural','frequency-axisymmetric')
frStructural =
    StructuralModel with properties:
            AnalysisType: 'frequency-axisymmetric'
                    Geometry: []
            MaterialProperties: []
                            BodyLoads: []
            BoundaryConditions: []
                DampingModels: []
        SuperelementInterfaces: []
                            Mesh: []
                    SolverOptions: [1x1 pde.PDESolverOptions]
```


Create Thermal Model

Create a model for a steady-state thermal problem.

```
thermalmodel = createpde('thermal','steadystate')
```

```
thermalmodel =
    ThermalModel with properties:
        AnalysisType: "steadystate"
                        Geometry: []
        MaterialProperties: []
            HeatSources: []
        StefanBoltzmannConstant: []
            BoundaryConditions: []
        InitialConditions: []
                            Mesh: []
            SolverOptions: [1x1 pde.PDESolverOptions]
```

Create a model for a transient thermal problem.

```
thermalmodel = createpde('thermal','transient')
thermalmodel =
    ThermalModel with properties:
            AnalysisType: "transient"
                        Geometry: []
        MaterialProperties: []
            HeatSources: []
        StefanBoltzmannConstant: []
            BoundaryConditions: []
            InitialConditions: []
                    Mesh: []
                    SolverOptions: [1x1 pde.PDESolverOptions]
```

Create a transient thermal model for solving an axisymmetric problem. An axisymmetric model simplifies a 3-D problem to a 2-D problem using symmetry around the axis of rotation.

```
thermalmodel = createpde('thermal','transient-axisymmetric')
thermalmodel =
    ThermalModel with properties:
            AnalysisType: "transient-axisymmetric"
            Geometry: []
        MaterialProperties: []
            HeatSources: []
        StefanBoltzmannConstant: []
            BoundaryConditions: []
        InitialConditions: []
                            Mesh: []
            SolverOptions: [1x1 pde.PDESolverOptions]
```


Create Electromagnetic Model

Create a 2-D model for electrostatic analysis.

```
emagE = createpde('electromagnetic','electrostatic')
```

```
emagE =
    ElectromagneticModel with properties:
            AnalysisType: 'electrostatic'
            Geometry: []
        MaterialProperties: []
            Sources: []
        BoundaryConditions: []
        VacuumPermittivity: []
            Mesh: []
```

Create an axisymmetric model for magnetostatic analysis. An axisymmetric model simplifies a 3-D problem to a 2-D problem using symmetry around the axis of rotation.

```
emagMA = createpde('electromagnetic','magnetostatic-axisymmetric')
emagMA =
    ElectromagneticModel with properties:
            AnalysisType: 'magnetostatic-axisymmetric'
            Geometry: []
        MaterialProperties: []
            Sources: []
        BoundaryConditions: []
        VacuumPermeability: []
            Mesh: []
```


Create General PDE Model

Create a model for a general linear or nonlinear single (scalar) PDE.

```
model = createpde
model =
    PDEModel with properties:
            PDESystemSize: 1
            IsTimeDependent: 0
                Geometry: []
        EquationCoefficients: []
            BoundaryConditions: []
                InitialConditions: []
                    Mesh: []
                        SolverOptions: [1x1 pde.PDESolverOptions]
```

Create a PDE model for a system of three equations.

```
model = createpde(3)
model =
    PDEModel with properties:
            PDESystemSize: 3
```

```
        IsTimeDependent: 0
            Geometry: []
EquationCoefficients: []
    BoundaryConditions: []
        InitialConditions: []
                            Mesh: []
            SolverOptions: [1x1 pde.PDESolverOptions]
```


Input Arguments

StructuralAnalysisType - Type of structural analysis

'static-solid'|'static-planestress'|'static-planestrain'|'static-axisymmetric'|'transient-solid'|'transient-planestress'|'transient-planestrain'|'transient-axisymmetric'|'modal-solid'|'modal-planestress'| 'modal-planestrain' |'modal-axisymmetric'|'frequency-solid'|'frequency-planestress'|'frequency-planestrain'|'frequency-axisymmetric'

Type of analysis, specified as one of the following values.
For static analysis, use these values:

- 'static-solid' to create a structural model for static analysis of a solid (3-D) problem.
- 'static-planestress' to create a structural model for static analysis of a plane-stress problem.
- 'static-planestrain' to create a structural model for static analysis of a plane-strain problem.
- 'static-axisymmetric' to create an axisymmetric (2-D) structural model for static analysis.

For transient analysis, use these values:

- 'transient-solid' to create a structural model for transient analysis of a solid (3-D) problem.
- 'transient-planestress' to create a structural model for transient analysis of a plane-stress problem.
- 'transient-planestrain' to create a structural model for transient analysis of a plane-strain problem.
- 'transient-axisymmetric' to create an axisymmetric (2-D) structural model for transient analysis.

For modal analysis, use these values:

- 'modal-solid ' to create a structural model for modal analysis of a solid (3-D) problem.
- 'modal-planestress' to create a structural model for modal analysis of a plane-stress problem.
- 'modal-planestrain' to create a structural model for modal analysis of a plane-strain problem.
- 'modal-axisymmetric' to create an axisymmetric (2-D) structural model for modal analysis.

For frequency response analysis, use these values:

- 'frequency-solid ' to create a structural model for frequency response analysis of a solid (3-D) problem.
- 'frequency-planestress' to create a structural model for frequency response analysis of a plane-stress problem.
- 'frequency-planestrain' to create a structural model for frequency response analysis of a plane-strain problem.
- 'frequency-axisymmetric' to create an axisymmetric (2-D) structural model for frequency response analysis.

For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing through $r=0$.

Example: model = createpde('structural','static-solid')
Data Types: char|string

ThermalAnalysisType - Type of thermal analysis

'steadystate'|'transient'|'steadystate-axisymmetric'|'transient-
axisymmetric'
Type of thermal analysis, specified as one of the following values:

- 'steadystate' creates a steady-state thermal model. If you do not specify ThermalAnalysisType for a thermal model, createpde creates a steady-state model.
- 'transient' creates a transient thermal model.
- 'steadystate-axisymmetric' creates an axisymmetric (2-D) thermal model for steady-state analysis.
- 'transient-axisymmetric' creates an axisymmetric (2-D) thermal model for transient analysis.

For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing through $r=0$.

```
Example:model = createpde('thermal','transient')
```

Data Types: char|string

ElectromagneticAnalysisType - Type of electromagnetic analysis

'electrostatic'| 'magnetostatic'| 'electrostatic-axisymmetric'|'magnetostaticaxisymmetric'

Type of electromagnetic analysis, specified as one of the following values:

- 'electrostatic' creates a 2-D model for electrostatic analysis.
- 'magnetostatic' creates a 2-D model for magnetostatic analysis.
- 'electrostatic-axisymmetric' creates an axisymmetric (2-D) model for electrostatic analysis.
- 'magnetostatic-axisymmetric' creates an axisymmetric (2-D) model for magnetostatic analysis.

```
Example: model = createpde('electromagnetic','electrostatic')
Data Types: char|string
```


N - Number of equations

1 (default) | positive integer

Number of equations, specified as a positive integer. You do not need to specify N for a model where $\mathrm{N}=1$.

Example: model = createpde
Example: model = createpde(3);
Data Types: double

Output Arguments

structuralmodel - Structural model

StructuralModel object
Structural model, returned as a StructuralModel object.
Example: structuralmodel = createpde('structural','static-solid')
thermalmodel - Thermal model
ThermalModel object
Thermal model, returned as a ThermalModel object.
Example: thermalmodel = createpde('thermal','transient')

emagmodel - Electromagnetic model

ElectromagneticModel object
Electromagnetic model, returned as an ElectromagneticModel object.

```
Example: thermalmodel = createpde('electromagnetic','magnetostatic')
```


model - PDE model

PDEModel object
PDE model, returned as a PDEModel object.
Example: model = createpde(2)

See Also

ElectromagneticModel|PDEModel | StructuralModel | ThermalModel

Topics

"Structural Mechanics"
"Heat Transfer"
"Electromagnetics"
"Solve Problems Using PDEModel Objects" on page 2-2
"Equations You Can Solve Using PDE Toolbox" on page 1-3

Introduced in R2015a

createPDEResults

Create solution object

Note This page describes the legacy workflow. New features might not be compatible with the legacy workflow. For the corresponding step in the recommended workflow, see solvepde and solvepdeeig.

The original (R2015b) version of createPDEResults had only one syntax, and created a PDEResults object. Beginning with R2016a, you generally do not need to use createPDEResults, because the solvepde and solvepdeeig functions return solution objects. Furthermore, createPDEResults returns an object of a newer type than PDEResults. If you open an existing PDEResults object, it is converted to a StationaryResults object.

If you use one of the older solvers such as adaptmesh, then you can use createPDEResults to obtain a solution object. Stationary and time-dependent solution objects have gradients available, whereas PDEResults did not include gradients.

Syntax

```
results = createPDEResults(model,u)
results = createPDEResults(model,u,'stationary')
results = createPDEResults(model,u,utimes,'time-dependent')
results = createPDEResults(model,eigenvectors,eigenvalues,'eigen')
```


Description

results = createPDEResults(model,u) creates a StationaryResults solution object from model and its solution u.

This syntax is equivalent to results $=$ createPDEResults(model, u,'stationary').
results $=$ createPDEResults(model, u,utimes,'time-dependent') creates a TimeDependentResults solution object from model, its solution u, and the times utimes.
results = createPDEResults(model,eigenvectors,eigenvalues,'eigen') creates an EigenResults solution object from model, its eigenvector solution eigenvectors, and its eigenvalues eigenvalues.

Examples

Results From an Elliptic Problem

Create a StationaryResults object from the solution to an elliptic system.
Create a PDE model for a system of three equations. Import the geometry of a bracket and plot the face labels.

```
model = createpde(3);
```

importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')

Bracket with Face Labels

figure
pdegplot(model,' FaceLabels', 'on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

Bracket with Face Labels, Rear View

Set boundary conditions: face 3 is immobile, and there is a force in the negative z direction on face 6 .

```
applyBoundaryCondition(model,'dirichlet','face',4,'u',[0,0,0]);
```

applyBoundaryCondition(model,'neumann','face', $8, ' \mathrm{~g} ',[0,0,-1 e 4])$;

Set coefficients that represent the equations of linear elasticity.

```
E = 200e9;
nu = 0.3;
c = elasticityC3D(E,nu);
a = 0;
f = [0;0;0];
```

Create a mesh and solve the problem.
generateMesh(model,'Hmax',1e-2);
u = assempde(model, c, a,f);
Create a StationaryResults object from the solution.

```
results = createPDEResults(model,u)
results =
    StationaryResults with properties:
        NodalSolution: [14002\times3 double]
            XGradients: [14002x3 double]
            YGradients: [14002x3 double]
```

```
ZGradients: [14002x3 double]
    Mesh: [1x1 FEMesh]
```

Plot the solution for the z-component, which is component 3.

```
pdeplot3D(model,'ColorMapData',results.NodalSolution(:,3))
```


Results from a Time-Dependent Problem

Obtain a solution from a parabolic problem.
The problem models heat flow in a solid.

```
model = createpde();
importGeometry(model,'Tetrahedron.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
view(45,45)
```


Set the temperature on face 2 to 100. Leave the other boundary conditions at their default values (insulating).
applyBoundaryCondition(model,'dirichlet','face',2,'u',100);
Set the coefficients to model a parabolic problem with 0 initial temperature.
$\mathrm{d}=1$;
c = 1;
a = 0;
$f=0 ;$
$u 0=0$;
Create a mesh and solve the PDE for times from 0 through 200 in steps of 10.

```
tlist = 0:10:200;
generateMesh(model);
u = parabolic(u0,tlist,model,c,a,f,d);
168 successful steps
0 failed attempts
329 function evaluations
1 partial derivatives
28 LU decompositions
3 2 8 \text { solutions of linear systems}
```

Create a TimeDependentResults object from the solution.

```
results = createPDEResults(model,u,tlist,'time-dependent');
```

Plot the solution on the surface of the geometry at time 100 .

```
pdeplot3D(model,'ColorMapData',results.NodalSolution(:,11))
```


Results from an Eigenvalue Problem

Create an EigenResults object from the solution to an eigenvalue problem.
Create the geometry and mesh for the L-shaped membrane. Apply Dirichlet boundary conditions to all edges.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
generateMesh(model,'Hmax',0.05,'GeometricOrder','linear');
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
```

Solve the eigenvalue problem for coefficients $c=1, a=0$, and $d=1$. Obtain solutions for eigenvalues from 0 through 100.
c = 1;
a = 0;
d = 1;

Create an EigenResults object from the solution.

```
results = createPDEResults(model,eigenvectors,eigenvalues,'eigen')
results =
    EigenResults with properties:
        Eigenvectors: [1440x17 double]
        Eigenvalues: [17x1 double]
            Mesh: [1x1 FEMesh]
```

Plot the solution for mode 10.

```
pdeplot(model,'XYData',results.Eigenvectors(:,10))
```


Input Arguments

model - PDE model

PDEModel object
PDE model, specified as a PDEModel object.
Example: model $=$ createpde

u - PDE solution

vector | matrix
PDE solution, specified as a vector or matrix.
Example: $u=$ assempde(model, $\mathrm{c}, \mathrm{a}, \mathrm{f})$;

utimes - Times for a PDE solution

monotone vector
Times for a PDE solution, specified as a monotone vector. These times should be the same as the tlist times that you specified for the solution by the hyperbolic or parabolic solvers.

Example: utimes = 0:0.2:5;
eigenvectors - Eigenvector solution
matrix

Eigenvector solution, specified as a matrix. Suppose

- $N p$ is the number of mesh nodes
- N is the number of equations
- $e v$ is the number of eigenvalues specified in eigenvalues

Then eigenvectors has size Np-by-N-by-ev. Each column of eigenvectors corresponds to the eigenvectors of one eigenvalue. In each column, the first Np elements correspond to the eigenvector of equation 1 evaluated at the mesh nodes, the next N p elements correspond to equation 2 , and so on.

eigenvalues - Eigenvalue solution

vector
Eigenvalue solution, specified as a vector.

Output Arguments

results - PDE solution

StationaryResults object (default) |TimeDependentResults object | EigenResults object
PDE solution, specified as a StationaryResults object, a TimeDependentResults object, or an EigenResults object. Create results using solvepde, solvepdeeig, or createPDEResults.
Example: results = solvepde(model)

Tips

- Dimensions of the returned solutions and gradients are the same as those returned by solvepde and solvepdeeig. For details, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3309.

Algorithms

The procedure for evaluating gradients at nodal locations is as follows:
1 Calculate the gradients at the Gauss points located inside each element.
2 Extrapolate the gradients at the nodal locations.
3 Average the value of the gradient from all elements that meet at the nodal point. This step is needed because of the inter-element discontinuity of gradients. The elements that connect at the same nodal point give different extrapolated values of the gradient for the point.
createPDEResults performs area-weighted averaging for 2-D meshes and volume-weighted averaging for 3-D meshes.

See Also

EigenResults | StationaryResults | TimeDependentResults|evaluateGradient | interpolateSolution

Topics
"Linear Elasticity Equations" on page 3-125
Introduced in R2015b

csgchk

Check validity of Geometry Description matrix

Syntax

gstat $=\operatorname{csgchk}(g d, x l i m, y l i m)$
gstat $=$ csgchk(gd)

Description

gstat $=\operatorname{csgchk}(g d, x l i m, y l i m)$ checks if the solid objects in the Geometry Description matrix gd are valid, given optional real numbers xlim and ylim as current length of the x-and y-axis, and using a special format for polygons. For a polygon, the last vertex coordinate can be equal to the first one, to indicate a closed polygon. If x lim and $y l i m$ are specified and if the first and the last vertices are not equal, the polygon is considered as closed if these vertices are within a certain "closing distance." These optional input arguments are meant to be used only when calling csgchk from the PDE Modeler app.
gstat $=$ csgchk(gd) is identical to the preceding call, except for using the same format of gd that is used by decsg. This call is recommended when using csgchk as a command-line function.
gstat is a row vector of integers that indicates the validity status of the corresponding solid objects, i.e., columns, in gd.

For a circle solid, gstat $=0$ indicates that the circle has a positive radius, 1 indicates a nonpositive radius, and 2 indicates that the circle is not unique.

For a polygon, gstat $=0$ indicates that the polygon is closed and does not intersect itself, i.e., it has a well-defined, unique interior region. 1 indicates an open and non-self-intersecting polygon, 2 indicates a closed and self-intersecting polygon, and 3 indicates an open and self-intersecting polygon.

For a rectangle solid, gstat is identical to that of a polygon. This is so because a rectangle is considered as a polygon by csgchk.

For an ellipse solid, gstat $=0$ indicates that the ellipse has positive semiaxes, 1 indicates that at least one of the semiaxes is nonpositive, and 2 indicates that the ellipse is not unique.

If gstat consists of zero entries only, then gd is valid and can be used as input argument by decsg.

See Also

decsg

Introduced before R2006a

Csgdel

Delete borders between minimal regions

Syntax

[dl1,bt1] = csgdel(dl,bt,bl)
[dl1,bt1] = csgdel(dl,bt)

Description

[$\mathrm{dll}, \mathrm{btl]}=\mathrm{csgdel}(\mathrm{dl}, \mathrm{bt}, \mathrm{bl})$ deletes the border segments in the list bl . If the consistency of the Decomposed Geometry matrix is not preserved by deleting the elements in the list bl , additional border segments are deleted. Boundary segments cannot be deleted.

For an explanation of the concepts or border segments, boundary segments, and minimal regions, see decsg.
dl and dll are Decomposed Geometry matrices. For a description of the Decomposed Geometry matrix, see decsg. The format of the Boolean tables bt and bt1 is also described in the entry on decsg.
[dl1,bt1] = csgdel(dl,bt) deletes all border segments.

See Also

csgchk | decsg

Introduced before R2006a

decsg

Decompose constructive solid 2-D geometry into minimal regions

Syntax

```
dl = decsg(gd,sf,ns)
dl = decsg(gd)
[dl,bt] = decsg(___)
```


Description

$\mathrm{dl}=\mathrm{decsg}(\mathrm{gd}, \mathrm{sf}, \mathrm{ns})$ decomposes the geometry description matrix gd into the geometry matrix dl and returns the minimal regions that satisfy the set formula sf . The name-space matrix ns is a text matrix that relates the columns in gd to variable names in sf .

Typically, you draw a geometry in the PDE Modeler app, then export it to the MATLAB Command Window by selecting Export Geometry Description, Set Formula, Labels from the Draw menu in the app. The resulting geometry description matrix gd represents the CSG model. decsg analyzes the model and constructs a set of disjointed minimal regions bounded by boundary segments and border segments. This set of minimal regions constitutes the decomposed geometry and allows other Partial Differential Equation Toolbox functions to work with the geometry.

Alternatively, you can use the decsg function when creating a geometry without using the app. See "2-D Geometry Creation at Command Line" on page 2-4 for details.

To return all minimal regions (sf corresponds to the union of all shapes in gd), use the shorter syntax $\mathrm{dl}=\operatorname{decsg}(\mathrm{gd})$.
[dl, bt] = decsg(__) returns a Boolean table (matrix) that relates the original shapes to the minimal regions. A column in bt corresponds to the column with the same index in gd. A row in bt corresponds to the index of a minimal region. You can use bt to remove boundaries between subdomains.

Examples

Decompose Geometry Created in PDE Modeler App

Create a 2-D geometry in the PDE Modeler app, then export it to the MATLAB workspace and decompose it to minimal regions by using decsg.

Start the PDE Modeler app and draw a unit circle and a unit square.

```
pdecirc(0,0,1)
```

pderect([0 1001$])$

Enter C1-SQ1 in the Set formula field.
Export the geometry description matrix, set formula, and name-space matrix to the MATLAB workspace by selecting the Export Geometry Description option from the Draw menu.

Decompose the exported geometry into minimal regions. The result is one minimal region with five edge segments: three circle edge segments and two line edge segments.

```
dl = decsg(gd,sf,ns)
dl =
\begin{tabular}{rrrrr}
2.0000 & 2.0000 & 1.0000 & 1.0000 & 1.0000 \\
0 & 0 & -1.0000 & 0.0000 & 0.0000 \\
1.0000 & 0 & 0.0000 & 1.0000 & -1.0000 \\
0 & 1.0000 & -0.0000 & -1.0000 & 1.0000 \\
0 & 0 & -1.0000 & 0 & -0.0000 \\
0 & 0 & 1.0000 & 1.0000 & 1.0000 \\
1.0000 & 1.0000 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.0000 & 1.0000 & 1.0000
\end{tabular}
```

View the geometry. Display the edge labels and the face labels.

```
pdegplot(dl,'EdgeLabels','on',''FaceLabels','on')
axis equal
```


For comparison, decompose the same geometry without specifying the set formula sf and the namespace matrix ns. This syntax returns the union of all shapes in the geometry gd.

```
dl_all = decsg(gd)
```

dl_all =

| 2.0000 | 2.0000 | 2.0000 | 2.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1.0000 | 1.0000 | 0 | -1.0000 | 0.0000 | 1.0000 | 0.0000 |
| 1.0000 | 1.0000 | 0 | 0 | 0.0000 | 1.0000 | 0.0000 | -1.0000 |

| 0 | 0 | 1.0000 | 1.0000 | -0.0000 | -1.0000 | 0 | 1.0000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1.0000 | 1.0000 | 0 | -1.0000 | 0 | 1.0000 | -0.0000 |
| 3.0000 | 2.0000 | 2.0000 | 3.0000 | 1.0000 | 1.0000 | 3.0000 | 1.0000 |
| 1.0000 | 0 | 0 | 1.0000 | 0 | 0 | 2.0000 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

View the resulting geometry.

```
pdegplot(dl_all,'EdgeLabels','on','FaceLabels','on')
axis equal
```


Remove Boundaries Between Subdomains

Start the PDE Modeler app and draw a unit circle and a unit square.
$\operatorname{pdecirc}(0,0,1)$
pderect([0 1 0 1])
Enter C1+SQ1 in the Set formula field.
Export the Geometry Description matrix, set formula, and Name Space matrix to the MATLAB workspace by selecting the Export Geometry Description option from the Draw menu.

Decompose the exported geometry into minimal regions. Because the geometry is a union of all regions, $\mathrm{C} 1+\mathrm{SQ1}$, you can omit the arguments specifying the set formula and name-space matrix when using decsg.
[dl,bt] = decsg(gd)

| | | | | | | | |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $d l=$ | | | | | | | |
| 2.0000 | 2.0000 | 2.0000 | 2.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 0 | 1.0000 | 1.0000 | 0 | -1.0000 | 0.0000 | 1.0000 | 0.0000 |
| 1.0000 | 1.0000 | 0 | 0 | 0.0000 | 1.0000 | 0.0000 | -1.0000 |
| 0 | 0 | 1.0000 | 1.0000 | -0.0000 | -1.0000 | 0 | 1.0000 |
| 0 | 1.0000 | 1.0000 | 0 | -1.0000 | 0 | 1.0000 | -0.0000 |
| 3.0000 | 2.0000 | 2.0000 | 3.0000 | 1.0000 | 1.0000 | 3.0000 | 1.0000 |
| 1.0000 | 0 | 0 | 1.0000 | 0 | 0 | 2.0000 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

bt $=$

| 1 | 0 |
| :--- | :--- |
| 0 | 1 |
| 1 | 1 |

View the geometry. Display the edge labels and the face labels.

```
pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
```

axis equal

Remove the subdomain boundaries by using the csgdel function.
[dl2,bt2] = csgdel(dl,bt);
View the resulting geometry.
figure
pdegplot(dl2,'EdgeLabels','on','FaceLabels','on')
axis equal

Input Arguments

gd - Geometry description matrix

matrix of double-precision numbers
Geometry description matrix, specified as a matrix of double-precision numbers. The number of columns corresponds to the number of shapes used to construct the geometry. Each column in the geometry description matrix corresponds to a shape in the CSG model. The model supports four types of shapes:

- For a circle, the first row contains 1 . The second and third rows contain the x - and y-coordinates of the center. The fourth row contains the radius of the circle.
- For a polygon, the first row contains 2 . The second row contains n, which is the number of line segments in the boundary of the polygon. The next n rows contain the x-coordinates of the starting points of the edges, and the n rows after that contain the y-coordinates of the starting points of the edges.
- For a rectangle, the first row contains 3 , and the second row contains 4 . The next four rows contain the x-coordinates of the starting points of the edges, and the four rows after that contain the y-coordinates of the starting points of the edges.
- For an ellipse, the first row contains 4 . The second and third rows contain the x - and y-coordinates of the center. The fourth and fifth rows contain the semiaxes of the ellipse. The sixth row contains the rotational angle of the ellipse, measured in radians.

All shapes in a geometry description matrix have the same number of rows. Rows that are not required for a particular shape are filled with zeros.

When you export geometry from the PDE Modeler app by selecting Export Geometry Description, Set Formula, Labels from the Draw menu in the app, you can use any variable name for the exported geometry description matrix in the MATLAB workspace. The default name is gd.

Data Types: double

sf - Set formula

character vector | string scalar
Set formula, specified as a character vector or a string including the names of shapes, such as C1, SQ2, E3, and the operators +, *, and - corresponding to the set operations union, intersection, and set difference, respectively. The operators + and * have the same precedence. The operator - has a higher precedence. You can control the precedence by using parentheses.

When you export geometry from the PDE Modeler app by selecting Export Geometry Description,
Set Formula, Labels from the Draw menu in the app, you can use any variable name for the formula in the MATLAB workspace. The default name is $s f$.
Example: ' (SQ1+C1)-C2'
Data Types: char|string
ns - Name-space matrix
matrix of double-precision numbers
Name-space matrix, specified as a matrix of double-precision numbers. The number of columns corresponds to the number of shapes used to construct the geometry. Each column in ns contains a sequence of characters padded with spaces. Each character column assigns a name to the corresponding geometric object in gd, so you can refer to a specific object in gd in the set formula sf.

When you export geometry from the PDE Modeler app by selecting Export Geometry Description, Set Formula, Labels from the Draw menu in the app, you can use any variable name for the namespace matrix in the MATLAB workspace. The default name is ns.
Data Types: double

Output Arguments

dl - Decomposed geometry matrix

matrix of double-precision numbers
Decomposed geometry matrix, returned as a matrix of double-precision numbers. It contains a representation of the decomposed geometry in terms of disjointed minimal regions constructed by the decsg algorithm. Each edge segment of the minimal regions corresponds to a column in dl . Edge segments between minimal regions are border segments. Outer boundaries are boundary segments. In each column, the second and third rows contain the starting and ending x-coordinates. The fourth and fifth rows contain the corresponding y-coordinates. The sixth and seventh rows contain left and right minimal region labels with respect to the direction induced by the start and end points (counterclockwise direction on circle and ellipse segments). There are three types of possible edge segments in a minimal region:

- For circle edge segments, the first row is 1 . The eighth and ninth rows contain the coordinates of the center of the circle. The 10th row contains the radius.
- For line edge segments, the first row is 2.
- For ellipse edge segments, the first row is 4. The eighth and ninth rows contain the coordinates of the center of the ellipse. The 10th and 11th rows contain the semiaxes of the ellipse. The 12 th row contains the rotational angle of the ellipse.

All shapes in a decomposed geometry matrix have the same number of rows. Rows that are not required for a particular shape are filled with zeros.

| Row number | Circle edge segment | Line edge segment | Ellipse edge segment |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 4 |
| 2 | starting x-coordinate | starting x-coordinate | starting x-coordinate |
| 3 | ending x-coordinate | ending x-coordinate | ending x-coordinate |
| 4 | starting y-coordinate | starting y-coordinate | starting y-coordinate |
| 5 | ending y-coordinate | ending y-coordinate | ending y-coordinate |
| 6 | left minimal region label | left minimal region label | left minimal region label |
| 7 | right minimal region
 label | right minimal region
 label | right minimal region
 label |
| 8 | x-coordinate of the
 center | | x-coordinate of the
 center |
| 9 | y-coordinate of the
 center | radius of the circle | |
| 10 | | y-coordinate of the
 center | |
| 11 | | x-semiaxis before
 rotation | |
| 12 | | y-semiaxis before
 rotation | |

Data Types: double
bt - Boolean table relating original shapes to minimal regions
matrix of 1 s and 0 s
Boolean table relating the original shapes to the minimal regions, returned as a matrix of 1 s and 0 s .
Data Types: double

Limitations

- In rare cases decsg can error or create an invalid geometry because of the limitations of its algorithm. Such issues can occur when two or more edges of a geometry partially overlap, almost coincide, or are almost tangent.

Tips

- decsg does not check the input CSG model for correctness. It assumes that no circles or ellipses are identical or degenerated and that no lines have zero length. Polygons must not be selfintersecting. Use the function csgchk to check the CSG model.
- decsg returns NaN if it cannot evaluate the set formula sf.

See Also

PDE Modeler | csgchk | csgdel | geometryFromEdges | pdecirc | pdeellip | pdepoly | pderect|wgeom

Topics
"2-D Geometry Creation at Command Line" on page 2-4
Introduced before R2006a

DiscreteGeometry Properties

Discrete 2-D or 3-D geometry description

Description

DiscreteGeometry describes a 2-D or 3-D geometry in the form of a discrete geometry object. PDEModel, StructuralModel, and ThermalModel objects have a Geometry property, which can be an AnalyticGeometry or DiscreteGeometry object.

Create a discrete geometry for your model by using one of the following approaches:

- Use importGeometry to import a 2-D or 3-D geometry from an STL file and attach it to the model.
- Use geometryFromMesh to reconstruct a 2-D or 3-D geometry from mesh and attach it to the model.
- Use multicuboid, multicylinder, or multisphere to create a 3-D geometry. Then assign the resulting geometry to the Geomet ry property of the model. For example, create a PDE model and add the following geometry formed by three spheres to the model.

```
model = createpde;
gm = multisphere([1,2,3]);
model.Geometry = gm;
```

- Use ext rude to create a 3-D geometry by vertically extruding a 2-D geometry.

Properties

Properties

NumCells - Number of geometry cells

nonnegative integer
Number of geometry cells, returned as a nonnegative integer.
Data Types: double

NumEdges - Number of geometry edges

nonnegative integer
Number of geometry edges, returned as a nonnegative integer.
Data Types: double

NumFaces - Number of geometry faces

positive integer
Number of geometry faces, returned as a positive integer.
Data Types: double
NumVertices - Number of geometry vertices
nonnegative integer

Number of geometry vertices, returned as a nonnegative integer.
Data Types: double

Vertices - Coordinates of geometry vertices

N -by-2 numeric matrix | N -by-3 numeric matrix
Coordinates of geometry vertices, specified as an N-by-2 or N-by-3 numeric matrix for a 2-D or 3-D geometry, respectively. Here, N is the number of vertices.
Data Types: double

See Also

AnalyticGeometry Properties | PDEModel | StructuralModel | ThermalModel | addFace | addVertex | geometryFromMesh | importGeometry|multicuboid |multicylinder| multisphere

Topics

"Solve Problems Using PDEModel Objects" on page 2-2

Introduced in R2015a

dst, idst

(Not recommended) Discrete sine transform

Note dst and idst are not recommended.

Syntax

$y=\operatorname{dst}(x)$
$y=\operatorname{dst}(x, n)$
$\mathrm{x}=\mathrm{idst}(\mathrm{y})$
$x=i d s t(y, n)$

Description

The dst function implements the following equation:

$$
y(k)=\sum_{n=1}^{N} x(n) \sin \left(\Pi \frac{k n}{N+1}\right), k=1, \ldots, N
$$

$y=d s t(x)$ computes the discrete sine transform of the columns of x. For best performance speed, the number of rows in x should be $2^{m}-1$, for some integer m.
$\mathrm{y}=\mathrm{dst}(\mathrm{x}, \mathrm{n})$ pads or truncates the vector x to length n before transforming.
If x is a matrix, the dst operation is applied to each column.
The idst function implements the following equation:

$$
x(k)=\frac{2}{N+1} \sum_{n=1}^{N} y(n) \sin \left(\Pi \frac{k n}{N+1}\right), k=1, \ldots, N
$$

$x=$ idst(y) calculates the inverse discrete sine transform of the columns of y. For best performance speed, the number of rows in y should be $2^{m}-1$, for some integer m.
$\mathrm{x}=\operatorname{idst}(\mathrm{y}, \mathrm{n})$ pads or truncates the vector y to length n before transforming.
If y is a matrix, the idst operation is applied to each column.
Introduced before R2006a

EigenResults

PDE eigenvalue solution and derived quantities

Description

An EigenResults object contains the solution of a PDE eigenvalue problem in a form convenient for plotting and postprocessing.

- Eigenvector values at the nodes appear in the Eigenvectors property.
- The eigenvalues appear in the Eigenvalues property.

Creation

There are several ways to create an EigenResults object:

- Solve an eigenvalue problem using the solvepdeeig function. This function returns a PDE eigenvalue solution as an EigenResults object. This is the recommended approach.
- Solve an eigenvalue problem using the pdeeig function. Then use the createPDEResults function to obtain an EigenResults object from a PDE eigenvalue solution returned by pdeeig. Note that pdeeig is a legacy function. It is not recommended for solving eigenvalue problems.

Properties

Mesh - Finite element mesh

FEMesh object
Finite element mesh, returned as a FEMesh object.

Eigenvectors - Solution eigenvectors

matrix | 3-D array
Solution eigenvectors, returned as a matrix or 3-D array. The solution is a matrix for scalar eigenvalue problems, and a 3-D array for eigenvalue systems. For details, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.
Data Types: double

Eigenvalues - Solution eigenvalues

vector
Solution eigenvalues, returned as a vector. The vector is in order by the real part of the eigenvalues from smallest to largest.
Data Types: double

Object Functions

interpolateSolution Interpolate PDE solution to arbitrary points

Examples

Results from an Eigenvalue Problem

Obtain an EigenResults object from solvepdeeig.
Create the geometry for the L-shaped membrane. Apply zero Dirichlet boundary conditions to all edges.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
Specify coefficients c = 1, a = 0, and d = 1.
specifyCoefficients(model,'m',0,'d',1,'c',1,'a',0,'f',0);
```

Create the mesh and solve the eigenvalue problem for eigenvalues from 0 through 100.

```
generateMesh(model,'Hmax',0.05);
```

ev = [0,100];
results $=$ solvepdeeig (model,ev)


```
    Basis= 44, Time= 1.38, New conv eig= 16
    Basis= 45, Time= 1.39, New conv eig= 16
    Basis= 46, Time= 1.39, New conv eig= 16
    Basis= 47, Time= 1.39, New conv eig= 16
    Basis= 48, Time= 1.42, New conv eig= 17
        Basis= 49, Time= 1.42, New conv eig= 18
        Basis= 50, Time= 1.42, New conv eig= 18
        Basis= 51, Time= 1.45, New conv eig= 18
        Basis= 52, Time= 1.45, New conv eig= 18
        Basis= 53, Time= 1.48, New conv eig= 18
        Basis= 54, Time= 1.61, New conv eig= 21
End of sweep: Basis= 54, Time= 1.61, New conv eig= 21
        Basis= 31, Time= 1.91, New conv eig= 0
        Basis= 32, Time= 1.91, New conv eig= 0
        Basis= 33, Time= 1.91, New conv eig= 0
End of sweep: Basis= 33, Time= 1.91, New conv eig= 0
results =
    EigenResults with properties:
        Eigenvectors: [5597x19 double]
    Eigenvalues: [19x1 double]
            Mesh: [1x1 FEMesh]
```

Plot the solution for mode 10.
pdeplot(model,'XYData',results.Eigenvectors(:,10))

See Also

StationaryResults | TimeDependentResults|solvepdeeig

Topics

"Eigenvalues and Eigenmodes of L-Shaped Membrane" on page 3-258
"Eigenvalues and Eigenmodes of Square" on page 3-270
"Solve Problems Using PDEModel Objects" on page 2-2
Introduced in R2016a

ElectromagneticModel

Electromagnetic model object

Description

An ElectromagneticModel object contains information about an electromagnetic analysis problem: the geometry, material properties, electromagnetic sources, boundary conditions, and mesh.

Creation

To create a ElectromagneticModel object, use the createpde function and specify 'electromagnetic' as its first argument .

Properties

AnalysisType - Type of electromagnetic analysis

'electrostatic'|'magnetostatic'|'electrostatic-axisymmetric'|'magnetostaticaxisymmetric'

Type of electromagnetic analysis, returned as 'electrostatic', 'magnetostatic', 'electrostatic-axisymmetric', or 'magnetostatic-axisymmetric'.

Geometry - 2-D geometry description

AnalyticGeometry|DiscreteGeometry
2-D geometry description, returned as an AnalyticGeometry or DiscreteGeometry object.

- Create AnalyticGeometry objects using the geometryFromEdges function. For details, see AnalyticGeometry.
- Create DiscreteGeometry objects using the importGeometry function or the geomet ryFromMesh function. For details, see DiscreteGeometry.

MaterialProperties - Material properties within domain
object containing material property assignments
Material properties within the domain, returned as an object containing the material property assignments.

Sources - Electromagnetic sources within the domain or subdomain

object containing heat source assignments
Electromagnetic source within the domain or subdomain, returned as an object containing electromagnetic source assignments.

BoundaryConditions - Boundary conditions applied to geometry

object containing boundary condition assignments

Boundary conditions applied to the geometry, returned as an object containing the boundary condition assignments.

VacuumPermittivity - Permittivity of vacuum for entire model
 number

Permittivity of vacuum for the entire model, returned as a number. This value must be consistent with the units of the model. If the model parameters are in the SI system of units, then the permittivity of vacuum must be $8.8541878128 \mathrm{E}-12$.

VacuumPermeability - Permeability of vacuum for entire model
 number

Permeability of vacuum for the entire model, returned as a number. This value must be consistent with the units of the model. If the model parameters are in the SI system of units, then the permeability of vacuum must be $1.2566370614 \mathrm{E}-6$.

Mesh - Mesh for solution

FEMesh object
Mesh for the solution, returned as a FEMesh object. See FEMesh. You create the mesh using the generateMesh function.

SolverOptions - Algorithm options for PDE solvers

PDESolverOptions object
Algorithm options for the PDE solvers, returned as a PDESolverOptions object. The properties of a PDESolverOptions object include absolute and relative tolerances for internal ODE solvers, maximum solver iterations, and so on. For details, see PDESolverOptions.

Object Functions

geometryFromEdges geometryFromMesh importGeometry generateMesh electromagneticProperties electromagneticSource electromagneticBC solve

Create 2-D geometry from decomposed geometry matrix Create 2-D or 3-D geometry from mesh Import 2-D or 3-D geometry from STL data Create triangular or tetrahedral mesh Assign properties of material for electromagnetic model Specify current density or charge density for electromagnetic model Apply boundary conditions to electromagnetic model Solve heat transfer, structural analysis, or electromagnetic analysis problem

Examples

Create Electromagnetic Model

Create a 2-D model for electrostatic analysis.

```
emagE = createpde('electromagnetic','electrostatic')
emagE =
    ElectromagneticModel with properties:
        AnalysisType: 'electrostatic'
```

```
    Geometry: []
MaterialProperties: []
    Sources: []
BoundaryConditions: []
VacuumPermittivity: []
    Mesh: []
```

Create an axisymmetric model for magnetostatic analysis. An axisymmetric model simplifies a 3-D problem to a 2-D problem using symmetry around the axis of rotation.

```
emagMA = createpde('electromagnetic','magnetostatic-axisymmetric')
emagMA =
    ElectromagneticModel with properties:
            AnalysisType: 'magnetostatic-axisymmetric'
            Geometry: []
    MaterialProperties: []
            Sources: []
    BoundaryConditions: []
    VacuumPermeability: []
            Mesh: []
```


See Also

electromagneticBC|electromagneticProperties|electromagneticSource|solve

Introduced in R2021a

electromagneticBC

Package: pde
Apply boundary conditions to electromagnetic model

Syntax

electromagneticBC(emagmodel, RegionType, RegionID, 'Voltage', V)
electromagneticBC(emagmodel, RegionType, RegionID, 'MagneticPotential' 'A)
electromagneticBC(\qquad ,'Vectorized','on')
emagBC = electromagneticBC(\qquad)

Description

electromagneticBC(emagmodel, RegionType,RegionID,'Voltage', V) adds a voltage boundary condition to emagmodel. The boundary condition applies to regions of type RegionType with ID numbers in RegionID.
electromagneticBC(emagmodel, RegionType, RegionID, 'MagneticPotential' , A) adds a magnetic potential boundary condition to emagmodel. The boundary condition applies to regions of type RegionType with ID numbers in RegionID.
electromagneticBC(\qquad ,'Vectorized','on') uses vectorized function evaluation when you pass a function handle as an argument. If your function handle computes in a vectorized fashion, then using this argument saves time. See "Vectorization". For details on this evaluation, see "Nonconstant Boundary Conditions" on page 2-116.

Use this syntax with any of the input arguments from previous syntaxes.
emagBC = electromagneticBC(__) returns the electromagnetic boundary condition object.

Examples

Specify Voltage on Boundaries

Apply voltage boundary conditions on two edges of a square.

```
emagmodel = createpde('electromagnetic','electrostatic');
geometryFromEdges(emagmodel,@squareg);
bc1 = electromagneticBC(emagmodel,'Edge',1,'Voltage',100)
bc1 =
    ElectromagneticBCAssignment with properties:
            RegionType: 'Edge'
            RegionID: 1
            Voltage: 100
        MagneticPotential: []
            Vectorized: 'off'
```

```
bc3 = electromagneticBC(emagmodel,'Edge',3,'Voltage',200)
bc3 =
    ElectromagneticBCAssignment with properties:
        RegionType: 'Edge'
        RegionID: 3
        Voltage: 200
        MagneticPotential: []
        Vectorized: 'off'
```


Specify Magnetic Potential on Boundary

Apply a magnetic potential boundary condition on the boundary of a circle.

```
emagmodel = createpde('electromagnetic','magnetostatic');
geometryFromEdges(emagmodel,@circleg);
electromagneticBC(emagmodel,'Edge',1,'MagneticPotential',0)
ans =
    ElectromagneticBCAssignment with properties:
            RegionType: 'Edge'
            RegionID: 1
                Voltage: []
        MagneticPotential: 0
            Vectorized: 'off'
```


Specify Nonconstant Voltage on Boundary

Use a function handle to specify a boundary condition that depends on the coordinates.
Create an electromagnetic model for electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Create the geometry and include it in the model.
geometryFromEdges(emagmodel,@circleg);
Specify the electrostatic potential at the boundary using the function $V(x, y)=x^{2}$.

```
bc = @(region,~)region.x.^2;
electromagneticBC(emagmodel,'Edge',1:emagmodel.Geometry.NumEdges,'Voltage',bc)
ans =
    ElectromagneticBCAssignment with properties:
            RegionType: 'Edge'
            RegionID: [ll 2 3 4]
            Voltage: @(region,~)region.x.^2
```

MagneticPotential: []
Vectorized: 'off'

Input Arguments

emagmodel - Electromagnetic model

ElectromagneticModel object
Electromagnetic model, specified as an ElectromagneticModel object. The model contains a 2-D geometry, a mesh, electromagnetic properties of the materials, the electromagnetic sources, and the boundary conditions.

Example: emagmodel = createpde('electromagnetic','electrostatic')

RegionType - Geometric region type

'Edge' for a 2-D model
Geometric region type, specified as 'Edge '.
Example: electromagneticBC(emagmodel,'Edge',1,'Voltage',100)
Data Types: char | string

RegionID - Edge ID

vector of positive integers
Edge ID, specified as a vector of positive integers. Find the edge IDs by using pdegplot with the 'EdgeLabels' name-value argument set to 'on'.
Data Types: double

V - Voltage

real number | function handle
Voltage, specified as a real number or a function handle. Use a function handle to specify a voltage that depends on the coordinates or on the solution. For details, see "Specifying Nonconstant Parameters of Electromagnetic Model" on page 5-161.
Data Types: double | function_handle

A - Magnetic potential

real number | function handle
Magnetic potential, specified as a real number or a function handle. Use a function handle to specify the magnetic potential that depends on the coordinates or on the solution. For details, see "Specifying Nonconstant Parameters of Electromagnetic Model" on page 5-161.
Data Types: double | function_handle

Output Arguments

emagBC - Handle to electromagnetic boundary condition

ElectromagneticBCAssignment object

Handle to the electromagnetic boundary condition, returned as an ElectromagneticBCAssignment object. For more information, see ElectromagneticBCAssignment Properties.

More About

Specifying Nonconstant Parameters of Electromagnetic Model

In Partial Differential Equation Toolbox, use a function handle to specify these electromagnetic parameters when they depend on the coordinates or solution:

- Relative permittivity of the material
- Relative permeability of the material
- Charge density as source
- Current density as source
- Voltage at the boundary
- Magnetic potential at the boundary

For example, use function handles to specify the relative permittivity, charge density, and voltage at the boundary for this model.

```
electromagneticProperties(emagmodel, ...
    'RelativePermittivity', ...
    @myfunPermittivity)
electromagneticSource(emagmodel, ...
    'ChargeDensity',@myfunCharge, ...
    'Face',2)
electromagneticBC(emagmodel, ...
    'Voltage',@myfunBC, ...
    'Edge',2)
```

The function must be of the form:

```
function emagVal = myfun(location,state)
```

The solver passes the location and state data to your function:

- location - A structure containing these fields:
- location. x - The x-coordinate of the point or points
- location.y - The y-coordinate of the point or points
- location. z - For an axisymmetric geometry, the z-coordinate of the point or points
- location.r - For an axisymmetric geometry, the r-coordinate of the point or points
- state - A structure containing these fields for nonlinear problems:
- state. u - Electric or magnetic potential at the corresponding points of the location structure
- state. ux - Estimates of the x-component of the electric or magnetic field at the corresponding points of the location structure
- state. uy - Estimates of the y-component of the electric or magnetic field at the corresponding points of the location structure
- state. uz - For an axisymmetric geometry, estimates of the z-component of the electric or magnetic field at the corresponding points of the location structure
- state. ur - For an axisymmetric geometry, estimates of the r-component of the electric or magnetic field at the corresponding points of the location structure

Electromagnetic material properties (relative permittivity or relative permeability) and electromagnetic source (charge density or current density) get these data from the solver:

- location.x, location.y, location.z, location.r
- Subdomain ID
- state.u, state.ux, state.uy, state.uz, state.ur

Boundary conditions (voltage or magnetic potential on the boundary) get these data from the solver:

- location.x, location.y, location.z, location.r
- location.nx, location.ny, location.nz, location.nr
- state.u

If properties depend on the electric or magnetic potential, ensure that your function returns a matrix of NaN of the correct size when state. u is NaN. Solvers check whether a problem is nonlinear by passing NaN state values and looking for returned NaN values.

See Also

ElectromagneticBCAssignment Properties | ElectromagneticModel|assembleFEMatrices | createpde |electromagneticProperties|electromagneticSource| solve

Introduced in R2021a

ElectromagneticBCAssignment Properties

Boundary condition for electromagnetic model

Description

An ElectromagneticBCAssignment object specifies the type of PDE boundary condition on a set of geometry boundaries. An ElectromagneticModel object contains an array of ElectromagneticBCAssignment objects in its BoundaryConditions. BCAssignments property.

Specify boundary conditions for your model using the electromagneticBC function.

Properties

Properties

RegionType - Geometric region type

'Edge'
Geometric region type, returned as 'Edge'.
Data Types: char \| string
RegionID - Edge ID
vector of positive integers
Edge ID, returned as a vector of positive integers. Find the edge IDs by using pdegplot with the 'EdgeLabels ' name-value argument set to 'on '.
Data Types: double
Voltage - Voltage boundary condition
real number | function handle
Voltage boundary condition, returned as a real number or a function handle. Use a function handle to specify a voltage that depends on space and time.
Data Types: double | function_handle

MagneticPotential - Magnetic potential boundary condition
 real number | function handle

Magnetic potential boundary condition, returned as a real number or a function handle. Use a function handle to specify a magnetic potential that depends on space and time.
Data Types: double | function_handle

Vectorized - Vectorized function evaluation
 'off' (default)|'on'

Vectorized function evaluation, returned as 'off' or 'on'. This property applies when you pass a function handle as an argument. To save time in the function handle evaluation, specify ' on ' if your
function handle computes in a vectorized fashion. See "Vectorization". For details on vectorized function evaluation, see "Nonconstant Boundary Conditions" on page 2-116.

Data Types: char|string

See Also
 electromagneticBC|ElectromagneticModel

Introduced in R2021a

electromagneticProperties

Package: pde
Assign properties of material for electromagnetic model

Syntax

```
electromagneticProperties(emagmodel,'RelativePermittivity',epsilon)
electromagneticProperties(emagmodel,'RelativePermeability',mu)
electromagneticProperties(
```

\qquad

``` , RegionType, RegionID) mtl = electromagneticProperties(
``` \(\qquad\)
``` )
```


Description

electromagneticProperties(emagmodel,'RelativePermittivity',epsilon) assigns relative permittivity epsilon to the entire geometry for an electrostatic model. Specify the permittivity of vacuum using the electromagnetic model properties.

For a nonconstant or nonlinear material, specify epsilon as a function handle.
electromagneticProperties(emagmodel,'RelativePermeability',mu) assigns relative permeability to the entire geometry for a magnetostatic model. Specify the permeability of vacuum using the electromagnetic model properties.

For a nonconstant or nonlinear material, specify mu as a function handle.
electromagneticProperties(\qquad ,RegionType, RegionID) assigns the material properties to specified faces. Use this syntax with any of the input arguments from previous syntaxes.
mtl = electromagneticProperties(\qquad) returns the material properties object.

Examples

Specify Relative Permittivity

Specify relative permittivity for an electrostatic analysis.
Create an electromagnetic model for electrostatic analysis.
emagmodel = createpde('electromagnetic','electrostatic');
Import and plot a 2-D geometry.
gm = importGeometry(emagmodel,'PlateHolePlanar.stl'); pdegplot(gm,'EdgeLabels','on','FaceLabels','on')

Specify the vacuum permittivity value in the SI system of units.
emagmodel.VacuumPermittivity $=8.8541878128 \mathrm{E}-12$;
Specify the relative permittivity of the material.

```
mtl = electromagneticProperties(emagmodel,'RelativePermittivity',2.25)
mtl =
    ElectromagneticMaterialAssignment with properties:
                            RegionType: 'Face'
                            RegionID: 1
RelativePermittivity: 2.2500
RelativePermeability: []
```


Specify Relative Permeability

Specify relative permeability for a magnetostatic analysis.
Create an electromagnetic model for a magnetostatic analysis.
emagmodel = createpde('electromagnetic','magnetostatic');
Import and plot a 2-D geometry.
gm = importGeometry(emagmodel,'PlateHolePlanar.stl'); pdegplot(gm,'EdgeLabels','on','FaceLabels','on')

Specify the vacuum permeability value in the SI system of units.

```
emagmodel.VacuumPermeability = 1.2566370614E-6;
```

Specify the relative permeability of the material.

```
mtl = electromagneticProperties(emagmodel,'RelativePermeability',5000)
mtl =
    ElectromagneticMaterialAssignment with properties:
            RegionType: 'Face'
                RegionID: 1
        RelativePermittivity: []
        RelativePermeability: 5000
```


Specify Relative Permittivity for Each Face

Specify relative permittivity for individual faces in an electrostatic model.
Create an electromagnetic model for an electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Create a 2-D geometry with two faces. First, import and plot a 2-D geometry representing a plate with a hole.
gm = importGeometry(emagmodel,'PlateHolePlanar.stl'); pdegplot(gm,'EdgeLabels','on','FaceLabels','on')

Then, fill the hole by adding a face and plot the resulting geometry.
gm = addFace(gm,5);
pdegplot(gm,'FaceLabels','on')

Specify the vacuum permittivity value in the SI system of units.

```
emagmodel.VacuumPermittivity = 8.8541878128E-12;
```

Specify relative permittivities separately for faces 1 and 2.

```
electromagneticProperties(emagmodel,'RelativePermittivity',2.25,'Face',1)
ans =
    ElectromagneticMaterialAssignment with properties:
            RegionType: 'Face'
            RegionID: 1
        RelativePermittivity: 2.2500
        RelativePermeability: []
electromagneticProperties(emagmodel,'RelativePermittivity',1,'Face', 2)
ans =
    ElectromagneticMaterialAssignment with properties:
            RegionType: 'Face'
                RegionID: 2
        RelativePermittivity: 1
        RelativePermeability: []
```


Specify Nonconstant Relative Permittivity

Use a function handle to specify a relative permittivity that depends on the electric potential.
Create an electromagnetic model for electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Create a square geometry and include it in the model.

```
geometryFromEdges(emagmodel,@squareg);
```

Specify the vacuum permittivity value in the SI system of units.

```
emagmodel.VacuumPermittivity = 8.8541878128E-12;
```

Specify the relative permittivity of the material as a function of the electric potential,

```
\varepsilon=}\frac{1}{\sqrt{}{1+|\nablaV\mp@subsup{|}{}{2}}}
perm = @(region,state) 1./sqrt(1+state.ux.^2 + state.uy.^2);
electromagneticProperties(emagmodel,'RelativePermittivity',perm)
ans =
    ElectromagneticMaterialAssignment with properties:
                            RegionType: 'Face'
                            RegionID: 1
        RelativePermittivity: @(region,state)1./sqrt(1+state.ux.^2+state.uy.^2)
        RelativePermeability: []
```


Input Arguments

emagmodel - Electromagnetic model
ElectromagneticModel object
Electromagnetic model, specified as an ElectromagneticModel object. The model contains a 2-D geometry, a mesh, the electromagnetic properties of the material, the electromagnetic sources, and the boundary conditions.
Example: electromagneticmodel = createpde('electromagnetic','electrostatic')
epsilon - Relative permittivity
positive number | function handle
Relative permittivity, specified as a positive number or a function handle. Use a function handle to specify a relative permittivity that depends on the coordinates or on the solution. For details, see "Specifying Nonconstant Parameters of Electromagnetic Model" on page 5-171.
Data Types: double | function_handle
mu - Relative permeability
positive number | function handle

Relative permeability, specified as a positive number or a function handle. Use a function handle to specify a relative permeability that depends on the coordinates or on the solution. For details, see "Specifying Nonconstant Parameters of Electromagnetic Model" on page 5-171.

Data Types: double | function_handle

RegionType - Geometric region type

'Face'
Geometric region type, specified as 'Face'.
Data Types: char \| string

RegionID - Face ID

vector of positive integers
Face ID, specified as a vector of positive integers. Find the face IDs by using pdegplot with the ' FaceLabels' name-value argument set to 'on '.

Example:

electromagneticProperties(emagmodel,'RelativePermeability',5000,' Face',1:3)
Data Types: double

Output Arguments

mtl - Handle to material properties

ElectromagneticMaterialAssignment object
Handle to material properties, returned as an ElectromagneticMaterialAssignment object. For more information, see ElectromagneticMaterialAssignment Properties.
mtl associates material properties with the geometric faces.

More About

Specifying Nonconstant Parameters of Electromagnetic Model

In Partial Differential Equation Toolbox, use a function handle to specify these electromagnetic parameters when they depend on the coordinates or solution:

- Relative permittivity of the material
- Relative permeability of the material
- Charge density as source
- Current density as source
- Voltage at the boundary
- Magnetic potential at the boundary

For example, use function handles to specify the relative permittivity, charge density, and voltage at the boundary for this model.

```
electromagneticProperties(emagmodel, ...
    'RelativePermittivity', ...
    @myfunPermittivity)
```

```
electromagneticSource(emagmodel, ...
    'ChargeDensity',@myfunCharge, ...
    'Face', 2)
electromagneticBC(emagmodel, ...
    'Voltage',@myfunBC, ...
```

The function must be of the form:

```
function emagVal = myfun(location,state)
```

The solver passes the location and state data to your function:

- location - A structure containing these fields:
- location. x - The x-coordinate of the point or points
- location.y - The y-coordinate of the point or points
- location. z - For an axisymmetric geometry, the z-coordinate of the point or points
- location.r - For an axisymmetric geometry, the r-coordinate of the point or points
- state - A structure containing these fields for nonlinear problems:
- state. u - Electric or magnetic potential at the corresponding points of the location structure
- state. ux - Estimates of the x-component of the electric or magnetic field at the corresponding points of the location structure
- state. uy - Estimates of the y-component of the electric or magnetic field at the corresponding points of the location structure
- state. uz - For an axisymmetric geometry, estimates of the z-component of the electric or magnetic field at the corresponding points of the location structure
- state. ur - For an axisymmetric geometry, estimates of the r-component of the electric or magnetic field at the corresponding points of the location structure

Electromagnetic material properties (relative permittivity or relative permeability) and electromagnetic source (charge density or current density) get these data from the solver:

- location.x, location.y, location.z, location.r
- Subdomain ID
- state.u, state.ux, state.uy, state.uz, state.ur

Boundary conditions (voltage or magnetic potential on the boundary) get these data from the solver:

- location.x, location.y, location.z, location.r
- location.nx, location.ny, location.nz, location.nr
- state.u

If properties depend on the electric or magnetic potential, ensure that your function returns a matrix of NaN of the correct size when state. u is NaN . Solvers check whether a problem is nonlinear by passing NaN state values and looking for returned NaN values.

See Also

ElectromagneticMaterialAssignment Properties | ElectromagneticModel|assembleFEMatrices | createpde|electromagneticBC|electromagneticSource|solve

Introduced in R2021a

ElectromagneticMaterialAssignment Properties

Electromagnetic material properties assignments

Description

An ElectromagneticMaterialAssignment object describes the material properties of an electromagnetic model. An ElectromagneticModel container has a vector of ElectromagneticMaterialAssignment objects in its
MaterialProperties.MaterialAssignments property.
Create material property assignments for your electromagnetic model using the electromagneticProperties function.

Properties

Properties
RegionType - Geometric region type
'Face'
Geometric region type, returned as 'Face'.
Data Types: char \| string

RegionID - Face ID

vector of positive integers
Face ID, returned as a vector of positive integers. Find the face IDs by using pdegplot with the ' FaceLabels' name-value argument set to 'on'.
Data Types: double
RelativePermittivity - Relative permittivity of the material
positive number | function handle
Relative permittivity of the material, returned as a positive number for constant material properties or a function handle for a nonconstant or nonlinear material.

Data Types: double | function_handle
RelativePermeability - Relative permeability of the material
positive number | function handle
Relative permeability of the material, returned as a positive number for constant material properties or a function handle for a nonconstant or nonlinear material.
Data Types: double | function_handle

Tips

- When there are multiple assignments to the same face, the toolbox uses the last applied setting.
- To avoid assigning material properties to the wrong region, ensure that you are using the correct face IDs by plotting and visually inspecting the geometry.

See Also

ElectromagneticModel|electromagneticProperties
Introduced in R2021a

electromagneticSource

Package: pde
Specify current density or charge density for electromagnetic model

Syntax

electromagneticSource(emagmodel,'CurrentDensity', J)
electromagneticSource(emagmodel,'ChargeDensity', rho) electromagneticSource(\qquad ,RegionType, RegionID) emagSource = electromagneticSource(\qquad)

Description

electromagneticSource(emagmodel,'CurrentDensity', J) specifies current density for a magnetostatic model.
electromagneticSource(emagmodel,'ChargeDensity',rho) specifies charge density for an electrostatic model.
electromagneticSource (__ , RegionType, RegionID) specifies the current or charge density for the specified geometry region. Use this syntax with any of the input arguments from previous syntaxes.
emagSource = electromagneticSource(\qquad) returns the electromagnetic source object.

Examples

Specify Current Density on Entire Geometry

Specify current density on the entire geometry for a magnetostatic analysis.

```
emagmodel = createpde('electromagnetic','magnetostatic');
importGeometry(emagmodel,'PlateHolePlanar.stl');
electromagneticSource(emagmodel,'CurrentDensity',10)
ans =
    ElectromagneticSourceAssignment with properties:
            RegionType: 'Face'
            RegionID: 1
        ChargeDensity: []
        CurrentDensity: 10
```


Specify Charge Density on Each Face

Specify charge density on individual faces in an electrostatic analysis.

Create an electromagnetic model for an electrostatic analysis.
emagmodel = createpde('electromagnetic','electrostatic');
Create a 2-D geometry with two faces. First, import and plot a 2-D geometry representing a plate with a hole.
gm = importGeometry(emagmodel,'PlateHolePlanar.stl');
pdegplot(gm,'EdgeLabels','on','FaceLabels','on')

Then, fill the hole by adding a face and plot the resulting geometry.

```
gm = addFace(gm,5);
pdegplot(gm,'FaceLabels','on')
```


Specify charge density values separately for faces 1 and 2 .

```
sc1 = electromagneticSource(emagmodel,'Face',1,'ChargeDensity',0.3)
sc1 =
    ElectromagneticSourceAssignment with properties:
            RegionType: 'Face'
                RegionID: 1
        ChargeDensity: 0.3000
        CurrentDensity: []
sc2 = electromagneticSource(emagmodel,'Face',2,'ChargeDensity',0.28)
Sc2 =
    ElectromagneticSourceAssignment with properties:
            RegionType: 'Face'
            RegionID: 2
        ChargeDensity: 0.2800
        CurrentDensity: []
```


Specify Nonconstant Charge Density

Use a function handle to specify a charge density that depends on the coordinates.
Create an electromagnetic model for electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Create a unit circle geometry and include it in the model.
geometryFromEdges(emagmodel,@circleg);
Specify the charge density as a function of the x - and y-coordinates, $\rho=0.3 \sqrt{x^{2}+y^{2}}$.

```
rho = @(region,state)0.3.*sqrt(region.x.^2 + region.y.^2);
electromagneticSource(emagmodel,'ChargeDensity',rho)
ans =
    ElectromagneticSourceAssignment with properties:
            RegionType: 'Face'
            RegionID: 1
        ChargeDensity: @(region,state)0.3.*sqrt(region.x.^^2+region.y.^2)
        CurrentDensity: []
```


Input Arguments

emagmodel - Electromagnetic model

ElectromagneticModel object
Electromagnetic model, specified as an ElectromagneticModel object. The model contains a 2-D geometry, a mesh, the electromagnetic properties of the material, the electromagnetic sources, and the boundary conditions.

```
Example: emagmodel = createpde('electromagnetic','electrostatic')
```


J - Current density

real number | function handle
Current density, specified as a real number or a function handle. Use a function handle to specify a current density that depends on the coordinates or on the solution. For details, see "Specifying Nonconstant Parameters of Electromagnetic Model" on page 5-180.
Data Types: double | function_handle
rho - Charge density
real number | function handle
Charge density, specified as a real number or a function handle. Use a function handle to specify a charge density that depends on the coordinates or on the solution. For details, see "Specifying Nonconstant Parameters of Electromagnetic Model" on page 5-180.

Data Types: double | function_handle

RegionType - Geometric region type

' Face' for a 2-D model

Geometric region type, specified as 'Face'.
Data Types: char|string

RegionID - Face ID

vector of positive integers
Face ID, specified as a vector of positive integers. Find the face IDs by using pdegplot with the ' FaceLabels ' name-value argument set to 'on '.
Example: electromagneticSource(emagmodel,'CurrentDensity',10, 'Face', 1:3)
Data Types: double

Output Arguments

emagSource - Handle to electromagnetic source

ElectromagneticSourceAssignment object
Handle to the electromagnetic source, returned as an ElectromagneticSourceAssignment object. For more information, see ElectromagneticSourceAssignment Properties.

More About

Specifying Nonconstant Parameters of Electromagnetic Model

In Partial Differential Equation Toolbox, use a function handle to specify these electromagnetic parameters when they depend on the coordinates or solution:

- Relative permittivity of the material
- Relative permeability of the material
- Charge density as source
- Current density as source
- Voltage at the boundary
- Magnetic potential at the boundary

For example, use function handles to specify the relative permittivity, charge density, and voltage at the boundary for this model.

```
electromagneticProperties(emagmodel, ...
    'RelativePermittivity', ...
    @myfunPermittivity)
electromagneticSource(emagmodel, ...
    'ChargeDensity',@myfunCharge, ...
    'Face',2)
electromagneticBC(emagmodel, ...
    'Voltage',@myfunBC, ...
    'Edge',2)
```

The function must be of the form:

```
function emagVal = myfun(location,state)
```

The solver passes the location and state data to your function:

- location - A structure containing these fields:
- location. x - The x-coordinate of the point or points
- location.y - The y-coordinate of the point or points
- location. z - For an axisymmetric geometry, the z-coordinate of the point or points
- location.r - For an axisymmetric geometry, the r-coordinate of the point or points
- state - A structure containing these fields for nonlinear problems:
- state. u - Electric or magnetic potential at the corresponding points of the location structure
- state. ux - Estimates of the x-component of the electric or magnetic field at the corresponding points of the location structure
- state. uy - Estimates of the y-component of the electric or magnetic field at the corresponding points of the location structure
- state. uz - For an axisymmetric geometry, estimates of the z-component of the electric or magnetic field at the corresponding points of the location structure
- state. ur - For an axisymmetric geometry, estimates of the r-component of the electric or magnetic field at the corresponding points of the location structure

Electromagnetic material properties (relative permittivity or relative permeability) and electromagnetic source (charge density or current density) get these data from the solver:

- location.x, location.y, location.z, location.r
- Subdomain ID
- state.u, state.ux, state.uy, state.uz, state.ur

Boundary conditions (voltage or magnetic potential on the boundary) get these data from the solver:

- location.x, location.y, location.z, location.r
- location.nx, location.ny, location.nz, location.nr
- state.u

If properties depend on the electric or magnetic potential, ensure that your function returns a matrix of NaN of the correct size when state. u is NaN. Solvers check whether a problem is nonlinear by passing NaN state values and looking for returned NaN values.

See Also

ElectromagneticModel | ElectromagneticSourceAssignment Properties | assembleFEMatrices | createpde |electromagneticBC|electromagneticProperties|solve

Introduced in R2021a

ElectromagneticSourceAssignment Properties

Electromagnetic source assignments

Description

An ElectromagneticSourceAssignment object describes the material properties of an electromagnetic model. An ElectromagneticModel container has a vector of ElectromagneticSourceAssignment objects in its Sources.SourceAssignments property.

Create material property assignments for your electromagnetic model using the electromagneticSource function.

Properties

Properties
RegionType - Geometric region type
' Face' for a 2-D model
Geometric region type, returned as 'Face'.
Data Types: char \| string
RegionID - Face ID
vector of positive integers
Face ID, specified as a vector of positive integers. Find the face IDs by using pdegplot with the ' FaceLabels' name-value argument set to 'on '.
Data Types: double

ChargeDensity - Charge density

real number | function handle
Charge density, returned as a real number for a constant charge density or a function handle for a charge density that depends on space or solution.
Data Types: double | function_handle
CurrentDensity - Current density
real number | function handle
Current density, returned as a real number for a constant current density or a function handle for a current density that depends on space or solution.

Data Types: double | function_handle

See Also

ElectromagneticModel|electromagneticSource

Introduced in R2021a

ElectrostaticResults

Electrostatic solution and derived quantities

Description

An ElectrostaticResults object contains the electric potential, electric field, and electric flux density values in a form convenient for plotting and postprocessing.

The electric potential, electric field, and electric flux density are calculated at the nodes of the triangular or tetrahedral mesh generated by generateMesh. Electric potential values at the nodes appear in the ElectricPotential property. Electric field values at the nodes appear in the ElectricField property. Electric flux density at the nodes appear in the ElectricFluxDensity property.

To interpolate the electric potential, electric field, and electric flux density to a custom grid, such as the one specified by meshgrid, use the interpolateElectricPotential, interpolateElectricField, and interpolateElectricFlux functions.

Creation

Solve an electrostatic problem using the solve function. This function returns a solution as an ElectrostaticResults object.

Properties

ElectricPotential - Electric potential values at nodes vector

Electric potential values at nodes, returned as a vector.
Data Types: double

ElectricField - Electric field values at nodes
 FEStruct object

Electric field values at nodes, returned as an FESt ruct object. The properties of this object contain the components of the electric field at nodes.

ElectricFluxDensity - Electric flux density values at nodes
 FEStruct object

Electric flux density values at nodes, returned as an FEStruct object. The properties of this object contain the components of electric flux density at nodes.

Mesh - Finite element mesh

FEMesh object
Finite element mesh, returned as an FEMesh object. For details, see FEMesh.

Object Functions

interpolateElectricPotential
interpolateElectricField
interpolateElectricFlux

Interpolate electric potential in electrostatic result at arbitrary spatial locations Interpolate electric field in electrostatic result at arbitrary spatial locations
Interpolate electric flux density in electrostatic result at arbitrary spatial locations

Examples

Solution to Electrostatic Analysis Model

Solve an electromagnetic problem and find the electric potential and field distribution for a 2-D geometry representing a plate with a hole.

Create an electromagnetic model for electrostatic analysis.
emagmodel = createpde('electromagnetic','electrostatic');
Import and plot the geometry representing a plate with a hole.
importGeometry(emagmodel,'PlateHolePlanar.stl');
pdegplot(emagmodel,'EdgeLabels', 'on')

Specify the vacuum permittivity in the SI system of units.

```
emagmodel.VacuumPermittivity = 8.8541878128E-12;
```

Specify the relative permittivity of the material.

```
electromagneticProperties(emagmodel,'RelativePermittivity',1);
```

Apply the voltage boundary conditions on the edges framing the rectangle and the circle.

```
electromagneticBC(emagmodel,'Voltage',0,'Edge',1:4);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',5);
```

Specify the charge density for the entire geometry.
electromagneticSource(emagmodel,'ChargeDensity',5E-9);
Generate the mesh.

```
generateMesh(emagmodel);
```

Solve the model.

```
R = solve(emagmodel)
R =
    ElectrostaticResults with properties:
            ElectricPotential: [1218x1 double]
                ElectricField: [1x1 FEStruct]
        ElectricFluxDensity: [1x1 FEStruct]
                        Mesh: [1x1 FEMesh]
```

Plot the electric potential and field.

```
pdeplot(emagmodel,'XYData',R.ElectricPotential, ...
    'FlowData',[R.ElectricField.Ex ...
                                    R.ElectricField.Ey])
axis equal
```


See Also
ElectromagneticModel|MagnetostaticResults|solve
Introduced in R2021a

MagnetostaticResults

Magnetostatic solution and derived quantities

Description

A MagnetostaticResults object contains the magnetic potential, magnetic field, and magnetic flux density values in a form convenient for plotting and postprocessing.

The magnetic potential, magnetic field, and magnetic flux density are calculated at the nodes of the triangular or tetrahedral mesh generated by generateMesh. Magnetic potential values at the nodes appear in the MagneticPotential property. Magnetic field values at the nodes appear in the MagneticField property. Magnetic flux density at the nodes appear in the MagneticFluxDensity property.

To interpolate the magnetic potential, magnetic field, and magnetic flux density to a custom grid, such as the one specified by meshgrid, use the interpolateMagneticPotential, interpolateMagneticField, and interpolateMagneticFlux functions.

Creation

Solve a magnetostatic problem using the solve function. This function returns a solution as a MagnetostaticResults object.

Properties

MagneticPotential - Magnetic potential values at nodes
 vector

Magnetic potential values at nodes, returned as a vector.

Data Types: double

MagneticField - Magnetic field values at nodes

FEStruct object
Magnetic field values at nodes, returned as an FEStruct object. The properties of this object contain the components of the magnetic field at nodes.

MagneticFluxDensity - Magnetic flux density values at nodes

FESt ruct object
Magnetic flux density values at nodes, returned as an FEStruct object. The properties of this object contain the components of the magnetic flux density at nodes.

Mesh - Finite element mesh

FEMesh object
Finite element mesh, returned as an FEMesh object. For details, see FEMesh.

Object Functions

interpolateMagneticPotential	Interpolate magnetic potential in magnetostatic result at arbitrary
spatial locations	
interpolateMagneticField	Interpolate magnetic field in magnetostatic result at arbitrary spatial
interpolateMagneticFlux	locations Interpolate magnetic flux density in magnetostatic result at arbitrary spatial locations

Examples

Solution to Magnetostatic Analysis Model

Solve a 2-D electromagnetic problem.
Create an electromagnetic model for magnetostatic analysis.

```
emagmodel = createpde('electromagnetic','magnetostatic');
```

Import and plot the geometry representing a plate with a hole.

```
importGeometry(emagmodel,'PlateHolePlanar.stl')
ans =
    DiscreteGeometry with properties:
            NumCells: 0
            NumFaces: 1
            NumEdges: 5
        NumVertices: 5
            Vertices: [5x3 double]
pdegplot(emagmodel,'EdgeLabels','on')
```


Specify the vacuum permeability value in the SI system of units.
emagmodel.VacuumPermeability $=1.2566370614 \mathrm{E}-6$;
Specify the relative permeability of the material.
electromagneticProperties(emagmodel,'RelativePermeability',5000);
Apply the magnetic potential boundary conditions on the edges framing the rectangle and the circle.
electromagneticBC(emagmodel,'MagneticPotential',0,'Edge',1:4);
electromagneticBC(emagmodel,' MagneticPotential', 0.01,'Edge',5);
Specify the current density for the entire geometry
electromagneticSource(emagmodel,'CurrentDensity',0.5);
Generate the mesh.
generateMesh(emagmodel);
Solve the model.
R = solve(emagmodel)
$\mathrm{R}=$
MagnetostaticResults with properties:

MagneticPotential: [1218x1 double]
MagneticField: [1x1 FEStruct]
MagneticFluxDensity: [1x1 FEStruct]
Mesh: [1x1 FEMesh]

Plot the magnetic potential and field.

```
pdeplot(emagmodel,'XYData',R.MagneticPotential, ...
    'FlowData',[R.MagneticField.Hx ...
    R.MagneticField.Hy])
axis equal
```


See Also

ElectromagneticModel|ElectrostaticResults|solve
Introduced in R2021a

evaluate

Package: pde
Interpolate data to selected locations

Note This function supports the legacy workflow. Using the [p,e,t] representation of FEMesh data is not recommended. Use interpolateSolution and evaluateGradient to interpolate a PDE solution and its gradient to arbitrary points without switching to a [p, e, t] representation.

Syntax

uOut = evaluate(F, pOut)
uOut = evaluate(F, x, y)
uOut = evaluate(F, x, y, z)

Description

uOut = evaluate (F, pOut) returns the interpolated values from the interpolant F at the points pOut.

Note If a query point is outside the mesh, evaluate returns NaN for that point.
uOut $=$ evaluate (F, x, y) returns the interpolated values from the interpolant F at the points $[x(k), y(k)]$, for k from 1 through numel (x). This syntax applies to 2-D geometry.
uOut $=$ evaluate (F, x, y, z) returns the interpolated values from the interpolant F at the points $[x(k), y(k), z(k)]$, for k from 1 through numel (x). This syntax applies to 3-D geometry.

Examples

Interpolate to a matrix of values

This example shows how to interpolate a solution to a scalar problem using a pOut matrix of values.
Solve the equation $-\Delta u=1$ on the unit disk with zero Dirichlet conditions.

```
g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
problem = allzerobc(g); % zero Dirichlet conditions
[p,e,t] = initmesh(g);
c = 1;
a = 0;
f = 1;
u = assempde(problem,p,e,t,c,a,f); % solve the PDE
```

Construct an interpolator for the solution.
$\mathrm{F}=$ pdeInterpolant(p,t,u);
Generate a random set of coordinates in the unit square. Evaluate the interpolated solution at the random points.

```
rng default % for reproducibility
pOut = rand(2,25); % 25 numbers between 0 and 1
u0ut = evaluate(F,pOut);
numNaN = sum(isnan(uOut))
numNaN = 9
```

uOut contains some NaN entries because some points in pOut are outside of the unit disk.

Interpolate to x, y values

This example shows how to interpolate a solution to a scalar problem using x, y values.
Solve the equation $-\Delta u=1$ on the unit disk with zero Dirichlet conditions.

```
g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
problem = allzerobc(g); % zero Dirichlet conditions
[p,e,t] = initmesh(g);
c = 1;
a = 0;
f = 1;
u = assempde(problem,p,e,t,c,a,f); % solve the PDE
```

Construct an interpolator for the solution.

```
F = pdeInterpolant(p,t,u); % create the interpolant
```

Evaluate the interpolated solution at grid points in the unit square with spacing 0.2.

```
[x,y] = meshgrid(0:0.2:1);
uOut = evaluate(F,x,y);
numNaN = sum(isnan(uOut))
numNaN = 12
```

u0ut contains some NaN entries because some points in the unit square are outside of the unit disk.

Interpolate a solution with multiple components

This example shows how to interpolate the solution to a system of $\mathrm{N}=3$ equations.
Solve the system of equations $-\Delta \mathbf{u}=\mathbf{f}$ with Dirichlet boundary conditions on the unit disk, where

$$
\mathbf{f}=\left[\sin (x)+\cos (y), \cosh (x y), \frac{x y}{1+x^{2}+y^{2}}\right]^{T}
$$

```
g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
problem = allzerobc(g,3); % zero Dirichlet conditions, 3 components
[p,e,t] = initmesh(g);
c = 1;
a = 0;
f = char('sin(x) + cos(y)','cosh(x.*y)','x.*y./(1+x.^2+y.^2)');
u = assempde(problem,p,e,t,c,a,f); % solve the PDE
```

Construct an interpolant for the solution.
$F=$ pdeInterpolant $(p, t, u) ; \%$ create the interpolant
Interpolate the solution at a circle.

```
s = linspace(0,2*pi);
x = 0.5 + 0.4*cos(s);
y = 0.4*sin(s);
uOut = evaluate(F,x,y);
```

Plot the three solution components.

```
npts = length(x);
plot3(x,y,u0ut(1:npts),'b')
hold on
plot3(x,y,u0ut(npts+1:2*npts),'k')
plot3(x,y,u0ut(2*npts+1:end),'r')
hold off
view(35,35)
```


Interpolate a time-varying solution

This example shows how to interpolate a solution that depends on time.
Solve the equation

$$
\frac{\partial u}{\partial t}-\Delta u=1
$$

on the unit disk with zero Dirichlet conditions and zero initial conditions. Solve at five times from 0 to 1.

```
g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
problem = allzerobc(g); % zero Dirichlet conditions
[p,e,t] = initmesh(g);
c = 1;
a = 0;
f = 1;
d = 1;
tlist = 0:1/4:1;
u = parabolic(0,tlist,problem,p,e,t,c,a,f,d);
5 2 ~ s u c c e s s f u l ~ s t e p s
0 failed attempts
```

```
106 function evaluations
1 partial derivatives
13 LU decompositions
1 0 5 \text { solutions of linear systems}
Construct an interpolant for the solution.
F = pdeInterpolant(p,t,u);
Interpolate the solution at \(\mathrm{x}=0.1, \mathrm{y}=-0.1\), and all available times.
```

```
x = 0.1;
```

x = 0.1;
y = -0.1;
uOut = evaluate(F,x,y)
u0ut = 1\times5
$\begin{array}{lllll}0 & 0.1809 & 0.2278 & 0.2388 & 0.2413\end{array}$

```

The solution starts at 0 at time 0 , as it should. It grows to about \(1 / 4\) at time 1 .

\section*{Interpolate to a Grid}

This example shows how to interpolate an elliptic solution to a grid.

\section*{Define and Solve the Problem}

Use the built-in geometry functions to create an L-shaped region with zero Dirichlet boundary conditions. Solve an elliptic PDE with coefficients \(c=1, a=0, f=1\), with zero Dirichlet boundary conditions.
[p,e,t] = initmesh('lshapeg'); \% Predefined geometry
u = assempde('lshapeb', p,e,t,1,0,1); \% Predefined boundary condition

\section*{Create an Interpolant}

Create an interpolant for the solution.
\(F=\) pdeInterpolant \((p, t, u)\);

\section*{Create a Grid for the Solution}
```

xgrid = -1:0.1:1;
ygrid = -1:0.2:1;
[X,Y] = meshgrid(xgrid,ygrid);

```

The resulting grid has some points that are outside the L-shaped region.

\section*{Evaluate the Solution On the Grid}
```

uout = evaluate(F,X,Y);

```

The interpolated solution uout is a column vector. You can reshape it to match the size of X or Y . This gives a matrix, like the output of the tri2grid function.

Z = reshape(uout,size(X));

\section*{Input Arguments}

F - Interpolant
output of pdeInterpolant
Interpolant, specified as the output of pdeInterpolant.
Example: F = pdeInterpolant (p,t,u)

\section*{pOut - Query points}
matrix with two or three rows
Query points, specified as a matrix with two or three rows. The first row represents the \(\times\) component of the query points, the second row represents the \(y\) component, and, for 3-D geometry, the third row represents the \(z\) component. evaluate computes the interpolant at each column of pOut. In other words, evaluate interpolates at the points pOut (: , k).
Example: pOut = [-1.5, 0,1 ;
1,1,2.2]
Data Types: double

\section*{x - Query point component}
vector or array
Query point component, specified as a vector or array. evaluate interpolates at either 2-D points \([x(k), y(k)]\) or at 3-D points \([x(k), y(k), z(k)]\). The \(x\) and \(y\), and \(z\) arrays must contain the same number of entries.
evaluate transforms query point components to the linear index representation, such as \(\times(:)\).
Example: \(x=-1: 0.2: 3\)
Data Types: double

\section*{y - Query point component}
vector or array
Query point component, specified as a vector or array. evaluate interpolates at either 2-D points \([x(k), y(k)]\) or at 3-D points \([x(k), y(k), z(k)]\). The \(x\) and \(y\), and \(z\) arrays must contain the same number of entries.
evaluate transforms query point components to the linear index representation, such as \(\mathrm{y}(\mathrm{:})\).
Example: y \(=-1: 0.2: 3\)
Data Types: double
z - Query point component
vector or array
Query point component, specified as a vector or array. evaluate interpolates at either 2-D points \([x(k), y(k)]\) or at 3-D points \([x(k), y(k), z(k)]\). The \(x\) and \(y\), and \(z\) arrays must contain the same number of entries.
evaluate transforms query point components to the linear index representation, such as \(z(:)\).

Example: z = -1:0.2:3
Data Types: double

\section*{Output Arguments}

\section*{uOut - Interpolated values}
array
Interpolated values, returned as an array. u0ut has the same number of columns as the data u used in creating F. If \(u\) depends on time, uOut contains a column for each time step. For time-independent \(u\), uOut has one column.

The number of rows in u0ut is the number of equations in the PDE system, N , times the number of query points, p0ut. The first p0ut rows correspond to equation 1, the next p0ut rows correspond to equation 2 , and so on.

If a query point is outside the mesh, evaluate returns NaN for that point.

\section*{More About}

\section*{Element}

An element is a basic unit in the finite-element method.
For 2-D problems, an element is a triangle in the model. Mesh.Element property. If the triangle represents a linear element, it has nodes only at the triangle corners. If the triangle represents a quadratic element, then it has nodes at the triangle corners and edge centers.

For 3-D problems, an element is a tetrahedron with either four or ten points. A four-point (linear) tetrahedron has nodes only at its corners. A ten-point (quadratic) tetrahedron has nodes at its corners and at the center point of each edge.

For details, see "Mesh Data" on page 2-153.

\section*{Algorithms}

For each point where a solution is requested ( pOut ), there are two steps in the interpolation process. First, the element containing the point must be located and second, interpolation within that element must be performed using the element shape functions and the values of the solution at the element's node points.

\section*{See Also}
pdeInterpolant

\section*{Topics}
"Mesh Data" on page 2-153

\section*{Introduced in R2014b}

\section*{evaluateCGradient}

Package: pde
Evaluate flux of PDE solution

\section*{Syntax}
[cgradx, cgrady] = evaluateCGradient(results,xq,yq)
[cgradx, cgrady,cgradz] = evaluateCGradient(results, xq,yq,zq)
[___] = evaluateCGradient(results,querypoints)
[ ] = evaluateCGradient( \(\qquad\) ,iU)
[___] = evaluateCGradient ( \(\qquad\) , iT)
[cgradx,cgrady] = evaluateCGradient(results)
[cgradx,cgrady,cgradz] = evaluateCGradient(results)

\section*{Description}
[cgradx, cgrady] = evaluateCGradient (results, \(x q, y q\) ) returns the flux of PDE solution for the stationary equation at the 2-D points specified in \(x q\) and \(y q\). The flux of the solution is the tensor product of c-coefficient and gradients of the PDE solution, \(\mathbf{c} \otimes \nabla \mathbf{u}\).
[cgradx, cgrady, cgradz] = evaluateCGradient(results, \(x q, y q, z q\) ) returns the flux of PDE solution for the stationary equation at the 3-D points specified in \(\mathrm{xq}, \mathrm{yq}\), and zq .
[ ] = evaluateCGradient(results,querypoints) returns the flux of PDE solution for the stationary equation at the 2-D or 3-D points specified in querypoints.
[ \(\qquad\) ] = evaluateCGradient( \(\qquad\) ,iU) returns the flux of the solution of the PDE system for equation indices (components) iU. When evaluating flux for a system of PDEs, specify iU after the input arguments in any of the previous syntaxes.

The first dimension of cgradx, cgrady, and, in the 3-D case, cgradz corresponds to query points. The second dimension corresponds to equation indices iU.
[___] = evaluateCGradient( \(\qquad\) , \(\mathrm{i} T\) ) returns the flux of PDE solution for the time-dependent equation or system of time-dependent equations at times iT. When evaluating flux for a timedependent PDE, specify iT after the input arguments in any of the previous syntaxes. For a system of time-dependent PDEs, specify both equation indices (components) iU and time indices iT.

The first dimension of cgradx, cgrady, and, in the 3-D case, cgradz corresponds to query points. For a single time-dependent PDE, the second dimension corresponds to time-steps iT. For a system of time-dependent PDEs, the second dimension corresponds to equation indices \(i U\), and the third dimension corresponds to time-steps iT.
[cgradx, cgrady] = evaluateCGradient (results) returns the flux of PDE solution of a 2-D problem at the nodal points of the triangular mesh. The shape of output arrays, cgradx and cgrady, depends on the number of PDEs for which results is the solution. The first dimension of cgradx and cgrady represents the node indices. For a system of stationary or time-dependent PDEs, the
second dimension represents equation indices. For a single time-dependent PDE, the second dimension represents time-steps. The third dimension represents time-step indices for a system of time-dependent PDEs.
[cgradx, cgrady, cgradz] = evaluateCGradient(results) returns the flux of PDE solution of a 3-D problem at the nodal points of the tetrahedral mesh. The first dimension of cgradx, cgrady, and cgradz represents the node indices. The second dimension represents the equation indices. For a system of stationary or time-dependent PDEs, the second dimension represents equation indices. For a single time-dependent PDE, the second dimension represents time-steps. The third dimension represents time-step indices for a system of time-dependent PDEs.

\section*{Examples}

\section*{Scalar Elliptic Problem}

Solve the problem \(-\Delta u=1\) on the L-shaped membrane with zero Dirichlet boundary conditions. Evaluate the tensor product of c-coefficient and gradients of the solution to a scalar elliptic problem at nodal and arbitrary locations. Plot the results.

Create a PDE model and geometry for this problem.
```

model = createpde;
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')

```


Specify boundary conditions and coefficients.
```

applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
specifyCoefficients(model,'m',0,'d',0,'c',10,'a',0,'f',1,'Face',1);
specifyCoefficients(model,'m',0,'d',0,'c',5,'a',0,'f',1,'Face',2);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1,'Face',3);

```

Mesh the geometry and solve the problem.
```

generateMesh(model,'Hmax',0.05);
results = solvepde(model);
u = results.NodalSolution;

```

Compute the flux of the solution and plot the results.
[cgradx,cgrady] = evaluateCGradient(results);
figure
pdeplot(model,'XYData',u,'Contour','on','FlowData', [cgradx, cgrady])


Compute the flux of the solution on the grid from -1 to 1 in each direction using the query points matrix.
v = linspace(-1,1,37);
[X,Y] = meshgrid(v);
querypoints \(=[X(:), Y(:)]^{\prime} ;\)
[cgradxq, cgradyq] = evaluateCGradient(results,querypoints);
Alternatively, you can specify the query points as \(X, Y\) instead of specifying them as a matrix.
[cgradxq,cgradyq] = evaluateCGradient(results, X, Y );
Plot the result using the quiver plotting function.
figure
quiver(X(:),Y(:), cgradxq, cgradyq)
xlabel('x')
ylabel('y')


\section*{Stress Components in a Cantilever Beam}

Compute stresses in a cantilever beam subject to shear loading at free end.
Create a PDE model and geometry for this problem.
N = 3;
model = createpde(N);
importGeometry(model, 'SquareBeam.STL');
pdegplot(model,'FaceLabels','on')


Specify coefficients and apply boundary conditions.
```

E = 2.1e11;
nu = 0.3;
c = elasticityC3D(E, nu);
a = 0;
f = [0;0;0];
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a','f',f);
applyBoundaryCondition(model,'dirichlet','Face',6,'u',[0 0 0]);
applyBoundaryCondition(model,'neumann','Face',5,'g',[0,0,-3e3]);

```

Mesh the geometry and solve the problem.
generateMesh(model,'Hmax',25,'Geometric0rder','quadratic');
results = solvepde(model);
Compute stress, that is, the product of c -coefficient and gradients of displacement.
[sig_xx,sig_yy,sig_zz] = evaluateCGradient(results);
Plot normal component of stress along x-direction. The top portion of the beam experiences tension, and the bottom portion experiences compression.
figure
pdeplot3D(model,'ColorMapData',sig_xx(:,1))


Define a line across the beam from the bottom to the top at mid-span and mid-width. Compute stresses along the line.
zg = linspace(0, 100, 10);
\(\mathrm{xg}=250 *\) ones (size(zg));
yg = 50*ones(size(zg));
[sig_xx,sig_xy,sig_xz] = evaluateCGradient(results,xg,yg,zg,1);
Plot the normal stress along \(x\)-direction.
figure
plot(sig_xx,zg)
grid on
xlabel('\sigma_\{xx\}')
ylabel('z')


\section*{Stress Components in a Bracket}

Compute stresses in an idealized 3-D mechanical part under an applied load. First, create a PDE model for this problem.

N = 3;
model = createpde(N);
Import the geometry and plot it.
```

importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')

```

\section*{Bracket with Face Labels}

figure
pdegplot(model,' FaceLabels', 'on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

\section*{Bracket with Face Labels, Rear View}


Specify coefficients and apply boundary conditions.
```

E = 200e9; % elastic modulus of steel in Pascals
nu = 0.3; % Poisson's ratio
c = elasticityC3D(E,nu);
a = 0;
f = [0;0;0]; % Assume all body forces are zero
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
applyBoundaryCondition(model,'dirichlet','Face',4,'u',[0,0,0]);
distributedLoad = 1e4; % Applied load in Pascals
applyBoundaryCondition(model,'neumann','Face',8,'g',[0,0,-distributedLoad]);

```

Mesh the geometry and solve the problem.
```

bracketThickness = le-2; % Thickness of horizontal plate with hole, meters
hmax = bracketThickness; % Maximum element length for a moderately fine mesh
generateMesh(model,'Hmax',hmax, 'GeometricOrder','quadratic');
result = solvepde(model);

```

Create a grid. For this grid, compute the stress tensor, which is the product of c-coefficient and gradients of displacement.
```

v = linspace(0,0.2,21);
[xq,yq,zq] = meshgrid(v);
[cgradx,cgrady,cgradz] = evaluateCGradient(result);

```

Extract individual components of stresses.
```

sxx = cgradx(:,1);
sxy = cgradx(:,2);
sxz = cgradx(:,3);
syx = cgrady(:,1);
syy = cgrady(:,2);
syz = cgrady(:,3);
szx = cgradz(:,1);
szy = cgradz(:,2);
szz = cgradz(:,3);

```

Compute von Mises stress.
```

sVonMises = sqrt(0.5*((sxx-syy).^2 + (syy -szz).^2 +...
(szz-sxx).^2) + 3*(sxy.^2 + syz.^2 + szx.^2));

```

Plot von Mises stress. The maximum stress occurs at the weakest section. This section has the least material to support the applied load.
```

pdeplot3D(model,'colormapdata',sVonMises)

```


\section*{Heat Transfer Problem on a Square}

Solve a 2-D transient heat transfer problem on a square domain and compute heat flow across convective boundary.

Create a PDE model for this problem.
number0fPDE = 1;
model = createpde(number0fPDE);
Create the geometry.
g = @squareg;
geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
\(x \lim ([-1.2,1.2])\)
\(y \lim ([-1.2,1.2])\)
axis equal


Specify material properties and ambient conditions.
rho = 7800;
cp = 500;
\(\mathrm{k}=100\);
Text = 25;
hext = 5000;

Specify the coefficients. Apply insulated boundary conditions on three edges and the free convection boundary condition on the right edge.
```

specifyCoefficients(model,'m',0,'d',rho*cp,'c',k,'a',0,'f',0);
applyBoundaryCondition(model,'neumann','Edge', [1,3,4],'q',0,'g',0);
applyBoundaryCondition(model,'neumann','Edge', 2,'q',hext,'g',Text*hext);

```

Set the initial conditions: uniform room temperature across domain and higher temperature on the left edge.
```

setInitialConditions(model,25);
setInitialConditions(model, 100, 'Edge', 4);

```

Generate a mesh and solve the problem using 0:1000:200000 as a vector of times.
generateMesh(model);
tlist = 0:1000:200000;
results = solvepde(model,tlist);
Define a line at convection boundary to compute heat flux across it.
\(y g=-1: 0.1: 1 ;\)
\(\mathrm{xg}=\) ones(size(yg));
Evaluate the product of coefficient and spatial gradients at ( \(\mathrm{xg}, \mathrm{yg}\) ) .
```

[qx,qy] = evaluateCGradient(results,xg,yg,l:length(tlist));

```

Spatially integrate gradients to obtain heat flow for each time-step.
```

HeatFlowX(1:length(tlist)) = -trapz(yg,qx(:,1:length(tlist)));

```

Plot convective heat flow over time.
```

figure
plot(tlist,HeatFlowX)
title('Heat flow across convection boundary')
xlabel('Time')
ylabel('Heat flow')

```


\section*{Heat Transfer Between Two Squares Made of Different Materials}

Solve the heat transfer problem for the following 2-D geometry consisting of a square and a diamond made of different materials. Compute the heat flux density and plot it as a vector field.

Create a PDE model for this problem.
numberOfPDE = 1;
model = createpde(numberOfPDE);
Create a geometry that consists of a square with an embedded diamond.
```

SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1,D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);
geometryFromEdges(model,dl);
pdegplot(model,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5,4.5])

```
\(y \lim ([-0.5,3.5])\)
axis equal


Set parameters for the square region.
rho_sq = 2;
C_sq \(=0.1\);
k_sq = 10;
Q_sq = 0;
\(h\) sq \(=0\);

Set parameters for the diamond region.
rho d = 1;
C_d = 0.1;
k_d = 2;
Q_d = 4;
h_d = 0;
Specify the coefficients for both subdomains. Apply the boundary and initial conditions.
specifyCoefficients(model,'m',0,'d',rho_sq*C_sq,'c',k_sq,'a',h_sq,'f',Q_sq,'Face',1); specifyCoefficients(model,'m',0,'d',rho_d*C_d,'c',k_d,'a',h_d,'f', Q_d,'FACe',2);
applyBoundaryCondition(model,'dirichlet','Edge',[1,2,7,8],'h',1,'r', 0);
setInitialConditions(model,0);

Mesh the geometry and solve the problem. To capture the most dynamic part of heat distribution process, solve the problem using logspace ( \(-2,-1,10\) ) as a vector of times.
generateMesh(model);
tlist \(=\) logspace(-2,-1,10);
results = solvepde(model,tlist);
u = results.NodalSolution;
Compute the heat flux density. Plot the solution with isothermal lines using a contour plot, and plot the heat flux vector field using arrows. The direction of the heat flow (from higher to lower temperatures) is opposite to the direction of \(c \otimes \nabla u\). Therefore, use -cgradx and -cgrady to show the heat flow.
```

[cgradx,cgrady] = evaluateCGradient(results);

```
figure
pdeplot(model,'XYData',u(: 10),'Contour','on','FlowData',[-cgradx(: , 10) ,-cgrady(: , 10)],'ColorMap


\section*{Input Arguments}
results - PDE solution
StationaryResults object | TimeDependentResults object

PDE solution, specified as a StationaryResults object or a TimeDependentResults object. Create results using solvepde or createPDEResults.
Example: results = solvepde(model)
\(x q-x\)-coordinate query points
real array
\(x\)-coordinate query points, specified as a real array evaluateCGradient evaluates the tensor product of c-coefficient and gradients of the PDE solution at either the 2-D coordinate points [ \(x q(i), y q(i)]\) or at the 3-D coordinate points [xq(i), \(y q(i), z q(i)]\). So \(x q, y q\), and (if present) zq must have the same number of entries.
evaluateCGradient converts query points to column vectors \(\mathrm{xq}(:), \mathrm{yq}(:)\), and (if present) \(\mathrm{zq}(:)\). For a single stationary PDE, the result consists of column vectors of the same size. To ensure that the dimensions of the returned \(x-y\)-, and \(z\)-components are consistent with the dimensions of the original query points, use reshape. For example, use cgradx = reshape(cgradx, size(xq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays corresponds to spatial points specified by the column vectors \(\mathrm{xq}(:), \mathrm{yq}(:)\), and (if present) \(\mathrm{zq}(:)\).
Data Types: double

\section*{\(y q-y\)-coordinate query points}
real array
\(y\)-coordinate query points, specified as a real array. evaluateCGradient evaluates the tensor product of c-coefficient and gradients of the PDE solution at either the 2-D coordinate points [ \(x q(i), y q(i)]\) or at the 3-D coordinate points [ \(x q(i), y q(i), z q(i)]\). So \(x q, y q\), and (if present) zq must have the same number of entries.
evaluateCGradient converts query points to column vectors \(\mathrm{xq}(:), \mathrm{yq}(:)\), and (if present) zq(:). For a single stationary PDE, the result consists of column vectors of the same size. To ensure that the dimensions of the returned \(x\)-, \(y\)-, and \(z\)-components are consistent with the dimensions of the original query points, use reshape. For example, use cgrady = reshape(cgrady, size(yq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays corresponds to spatial points specified by the column vectors \(\mathrm{xq}(:), \mathrm{yq}(:)\), and (if present) \(\mathrm{zq}(:)\).
Data Types: double

\section*{\(z q-z\)-coordinate query points}
real array
\(z\)-coordinate query points, specified as a real array. evaluateCGradient evaluates the tensor product of c-coefficient and gradients of the PDE solution at the 3-D coordinate points \([x q(i), y q(i), z q(i)]\). So \(x q, y q\), and \(z q\) must have the same number of entries.
evaluateCGradient converts query points to column vectors \(\mathrm{xq}(:), \mathrm{yq}(:)\), and \(\mathrm{zq}(:)\). For a single stationary PDE, the result consists of column vectors of the same size. To ensure that the dimensions of the returned \(x-y\)-, and \(z\)-components are consistent with the dimensions of the original query points, use reshape. For example, use cgradz = reshape(cgradz, size(zq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays corresponds to spatial points specified by the column vectors \(\mathrm{xq}(:), \mathrm{yq}(:)\), and (if present) \(\mathrm{zq}(:)\).

Data Types: double
querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D geometry. evaluateCGradient evaluates the tensor product of c-coefficient and gradients of the PDE solution at the coordinate points querypoints(: i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints \(=[0.5,0.5,0.75,0.75 ; 1,2,0,0.5]\)
Data Types: double
iT - Time indices
vector of positive integers
Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT = 1:5:21 specifies every fifth time-step up to 21.
Data Types: double

\section*{iU - Equation indices}
vector of positive integers
Equation indices, specified as a vector of positive integers. Each entry in iU specifies an equation index.

Example: \(i U=[1,5]\) specifies the indices for the first and fifth equations.
Data Types: double

\section*{Output Arguments}

\section*{cgradx - x-component of the flux of the PDE solution}
array
\(x\)-component of the flux of the PDE solution, returned as an array. The first array dimension represents the node index. If results is a StationaryResults object, the second array dimension represents the equation index for a system of PDEs. If results is a TimeDependentResults object, the second array dimension represents either the time-step for a single PDE or the equation index for a system of PDEs. The third array dimension represents the time-step index for a system of timedependent PDEs. For information about the size of cgradx, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

For query points that are outside the geometry, cgradx \(=\mathrm{NaN}\).

\section*{cgrady - y-component of the flux of the PDE solution}
array
\(y\)-component of the flux of the PDE solution, returned as an array. The first array dimension represents the node index. If results is a StationaryResults object, the second array dimension represents the equation index for a system of PDEs. If results is a TimeDependentResults object, the second array dimension represents either the time-step for a single PDE or the equation index for a system of PDEs. The third array dimension represents the time-step index for a system of time-
dependent PDEs. For information about the size of cgrady, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

For query points that are outside the geometry, cgrady \(=\mathrm{NaN}\).

\section*{cgradz - z-component of the flux of the PDE solution}
array
\(z\)-component of the flux of the PDE solution, returned as an array. The first array dimension represents the node index. If results is a StationaryResults object, the second array dimension represents the equation index for a system of PDEs. If results is a TimeDependentResults object, the second array dimension represents either the time-step for a single PDE or the equation index for a system of PDEs. The third array dimension represents the time-step index for a system of timedependent PDEs. For information about the size of cgradz, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

For query points that are outside the geometry, cgradz \(=\mathrm{NaN}\).

\section*{Tips}
- While the results object contains the solution and its gradient (both calculated at the nodal points of the triangular or tetrahedral mesh), it does not contain the flux of the PDE solution. To compute the flux at the nodal locations, call evaluateCGradient without specifying locations. By default, evaluateCGradient uses nodal locations.

\section*{See Also}

PDEModel | StationaryResults | TimeDependentResults | evaluateGradient |
interpolateSolution

\section*{Topics}
"Deflection Analysis of Bracket" on page 3-71
"Dynamics of Damped Cantilever Beam" on page 3-21
"Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App" on page 3-157

\section*{Introduced in R2016b}

\section*{evaluateGradient}

Package: pde
Evaluate gradients of PDE solutions at arbitrary points

\section*{Syntax}
```

[gradx,grady] = evaluateGradient(results,xq,yq)
[gradx,grady,gradz] = evaluateGradient(results,xq,yq,zq)
[___] = evaluateGradient(results,querypoints)
[___] = evaluateGradient(

```
\(\qquad\)
``` ,iU)
[___] = evaluateGradient (
``` \(\qquad\)
``` ,iT)
```


## Description

[gradx, grady] = evaluateGradient(results, $x q, y q$ ) returns the interpolated values of gradients of the PDE solution results at the 2-D points specified in xq and yq .
[gradx,grady,gradz] = evaluateGradient(results,xq,yq,zq) returns the interpolated gradients at the 3 -D points specified in $x q, y q$, and $z q$.
[___] = evaluateGradient(results,querypoints) returns the interpolated values of the gradients at the points specified in querypoints.
[ ] = evaluateGradient ( $\qquad$ ,iU) returns the interpolated values of the gradients for the system of equations for equation indices (components) iU. When solving a system of elliptic PDEs, specify iU after the input arguments in any of the previous syntaxes.

The first dimension of gradx, grady, and, in 3-D case, gradz corresponds to query points. The second dimension corresponds to equation indices iU.
[ ] = evaluateGradient ( $\qquad$ , $\mathrm{i} T$ ) returns the interpolated values of the gradients for the time-dependent equation or system of time-dependent equations at times iT. When evaluating gradient for a time-dependent PDE, specify iT after the input arguments in any of the previous syntaxes. For a system of time-dependent equations, specify both time indices iT and equation indices (components) iU.

The first dimension of gradx, grady, and, in 3-D case, gradz corresponds to query points. For a single time-dependent PDE, the second dimension corresponds to time-steps iT. For a system of timedependent PDEs, the second dimension corresponds to equation indices $i U$, and the third dimension corresponds to time-steps iT.

## Examples

## Evaluate Gradients for Scalar Elliptic Problem

Evaluate gradients of the solution to a scalar elliptic problem along a line. Plot the results.

Create the solution to the problem $-\Delta u=1$ on the L-shaped membrane with zero Dirichlet boundary conditions.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
generateMesh(model,'Hmax', 0.05);
results = solvepde(model);
```

Evaluate gradients of the solution along the straight line from $(x, y)=(-1,-1)$ to $(1,1)$. Plot the results as a quiver plot by using quiver.

```
xq = linspace(-1,1,101);
yq = xq;
[gradx,grady] = evaluateGradient(results,xq,yq);
gradx = reshape(gradx,size(xq));
grady = reshape(grady,size(yq));
quiver(xq,yq,gradx,grady)
xlabel('x')
ylabel('y')
```



## Evaluate Gradients for Poisson's Equation

Calculate gradients for the mean exit time of a Brownian particle from a region that contains absorbing (escape) boundaries and reflecting boundaries. Use the Poisson's equation with constant coefficients and 3-D rectangular block geometry to model this problem.

Create the solution for this problem.

```
model = createpde;
importGeometry(model,'Block.stl');
applyBoundaryCondition(model,'dirichlet','Face',[1,2,5],'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',2);
generateMesh(model);
results = solvepde(model);
```

Create a grid and interpolate gradients of the solution to the grid.
[X,Y,Z] = meshgrid(1:16:100,1:6:20,1:7:50);
[gradx,grady,gradz] = evaluateGradient(results, $X, Y, Z$ );
Reshape the gradients to the shape of the grid and plot the gradients.

```
gradx = reshape(gradx,size(X));
grady = reshape(grady,size(Y));
gradz = reshape(gradz,size(Z));
quiver3(X,Y,Z,gradx,grady,gradz)
axis equal
xlabel('x')
ylabel('y')
zlabel('z')
```



## Evaluate Gradients Using Query Matrix

Solve a scalar elliptic problem and interpolate gradients of the solution to a dense grid. Use a query matrix to specify the grid.

Create the solution to the problem $-\Delta u=1$ on the L-shaped membrane with zero Dirichlet boundary conditions.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
generateMesh(model,'Hmax',0.05);
results = solvepde(model);
```

Interpolate gradients of the solution to the grid from -1 to 1 in each direction. Plot the result using the quiver plotting function.

```
v = linspace(-1,1,101);
[X,Y] = meshgrid(v);
querypoints = [X(:),Y(:)]';
```

[gradx,grady] = evaluateGradient(results,querypoints); quiver( $\mathrm{X}(:), \mathrm{Y}(:), \operatorname{gradx}, \operatorname{grady})$
xlabel('x')
ylabel('y')


Zoom in on a particular part of the plot to see more details. For example, limit the plotting range to 0.2 in each direction.
axis([-0.2 0.2 -0.2 0.2$])$


## Evaluate Gradients of Solution of Elliptic System

Evaluate gradients of the solution to a two-component elliptic system and plot the results.
Create a PDE model for two components.
model = createpde(2);
Create the 2-D geometry as a rectangle with a circular hole in its center. For details about creating the geometry, see the example in "Solve PDEs with Constant Boundary Conditions" on page 2-119.

```
R1 = [3,4,-0.3,0.3,0.3,-0.3,-0.3,-0.3,0.3,0.3]';
C1 = [1,0,0,0.1]';
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];
ns = (char('R1','C1'))';
sf = 'R1 - C1';
g = decsg(geom,sf,ns);
```

Include the geometry in the model and view the geometry.

```
geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
axis equal
axis([-0.4,0.4, -0.4,0.4])
```



Set the boundary conditions and coefficients.

```
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',[2; -2]);
```

applyBoundaryCondition(model,'dirichlet','Edge', 3, 'u',[-1,1]);
applyBoundaryCondition(model,'dirichlet','Edge',1,'u',[1,-1]);
applyBoundaryCondition(model,' ${ }^{\prime}$ neumann','Edge',[2,4:8],'g',[0,0]);

Create a mesh and solve the problem.

```
generateMesh(model,'Hmax',0.1);
results = solvepde(model);
```

Interpolate the gradients of the solution to the grid from - 0.3 to 0.3 in each direction for each of the two components.

```
v = linspace(-0.3,0.3,15);
[X,Y] = meshgrid(v);
[gradx,grady] = evaluateGradient(results,X,Y,[1,2]);
```

Plot the gradients for the first component.
figure
$\operatorname{gradx} 1=\operatorname{gradx}(:, 1)$;
grady1 = grady(:,1);
quiver(X(:),Y(:),gradx1,grady1)
title('Component 1')
axis equal
$x \lim ([-0.3,0.3])$


Plot the gradients for the second component.

```
figure
gradx2 = gradx(:,2);
grady2 = grady(:,2);
quiver(X(:),Y(:),gradx2,grady2)
title('Component 2')
axis equal
xlim([-0.3,0.3])
```



## Evaluate Gradients of Solution of Hyperbolic System

Solve a system of hyperbolic PDEs and evaluate gradients.
Import slab geometry for a 3-D problem with three solution components. Plot the geometry.
model = createpde(3);
importGeometry(model,'Plate10x10x1.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha', 0.5)


Set boundary conditions such that face 2 is fixed (zero deflection in any direction) and face 5 has a load of 1e3 in the positive z-direction. This load causes the slab to bend upward. Set the initial condition that the solution is zero, and its derivative with respect to time is also zero.

```
applyBoundaryCondition(model,'dirichlet','Face', 2, 'u',[0,0,0]);
applyBoundaryCondition(model,'neumann','Face',5,'g',[0,0,1e3]);
setInitialConditions(model,0,0);
```

Create PDE coefficients for the equations of linear elasticity. Set the material properties to be similar to those of steel. See "Linear Elasticity Equations" on page 3-125.

```
E = 200e9;
nu = 0.3;
specifyCoefficients(model,'m',1,...
 'd',0,...
 'c',elasticityC3D(E,nu),...
 'a',0,...
 'f',[0;0;0]);
```

Generate a mesh, setting Hmax to 1.
generateMesh(model, 'Hmax',1);
Solve the problem for times 0 through $5 e-3$ in steps of $1 e-4$. You might have to wait a few minutes for the solution.

```
tlist = 0:5e-4:5e-3;
results = solvepde(model,tlist);
```

Evaluate the gradients of the solution at fixed $x$ - and $z$-coordinates in the centers of their ranges, 5 and 0.5 respectively. Evaluate for $y$ from 0 through 10 in steps of 0.2 . Obtain just component 3 , the $z$ component.

```
yy = 0:0.2:10;
zz = 0.5*ones(size(yy));
xx = 10*zz;
component = 3;
[gradx,grady,gradz] = evaluateGradient(results,xx,yy,zz,component,1:length(tlist));
```

The three projections of the gradients of the solution are 51-by-1-by-51 arrays. Use squeeze to remove the singleton dimension. Removing the singleton dimension transforms these arrays to 51-by-51 matrices which simplifies indexing into them.

```
gradx = squeeze(gradx);
grady = squeeze(grady);
gradz = squeeze(gradz);
```

Plot the interpolated gradient component grady along the $y$ axis for the following six values from the time interval tlist.

```
figure
t = [1:2:11];
for i = t
 p(i) = plot(yy,grady(:,i),'DisplayName', strcat('t=', num2str(tlist(i))));
 hold on
end
legend(p(t))
xlabel('y')
ylabel('grady')
ylim([-5e-6, 20e-6])
```



## Input Arguments

results - PDE solution
StationaryResults object | TimeDependentResults object
PDE solution, specified as a StationaryResults object or a TimeDependentResults object. Create results using solvepde or createPDEResults.

Example: results = solvepde(model)
$\mathrm{xq}-\mathrm{x}$-coordinate query points
real array
$x$-coordinate query points, specified as a real array. evaluateGradient evaluates the gradients of the solution at the 2-D coordinate points [ $\mathrm{xq}(\mathrm{i}), \mathrm{yq}(\mathrm{i})]$ or at the 3-D coordinate points [ $x q(i), y q(i), z q(i)]$. So $x q, y q$, and (if present) $z q$ must have the same number of entries.
evaluateGradient converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$. For a single stationary PDE, the result consists of column vectors of the same size. To ensure that the dimensions of the gradient components are consistent with the dimensions of the original query points, use reshape. For example, use gradx $=$ reshape(gradx, size(xq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays corresponds to spatial points specified by the column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$.

## Data Types: double

yq - y-coordinate query points
real array
$y$-coordinate query points, specified as a real array. evaluateGradient evaluates the gradients of the solution at the 2-D coordinate points [ $\mathrm{xq}(\mathrm{i}), \mathrm{yq}(\mathrm{i})$ ] or at the 3-D coordinate points [ $x q(i), y q(i), z q(i)]$. So $x q, y q$, and (if present) $z q$ must have the same number of entries.
evaluateGradient converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$. For a single stationary PDE, the result consists of column vectors of the same size. To ensure that the dimensions of the gradient components are consistent with the dimensions of the original query points, use reshape. For example, use grady = reshape(grady, size(yq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays corresponds to spatial points specified by the column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$.

Data Types: double
zq - z-coordinate query points
real array
$z$-coordinate query points, specified as a real array. evaluateGradient evaluates the gradients of the solution at the 3-D coordinate points [xq(i),yq(i), zq(i)]. So $x q, y q$, and $z q$ must have the same number of entries.
evaluateGradient converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$. For a single stationary PDE, the result consists of column vectors of the same size. To ensure that the dimensions of the gradient components are consistent with the dimensions of the original query points, use reshape. For example, use gradz = reshape(gradz,size(zq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays corresponds to spatial points specified by the column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$.
Data Types: double

## querypoints - Query points

real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry, or three rows for 3-D geometry. evaluateGradient evaluates the gradients of the solution at the coordinate points querypoints(: i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints $=[0.5,0.5,0.75,0.75 ; 1,2,0,0.5]$
Data Types: double

## iU - Equation indices

vector of positive integers
Equation indices, specified as a vector of positive integers. Each entry in iU specifies an equation index.

Example: $\mathrm{iU}=[1,5]$ specifies the indices for the first and fifth equations.
Data Types: double

## iT - Time indices

vector of positive integers
Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT = 1:5:21 specifies every fifth time-step up to 21 .
Data Types: double

## Output Arguments

gradx - x-component of the gradient
array
$x$-component of the gradient, returned as an array. For query points that are outside the geometry, gradx = NaN. For information about the size of gradx, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

## grady $\boldsymbol{y} \boldsymbol{y}$-component of the gradient

array
$y$-component of the gradient, returned as an array. For query points that are outside the geometry, grady $=$ NaN. For information about the size of grady, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

## gradz - z-component of the gradient

array
$z$-component of the gradient, returned as an array. For query points that are outside the geometry, gradz = NaN. For information about the size of gradz, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

## Tips

The results object contains the solution and its gradient calculated at the nodal points of the triangular or tetrahedral mesh. You can access the solution and three components of the gradient at nodal points by using dot notation.
interpolateSolution and evaluateGradient let you interpolate the solution and its gradient to a custom grid, for example, specified by meshgrid.

## See Also

PDEModel | StationaryResults | TimeDependentResults | contour | evaluateCGradient | interpolateSolution | quiver | quiver3

## Topics

"Solution and Gradient Plots with pdeplot and pdeplot3D" on page 3-282
"3-D Solution and Gradient Plots with MATLAB® Functions" on page 3-297
"Dimensions of Solutions, Gradients, and Fluxes" on page 3-309

## Introduced in R2016a

## evaluateHeatFlux

Package: pde
Evaluate heat flux of a thermal solution at nodal or arbitrary spatial locations

## Syntax

[qx, qy] = evaluateHeatFlux(thermalresults, $x q, y q$ )
[qx,qy,qz] = evaluateHeatFlux(thermalresults, $x q, y q, z q$ )
[___] = evaluateHeatFlux(thermalresults,querypoints)
[___] = evaluateHeatFlux (__ , iT $)$
[qx,qy] = evaluateHeatFlux(thermalresults)
[qx,qy,qz] = evaluateHeatFlux(thermalresults)

## Description

[qx,qy] = evaluateHeatFlux(thermalresults, $x q, y q$ ) returns the heat flux for a thermal problem at the 2-D points specified in xq and yq . This syntax is valid for both the steady-state and transient thermal models.
[qx,qy,qz] = evaluateHeatFlux(thermalresults, $x q, y q, z q$ ) returns the heat flux for a thermal problem at the 3-D points specified in $\mathrm{xq}, \mathrm{yq}$, and zq . This syntax is valid for both the steadystate and transient thermal models.
[___] = evaluateHeatFlux(thermalresults,querypoints) returns the heat flux for a thermal problem at the 2-D or 3-D points specified in querypoints. This syntax is valid for both the steady-state and transient thermal models.
[__ ] = evaluateHeatFlux(__,iT) returns the heat flux for a thermal problem at the times specified in iT. You can specify iT after the input arguments in any of the previous syntaxes.

The first dimension of $q x$, qy, and, in the 3-D case, qz corresponds to query points. The second dimension corresponds to time steps iT.
[qx, qy] = evaluateHeatFlux(thermalresults) returns the heat flux for a 2-D problem at the nodal points of the triangular mesh. The first dimension of $q x$ and qy represents the node indices. The second dimension represents time steps.
[qx,qy,qz] = evaluateHeatFlux(thermalresults) returns the heat flux for a 3-D thermal problem at the nodal points of the tetrahedral mesh. The first dimension of $q x, q y$, and $q z$ represents the node indices. The second dimension represents time steps.

## Examples

## Heat Flux for 2-D Steady-State Thermal Model

For a 2-D steady-state thermal model, evaluate heat flux at the nodal locations and at the points specified by $x$ and $y$ coordinates.

Create a thermal model for steady-state analysis.

```
thermalmodel = createpde('thermal');
```

Create the geometry and include it in the model.
R1 $=[3,4,-1,1,1,-1,1,1,-1,-1] '$;
$\mathrm{g}=\operatorname{decsg}\left(\mathrm{R} 1, \mathrm{R}^{\prime} \mathrm{I}^{\prime},\left({ }^{\prime} R 1 \mathrm{I}^{\prime}\right)\right.$ ');
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels', 'on')
$x \lim ([-1.51 .5])$
axis equal


Assuming that this geometry represents an iron plate, the thermal conductivity is $79.5 \mathrm{~W} /(\mathrm{mK})$.

```
thermalProperties(thermalmodel,'ThermalConductivity',79.5,'Face',1);
```

Apply a constant temperature of 500 K to the bottom of the plate (edge 3). Also, assume that the top of the plate (edge 1) is insulated, and apply convection on the two sides of the plate (edges 2 and 4).

```
thermalBC(thermalmodel,'Edge',3,'Temperature',500);
```

thermalBC(thermalmodel,'Edge',1,'HeatFlux',0);
thermalBC(thermalmodel,'Edge',[2 4], ...

```
'ConvectionCoefficient',25, ...
'AmbientTemperature',50);
```

Mesh the geometry and solve the problem.

```
generateMesh(thermalmodel);
results = solve(thermalmodel)
results =
 SteadyStateThermalResults with properties:
 Temperature: [1541x1 double]
 XGradients: [1541x1 double]
 YGradients: [1541x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Evaluate heat flux at the nodal locations.
[qx,qy] = evaluateHeatFlux(results);
figure
pdeplot(thermalmodel,'FlowData',[qx qy])


Create a grid specified by x and y coordinates, and evaluate heat flux to the grid.
v = linspace(-0.5,0.5,11);
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(v);
[qx,qy] = evaluateHeatFlux(results, $X, Y$ );
Reshape the $q T x$ and $q T y$ vectors, and plot the resulting heat flux.
$\mathrm{qx}=$ reshape(qx,size(X));
qy = reshape(qy,size(Y));
figure
quiver( $\mathrm{X}, \mathrm{Y}, \mathrm{qx}, \mathrm{qy}$ )


Alternatively, you can specify the grid by using a matrix of query points.
querypoints $=[X(:) Y(:)] ' ;$
[qx,qy] = evaluateHeatFlux(results,querypoints);
qx = reshape(qx,size(X));
qy = reshape(qy,size(Y));
figure
quiver ( $\mathrm{X}, \mathrm{Y}, \mathrm{qx}, \mathrm{qy}$ )


## Heat Flux for 3-D Steady-State Thermal Model

For a 3-D steady-state thermal model, evaluate heat flux at the nodal locations and at the points specified by $x, y$, and $z$ coordinates.

Create a thermal model for steady-state analysis.
thermalmodel = createpde('thermal');
Create the following 3-D geometry and include it in the model.

```
importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)
title('Copper block, cm')
axis equal
```


## Copper block, cm



Assuming that this is a copper block, the thermal conductivity of the block is approximately $4 \mathrm{~W} /(\mathrm{cmK})$.
thermalProperties(thermalmodel,'ThermalConductivity', 4);
Apply a constant temperature of 373 K to the left side of the block (face 1 ) and a constant temperature of 573 K to the right side of the block (face 3).
thermalBC(thermalmodel,' Face',1,'Temperature',373);
thermalBC(thermalmodel,'Face',3,'Temperature',573);
Apply a heat flux boundary condition to the bottom of the block.
thermalBC(thermalmodel,' Face',4,'HeatFlux',-20);
Mesh the geometry and solve the problem.
generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)
thermalresults =
SteadyStateThermalResults with properties:

> Temperature:
> XGradients: $[12691 \times 1$ double]
> YGradients: $[12691 \times 1$ double]
> ZGradients: $[12691 \times 1$ double] $]$

## Mesh: [1x1 FEMesh]

Evaluate heat flux at the nodal locations.
[qx,qy,qz] = evaluateHeatFlux(thermalresults);
figure
pdeplot3D(thermalmodel,'FlowData',[qx qy qz])


Create a grid specified by $x, y$, and $z$ coordinates, and evaluate heat flux to the grid.
$[X, Y, Z]=$ meshgrid(1:26:100,1:6:20,1:11:50);
[qx,qy,qz] = evaluateHeatFlux(thermalresults, $X, Y, Z)$;
Reshape the $q x$, qy, and qz vectors, and plot the resulting heat flux.
qx = reshape(qx,size(X));
qy $=$ reshape(qy,size(Y));
qz = reshape(qz,size(Z));
figure
quiver3(X,Y,Z,qx,qy,qz)


Alternatively, you can specify the grid by using a matrix of query points.
querypoints $=[X(:) Y(:) Z(:)] ' ;$
[qx,qy,qz] = evaluateHeatFlux(thermalresults,querypoints);
$q x=r e s h a p e(q x, s i z e(X)) ;$
qy = reshape(qy,size(Y));
qz = reshape(qz,size(Z));
figure
quiver3(X,Y,Z,qx,qy,qz)


## Heat Flux for Transient Thermal Model on Square

Solve a 2-D transient heat transfer problem on a square domain, and compute heat flow across a convective boundary.

Create a thermal model for this problem.
thermalmodel $=$ createpde('thermal','transient');
Create the geometry and include it in the model.
g = @squareg;
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels', 'on')
$x \lim ([-1.21 .2])$
ylim([-1.2 1.2])
axis equal


Assign the following thermal properties: thermal conductivity is $100 \mathrm{~W} /\left(m^{\circ} \mathrm{C}\right)$, mass density is $7800 \mathrm{~kg} / \mathrm{m}^{3}$, and specific heat is $500 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$.
thermalProperties(thermalmodel,'ThermalConductivity',100, ...
'MassDensity',7800, ...
'SpecificHeat',500);
Apply insulated boundary conditions on three edges and the free convection boundary condition on the right edge.
thermalBC(thermalmodel,'Edge',[1 3 4],'HeatFlux',0);
thermalBC(thermalmodel,'Edge',2,...
'ConvectionCoefficient',5000, ...
'AmbientTemperature',25);
Set the initial conditions: uniform room temperature across domain and higher temperature on the top edge.
thermalIC(thermalmodel,25);
thermalIC(thermalmodel,100,'Edge',1);
Generate a mesh and solve the problem using $0: 1000: 200000$ as a vector of times.
generateMesh(thermalmodel);
tlist $=0: 1000: 200000$;
thermalresults = solve(thermalmodel,tlist)

```
thermalresults =
 TransientThermalResults with properties:
 Temperature: [1541x201 double]
 SolutionTimes: [1x201 double]
 XGradients: [1541x201 double]
 YGradients: [1541x201 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Create a grid specified by x and y coordinates, and evaluate heat flux to the grid.

```
v = linspace(-1,1,11);
```

[ $\mathrm{X}, \mathrm{Y}$ ] = meshgrid(v);
[qx,qy] = evaluateHeatFlux(thermalresults,X,Y,1:length(tlist));
Reshape qx and qy, and plot the resulting heat flux for the 25th solution step.

```
tlist(25)
ans = 24000
```

figure
quiver( $\mathrm{X}(:), \mathrm{Y}(:), \mathrm{qx}(:, 25), \mathrm{qy}(:, 25))$;
$x \lim ([-1,1])$
axis equal


## Heat Flux for Transient Thermal Model on Two Squares Made of Different Materials

Solve the heat transfer problem for the following 2-D geometry consisting of a square and a diamond made of different materials. Compute the heat flux, and plot it as a vector field.

Create a thermal model for transient analysis.

```
thermalmodel = createpde('thermal','transient');
```

Create the geometry and include it in the model.

```
SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);
geometryFromEdges(thermalmodel,dl);
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5 4.5])
ylim([-0.5 3.5])
axis equal
```



For the square region, assign the following thermal properties: thermal conductivity is $10 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$, mass density is $2 \mathrm{~kg} / \mathrm{m}^{3}$, and specific heat is $0.1 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$.

```
thermalProperties(thermalmodel,'ThermalConductivity',10, ...
 'MassDensity',2, ...
 'SpecificHeat',0.1, ...
 'Face',1);
```

For the diamond-shaped region, assign the following thermal properties: thermal conductivity is $2 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$, mass density is $1 \mathrm{~kg} / \mathrm{m}^{3}$, and specific heat is $0.1 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$.

```
thermalProperties(thermalmodel,'ThermalConductivity',2, ...
 'MassDensity',1, ...
 'SpecificHeat',0.1, ...
 'Face',2);
```

Assume that the diamond-shaped region is a heat source with the density of $4 \mathrm{~W} / \mathrm{m}^{3}$.
internalHeatSource(thermalmodel,4,'Face',2);
Apply a constant temperature of $0^{\circ} \mathrm{C}$ to the sides of the square plate.

```
thermalBC(thermalmodel,'Temperature',0,'Edge',[1 2 7 8]);
```

Set the initial temperature to $0^{\circ} \mathrm{C}$.

```
thermalIC(thermalmodel,0);
```

Mesh the geometry and solve the problem.
generateMesh(thermalmodel);
The dynamic for this problem is very fast: the temperature reaches steady state in about 0.1 seconds. To capture the interesting part of the dynamics, set the solution time to logspace (-2,-1,10). This gives 10 logarithmically spaced solution times between 0.01 and 0.1 . Solve the equation.

```
tlist = logspace(-2,-1,10);
thermalresults = solve(thermalmodel,tlist);
temp = thermalresults.Temperature;
```

Compute the heat flux density. Plot the solution with isothermal lines using a contour plot, and plot the heat flux vector field using arrows.

```
[qTx,qTy] = evaluateHeatFlux(thermalresults);
figure
pdeplot(thermalmodel,'XYData',temp(:,10),'Contour','on', ...
 'FlowData',[qTx(:,10) qTy(:,10)], ...
 'ColorMap','hot')
```



## Input Arguments

## thermalresults - Solution of thermal problem

SteadyStateThermalResults object | TransientThermalResults object
Solution of a thermal problem, specified as a SteadyStateThermalResults object or a TransientThermalResults object. Create thermalresults using the solve function.
Example: thermalresults = solve(thermalmodel)

## $\mathrm{xq}-\mathrm{x}$-coordinate query points

real array
$x$-coordinate query points, specified as a real array. evaluateHeatFlux evaluates the heat flux at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i) yq(i) zq(i)]. So $\mathrm{xq}, \mathrm{yq}$, and (if present) zq must have the same number of entries.
evaluateHeatFlux converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$. It returns the heat flux in a form of a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use $q x=\operatorname{reshape(qx,size(xq)).~}$
$y$-coordinate query points, specified as a real array. evaluateHeatFlux evaluates the heat flux at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i) yq(i) zq(i)]. So $x q, y q$, and (if present) zq must have the same number of entries.
evaluateHeatFlux converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$. It returns the heat flux in a form of a column vector of the same size. To ensure that the dimensions of the returned solution is consistent with the dimensions of the original query points, use reshape. For example, use qy = reshape(qy,size(yq)).

## Data Types: double

## zq - z-coordinate query points

real array
$z$-coordinate query points, specified as a real array. evaluateHeatFlux evaluates the heat flux at the 3-D coordinate points [xq(i) $y q(i) z q(i)]$. So $x q, y q$, and $z q$ must have the same number of entries.
evaluateHeatFlux converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$. It returns the heat flux in a form of a column vector of the same size. To ensure that the dimensions of the returned solution is consistent with the dimensions of the original query points, use reshape. For example, use qz = reshape(qz,size(zq)).
Data Types: double

## querypoints - Query points

real matrix
Query points, specified as a real matrix with two rows for 2-D geometry or three rows for 3-D geometry. evaluateHeatFlux evaluates the heat flux at the coordinate points querypoints (: i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints $=[0.50 .50 .750 .75 ; 1200.5]$
Data Types: double
iT - Time indices
vector of positive integers
Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT $=1: 5: 21$ specifies every fifth time-step up to 21 .
Data Types: double

## Output Arguments

## qx - x -component of the heat flux

array
$x$-component of the heat flux, returned as an array. The first array dimension represents the node index. The second array dimension represents the time step.

For query points that are outside the geometry, $\mathrm{qx}=\mathrm{NaN}$.
$y$-component of the heat flux, returned as an array. The first array dimension represents the node index. The second array dimension represents the time step.

For query points that are outside the geometry, $q y=N a N$.

## $q z-z$-component of the heat flux array

$z$-component of the heat flux, returned as an array. The first array dimension represents the node index. The second array dimension represents the time step.

For query points that are outside the geometry, $\mathrm{qz}=\mathrm{NaN}$.

## See Also <br> SteadyStateThermalResults | ThermalModel|TransientThermalResults | evaluateHeatRate | evaluateTemperatureGradient |interpolateTemperature

## Introduced in R2017a

## evaluateHeatRate

Package: pde
Evaluate integrated heat flow rate normal to specified boundary

## Syntax

Qn = evaluateHeatRate(thermalresults,RegionType,RegionID)

## Description

Qn = evaluateHeatRate(thermalresults,RegionType,RegionID) returns the integrated heat flow rate normal to the boundary specified by RegionType and RegionID.

## Examples

## Heat Flow From Face of Block

Compute the heat flow rate across a face of the block geometry.
Create a steady-state thermal model.
thermalmodel = createpde('thermal','steadystate');
Import the block geometry.
importGeometry(thermalmodel,'Block.stl'); pdegplot(thermalmodel,'FaceLabels','on', 'FaceAlpha', 0.5)


Specify the thermal conductivity of the block.

```
thermalProperties(thermalmodel,'ThermalConductivity',80);
```

Apply constant temperatures on the opposite ends of the block. All other faces are insulated by default.
thermalBC(thermalmodel,' Face',1,'Temperature',100);
thermalBC(thermalmodel,' Face',3,'Temperature',50);
Generate mesh.
generateMesh(thermalmodel, 'GeometricOrder','linear');
Solve the thermal model.

```
thermalresults = solve(thermalmodel);
```

Compute the heat flow rate across face 3 of the block.
Qn = evaluateHeatRate(thermalresults,'Face', 3 )
Qn = 4.0000e+04

## Convection Cooling of Sphere

Compute the heat flow rate across the surface of the cooling sphere.
Create a thermal model for transient analysis.
thermalmodel = createpde('thermal','transient');
Create a sphere of radius 1, and assign it to the thermal model.
gm = multisphere(1);
thermalmodel.Geometry = gm;
Generate mesh.
generateMesh(thermalmodel, 'Geometric0rder','linear');
Specify thermal properties of the sphere.

```
thermalProperties(thermalmodel,'ThermalConductivity',80, ...
 'SpecificHeat',460, ...
 'MassDensity',7800);
```

Apply a convection boundary condition on the surface of the sphere.

```
thermalBC(thermalmodel,'Face',1,...
 'ConvectionCoefficient',500, ...
 'AmbientTemperature',30);
```

Set the initial temperature.
thermalIC(thermalmodel,800);
Solve the thermal model.

```
tlist = 0:100:2000;
result = solve(thermalmodel,tlist);
```

Compute the heat flow rate across the surface of the sphere over time.

```
Qn = evaluateHeatRate(result,'Face',1);
plot(tlist,Qn)
xlabel('Time')
ylabel('Heat Flow Rate')
```



## Input Arguments

## thermalresults - Solution of thermal problem

SteadyStateThermalResults object
Solution of a thermal problem, specified as a SteadyStateThermalResults object. Create thermalresults using the solve function.
Example: thermalresults = solve(thermalmodel)

## RegionType - Geometric region type

'Face' for 3-D geometry | 'Edge' for 2-D geometry
Geometric region type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Example: Qn = evaluateHeatRate(thermalresults,' Face', 3)
Data Types: char | string

## RegionID - Geometric region ID

positive integer
Geometric region ID, specified as a positive integer. Find the region IDs using the pdegplot function with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example: Qn = evaluateHeatRate(thermalresults,'Face',3)

Data Types: double

## Output Arguments

## Qn - Heat flow rate

real number | vector of real numbers
Heat flow rate, returned as a real number or, for time-dependent results, a vector of real numbers. This value represents the integrated heat flow rate, measured in energy per unit time, flowing in the direction normal to the boundary. Qn is positive if the heat flows out of the domain, and negative if the heat flows into the domain.

See Also<br>SteadyStateThermalResults |ThermalModel|TransientThermalResults | evaluateHeatFlux | evaluateTemperatureGradient |interpolateTemperature

Introduced in R2017a

## evaluatePrincipalStrain

Package: pde
Evaluate principal strain at nodal locations

## Syntax

pStrain = evaluatePrincipalStrain(structuralresults)

## Description

pStrain = evaluatePrincipalStrain(structuralresults) evaluates principal strain at nodal locations using strain values from structural results. For transient and frequency response structural models, evaluatePrincipalStrain evaluates principal strain for all time- or frequencysteps, respectively.

## Examples

## Octahedral Shear Strain for Bimetallic Cable Under Tension

Solve a static structural model representing a bimetallic cable under tension, and compute octahedral shear strain.

Create a structural model.

```
structuralmodel = createpde('structural','static-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)
```



Specify the Young's modulus and Poisson's ratio for each metal.

```
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);
```

Specify that faces 1 and 4 are fixed boundaries.
structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');
Specify the surface traction for faces 2 and 5 .

```
structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 SurfaceTraction',[0;0;100]);
```

Generate a mesh and solve the problem.

```
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)
structuralresults =
 StaticStructuralResults with properties:
 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]
```

Evaluate the principal strain at nodal locations.
pStrain = evaluatePrincipalStrain(structuralresults);
Use the principal strain to evaluate the first and second invariant of strain.
I1 = pStrain.e1 + pStrain.e2 + pStrain.e3;
I2 = pStrain.e1.*pStrain.e2 + pStrain.e2.*pStrain.e3 + pStrain.e3.*pStrain.e1;
tau0ct $=$ sqrt(2*(I1.^2 -3*I2))/3;
pdeplot3D(structuralmodel,'ColorMapData',tau0ct)


## Principal Strain for 3-D Structural Dynamic Problem

Evaluate the principal strain and octahedral shear strain in a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create a geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
```

structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha', 0.5) view(50,20)


Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel,'Hmax',0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity', [0;0;0]);
Solve the model.
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

Evaluate the principal strain in the beam.
pStrain = evaluatePrincipalStrain(structuralresults);
Use the principal strain to evaluate the first and second invariants.
I1 = pStrain.e1 + pStrain.e2 + pStrain.e3;
I2 = pStrain.e1.*pStrain.e2 + pStrain.e2.*pStrain.e3 + pStrain.e3.*pStrain.e1;
Use the stress invariants to compute the octahedral shear strain.
tau0ct $=\operatorname{sqrt}(2 *(I 1 . \wedge 2-3 * I 2)) / 3 ;$
Plot the results.
figure
pdeplot3D(structuralmodel,'ColorMapData',tau0ct(:,end))


## Input Arguments

structuralresults - Solution of structural analysis problem
StaticStructuralResults object | TransientStructuralResults object | FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults, TransientStructuralResults, or FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)

## Output Arguments

## pStrain - Principal strain at nodal locations

structure array
Principal strain at the nodal locations, returned as a structure array.

## See Also

StaticStructuralResults|StructuralModel|evaluatePrincipalStress |
evaluateReaction | interpolateDisplacement | interpolateStrain|interpolateStress | interpolateVonMisesStress

Introduced in R2017b

## evaluatePrincipalStress

Package: pde
Evaluate principal stress at nodal locations

## Syntax

pStress = evaluatePrincipalStress(structuralresults)

## Description

pStress = evaluatePrincipalStress(structural results) evaluates principal stress at nodal locations using stress values from structural results. For transient and frequency response structural models, evaluatePrincipalStress evaluates principal stress for all time- and frequency-steps, respectively.

## Examples

## Octahedral Shear Stress for Bimetallic Cable Under Tension

Solve a static structural model representing a bimetallic cable under tension, and compute octahedral shear stress.

Create a structural model.

```
structuralmodel = createpde('structural','static-solid');
```

Create a geometry and include it in the model. Plot the geometry.

```
gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)
```



Specify the Young's modulus and Poisson's ratio for each metal.

```
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);
```

Specify that faces 1 and 4 are fixed boundaries.
structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');
Specify the surface traction for faces 2 and 5.

```
structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 SurfaceTraction',[0;0;100]);
```

Generate a mesh and solve the problem.

```
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)
structuralresults =
 StaticStructuralResults with properties:
 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]
```

Evaluate the principal stress at nodal locations.
pStress = evaluatePrincipalStress(structuralresults);
Use the principal stress to evaluate the first and second invariant of stress.
I1 = pStress.s1 + pStress.s2 + pStress.s3;
I2 = pStress.s1.*pStress.s2 + pStress.s2.*pStress.s3 + pStress.s3.*pStress.s1;
tau0ct $=$ sqrt(2*(I1.^2 -3*I2))/3;
pdeplot3D(structuralmodel,'ColorMapData',tau0ct)


## Principal Stress for 3-D Structural Dynamic Problem

Evaluate the principal stress and octahedral shear stress in a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create the geometry and include it in the model. Plot the geometry.
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5) view(50,20)


Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,'Face', 3, 'YDisplacement',1E-4, 'Frequency', 50);
Generate a mesh.
generateMesh(structuralmodel,'Hmax',0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity', [0;0;0]);
Solve the model.
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

Evaluate the principal stress in the beam.
pStress = evaluatePrincipalStress(structuralresults);
Use the principal stress to evaluate the first and second invariants.
I1 = pStress.s1 + pStress.s2 + pStress.s3;
I2 = pStress.s1.*pStress.s2 + pStress.s2.*pStress.s3 + pStress.s3.*pStress.s1;
Use the stress invariants to compute the octahedral shear stress.
tau0ct $=\operatorname{sqrt}(2 *(I 1 . \wedge 2-3 * I 2)) / 3 ;$
Plot the results.
figure
pdeplot3D(structuralmodel,'ColorMapData',tau0ct(:,end))


## Input Arguments

structuralresults - Solution of structural analysis problem
StaticStructuralResults object | TransientStructuralResults object | FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults, TransientStructuralResults, or FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)

## Output Arguments

## pStress - Principal stress at nodal locations

structure array
Principal stress at the nodal locations, returned as a structure array.

## See Also

StaticStructuralResults | StructuralModel|evaluatePrincipalStrain | evaluateReaction | interpolateDisplacement | interpolateStrain | interpolateStress | interpolateVonMisesStress

Introduced in R2017b

## evaluateReaction

Package: pde
Evaluate reaction forces on boundary

## Syntax

F = evaluateReaction(structuralresults,RegionType,RegionID)

## Description

F = evaluateReaction(structuralresults,RegionType,RegionID) evaluates reaction forces on the boundary specified by RegionType and RegionID. The function uses the global Cartesian coordinate system. For transient and frequency response structural models, evaluateReaction evaluates reaction forces for all time- and frequency-steps, respectively.

## Examples

## Reaction Forces on Restrained End of Prismatic Bar

Create a static structural model.

```
structuralmodel = createpde('structural','static-solid');
```

Create a cuboid geometry and include it in the model. Plot the geometry.
structuralmodel. Geometry = multicuboid(0.01,0.01,0.05);
pdegplot(structuralmodel,'FaceLabels', 'on','FaceAlpha', 0.5);


Specify the Young's modulus and Poisson's ratio.
structuralProperties(structuralmodel, 'YoungsModulus',210E9, 'PoissonsRatio',0.3);
Fix one end of the bar and apply pressure to the opposite end.

```
structuralBC(structuralmodel,'Face',1,'Constraint','fixed')
ans =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: 1
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "fixed"
 Radius: []
 Reference: []
 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
```

```
structuralBoundaryLoad(structuralmodel,'Face',2,'Pressure',100)
ans =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: 2
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: 100
 TranslationalStiffness: []
```

Generate a mesh and solve the problem.

```
generateMesh(structuralmodel,'Hmax',0.003);
```

structuralresults = solve(structuralmodel);

Compute the reaction forces on the fixed end.

```
reaction = evaluateReaction(structuralresults,'Face',1)
reaction = struct with fields:
 Fx: -1.3620e-06
 Fy: 2.2303e-06
 Fz: 0.0103
```


## Reaction Forces for 3-D Structural Dynamic Problem

Evaluate the reaction forces at the fixed end of a beam subject to harmonic excitation.
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create a geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel,'Hmax',0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel,'Displacement', [0;0;0], 'Velocity', [0;0;0]);
Solve the model.

```
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);
```

Compute the reaction forces on the fixed end.

```
reaction = evaluateReaction(structuralresults,'Face',5)
reaction = struct with fields:
 Fx: [101x1 double]
 Fy: [101x1 double]
 Fz: [101x1 double]
```


## Input Arguments

## structuralresults - Solution of structural analysis problem

StaticStructuralResults object|TransientStructuralResults object|
FrequencyStructuralResults object
Solution of the structural analysis problem, specified as a StaticStructuralResults, TransientStructuralResults, or FrequencyStructuralResults object. Create structural results by using the solve function.
Example: structuralresults = solve(structuralmodel)

## RegionType - Geometric region type

'Edge' for a 2-D model | 'Face' for a 3-D model
Geometric region type, specified as 'Edge' for a 2-D model or 'Face' for a 3-D model.
Example: evaluateReaction(structuralresults, 'Face', 2)
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.
Example: evaluateReaction(structuralresults, 'Face', 2)
Data Types: double

## Output Arguments

## F - Reaction forces

structure array
Reaction forces, returned as a structure array. The array fields represent the integrated reaction forces and surface traction vector, which are computed by using the state of stress on the boundary and the outward normal.

## See Also

StaticStructuralResults|StructuralModel|evaluatePrincipalStrain| evaluatePrincipalStress|interpolateDisplacement|interpolateStrain| interpolateStress|interpolateVonMisesStress

## Introduced in R2017b

## evaluateStrain

Package: pde
Evaluate strain for dynamic structural analysis problem

## Syntax

nodalStrain = evaluateStrain(structuralresults)

## Description

nodalStrain = evaluateStrain(structural results) evaluates strain at nodal locations for all time- or frequency-steps.

## Examples

## Strain for 3-D Structural Dynamic Problem

Evaluate the strain in a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on',''FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,' Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel, 'Hmax', 0.01);
Specify the zero initial displacement and velocity.

```
structuralIC(structuralmodel,'Displacement',[0,0,0],'Velocity',[0,0,0]);
```

Solve the model.

```
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);
```

Evaluate the strain in the beam.

```
strain = evaluateStrain(structuralresults);
```

Plot the normal strain along $x$-direction for the last time-step.
figure
pdeplot3D(structuralmodel, 'ColorMapData',strain.exx(:, end))
title('x-Direction Normal Strain in the Beam of the Last Time-Step')


## Input Arguments

structuralresults - Solution of dynamic structural analysis problem
TransientStructuralResults object|FrequencyStructuralResults object
Solution of a dynamic structural analysis problem, specified as a TransientStructuralResults or FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults $=$ solve(structuralmodel,tlist)

## Output Arguments

## nodalStrain - Strain at nodes

FEStruct object
Strain at the nodes, returned as an FEStruct object with the properties representing the components of strain tensor at nodal locations. Properties of an FEStruct object are read-only.

## See Also

StructuralModel|TransientStructuralResults | evaluatePrincipalStrain| evaluatePrincipalStress | evaluateReaction | evaluateStress | evaluateVonMisesStress|interpolateAcceleration |interpolateDisplacement | interpolateStrain|interpolateStress|interpolateVelocity| interpolateVonMisesStress

## Introduced in R2018a

## evaluateStress

Package: pde
Evaluate stress for dynamic structural analysis problem

## Syntax

nodalStress = evaluateStress(structuralresults)

## Description

nodalStress = evaluateStress(structural results) evaluates stress at nodal locations for all time- or frequency-steps.

## Examples

## Stress for 3-D Structural Dynamic Problem

Evaluate the stress in a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,' Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel, 'Hmax', 0.01);
Specify the zero initial displacement and velocity.

```
structuralIC(structuralmodel,'Displacement',[0,0,0],'Velocity',[0,0,0]);
```

Solve the model.

```
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);
```

Evaluate stress in the beam.

```
stress = evaluateStress(structuralresults);
```

Plot the normal stress along $x$-direction for the last time-step.
figure
pdeplot3D(structuralmodel, 'ColorMapData',stress.sxx(:,end))
title('x-Direction Normal Stress in the Beam of the Last Time-Step')


## Input Arguments

structuralresults - Solution of dynamic structural analysis problem
TransientStructuralResults object|FrequencyStructuralResults object
Solution of a dynamic structural analysis problem, specified as a TransientStructuralResults or FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults $=$ solve(structuralmodel,tlist)

## Output Arguments

## nodalStress - Stress at nodes

FESt ruct object
Stress at the nodes, returned as an FEStruct object with the properties representing the components of a stress tensor at nodal locations. Properties of an FESt ruct object are read-only.

## See Also

StructuralModel|TransientStructuralResults | evaluatePrincipalStrain| evaluatePrincipalStress | evaluateReaction | evaluateStrain| evaluateVonMisesStress |interpolateAcceleration|interpolateDisplacement| interpolateStrain|interpolateStress |interpolateVelocity| interpolateVonMisesStress

## Introduced in R2018a

## evaluateTemperatureGradient

Package: pde
Evaluate temperature gradient of a thermal solution at arbitrary spatial locations

## Syntax

```
[gradTx,gradTy] = evaluateTemperatureGradient(thermalresults,xq,yq)
[gradTx,gradTy,gradTz] = evaluateTemperatureGradient(thermalresults,xq,yq,zq)
[___] = evaluateTemperatureGradient(thermalresults,querypoints)
[___] = evaluateTemperatureGradient(
```

$\qquad$

``` ,iT)
```


## Description

[gradTx, gradTy] = evaluateTemperatureGradient(thermalresults, $x q, y q$ ) returns the interpolated values of temperature gradients of the thermal model solution thermal results at the 2-D points specified in xq and yq . This syntax is valid for both the steady-state and transient thermal models.
[gradTx,gradTy,gradTz] = evaluateTemperatureGradient(thermalresults,xq,yq,zq) returns the interpolated temperature gradients at the 3-D points specified in $x q, y q$, and $z q$. This syntax is valid for both the steady-state and transient thermal models.
[ ___ ] = evaluateTemperatureGradient(thermal results,querypoints) returns the interpolated values of the temperature gradients at the points specified in querypoints. This syntax is valid for both the steady-state and transient thermal models.
[ ___] = evaluateTemperatureGradient (__, iT) returns the interpolated values of the temperature gradients for the time-dependent equation at times iT. Specify iT after the input arguments in any of the previous syntaxes.

The first dimension of gradTx, gradTy, and, in 3-D case, gradTz corresponds to query points. The second dimension corresponds to time-steps iT.

## Examples

## Temperature Gradients for 2-D Steady-State Thermal Model

For a 2-D steady-state thermal model, evaluate temperature gradients at the nodal locations and at the points specified by x and y coordinates.

Create a thermal model for steady-state analysis.

```
thermalmodel = createpde('thermal');
```

Create the geometry and include it in the model.
R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
$\mathrm{g}=\operatorname{decsg}\left(R 1, \mathrm{R}^{\prime} \mathrm{I}^{\prime},\left(\mathrm{'R}^{\prime}\right)\right.$ ');

```
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal
```



Assuming that this geometry represents an iron plate, the thermal conductivity is $79.5 \mathrm{~W} /(\mathrm{mK})$.

```
thermalProperties(thermalmodel,'ThermalConductivity',79.5,'Face',1);
```

Apply a constant temperature of 300 K to the bottom of the plate (edge 3). Also, assume that the top of the plate (edge 1) is insulated, and apply convection on the two sides of the plate (edges 2 and 4).

```
thermalBC(thermalmodel,'Edge',3,'Temperature',300);
thermalBC(thermalmodel,'Edge',1,'HeatFlux',0);
thermalBC(thermalmodel,'Edge',[2 4], ...
 'ConvectionCoefficient',25, ...
 'AmbientTemperature',50);
```

Mesh the geometry and solve the problem.
generateMesh(thermalmodel);
results = solve(thermalmodel)
results =
SteadyStateThermalResults with properties:
Temperature: [1541x1 double]
XGradients: [1541x1 double]

```
YGradients: [1541x1 double]
ZGradients: []
 Mesh: [1x1 FEMesh]
```

The solver finds the temperatures and temperature gradients at the nodal locations. To access these values, use results.Temperature, results.XGradients, and so on. For example, plot the temperature gradients at nodal locations.
figure;
pdeplot(thermalmodel,'FlowData',[results.XGradients results.YGradients]);


Create a grid specified by x and y coordinates, and evaluate temperature gradients to the grid.
v = linspace(-0.5,0.5,11);
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(v);
[gradTx,gradTy] = evaluateTemperatureGradient(results,X,Y);
Reshape the gradTx and gradTy vectors, and plot the resulting temperature gradients.

```
gradTx = reshape(gradTx,size(X));
gradTy = reshape(gradTy,size(Y));
figure
quiver(X,Y,gradTx,gradTy)
```



Alternatively, you can specify the grid by using a matrix of query points.

```
querypoints = [X(:) Y(:)]';
[gradTx,gradTy] = evaluateTemperatureGradient(results,querypoints);
gradTx = reshape(gradTx,size(X));
gradTy = reshape(gradTy,size(Y));
figure
quiver(X,Y,gradTx,gradTy)
```



Temperature Gradients for 3-D Steady-State Thermal Model
For a 3-D steady-state thermal model, evaluate temperature gradients at the nodal locations and at the points specified by $x, y$, and $z$ coordinates.

Create a thermal model for steady-state analysis.
thermalmodel = createpde('thermal');
Create the following 3-D geometry and include it in the model.

```
importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels',' on','FaceAlpha',0.5)
title('Copper block, cm')
axis equal
```


## Copper block, cm



Assuming that this is a copper block, the thermal conductivity of the block is approximately $4 W /(c m K)$.
thermalProperties(thermalmodel,'ThermalConductivity', 4);
Apply a constant temperature of 373 K to the left side of the block (edge 1) and a constant temperature of 573 K to the right side of the block.
thermalBC(thermalmodel,' Face',1,'Temperature',373);
thermalBC(thermalmodel,'Face',3,'Temperature',573);
Apply a heat flux boundary condition to the bottom of the block.
thermalBC(thermalmodel,' Face',4,'HeatFlux',-20);
Mesh the geometry and solve the problem.
generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)
thermalresults =
SteadyStateThermalResults with properties:

> Temperature: [12691x1 double]
> XGradients: $[12691 \times 1$ double]
> YGradients: $[12691 \times 1$ double]
> ZGradients: $[12691 \times 1$ double]

## Mesh: [1x1 FEMesh]

The solver finds the values of temperatures and temperature gradients at the nodal locations. To access these values, use results. Temperature, results. XGradients, and so on.

Create a grid specified by $x, y$, and $z$ coordinates, and evaluate temperature gradients to the grid.
$[X, Y, Z]=$ meshgrid(1:26:100,1:6:20,1:11:50);
[gradTx,gradTy,gradTz] = evaluateTemperatureGradient(thermalresults, $X, Y, Z$ ) ;
Reshape the gradTx, gradTy, and gradTz vectors, and plot the resulting temperature gradients.

```
gradTx = reshape(gradTx,size(X));
gradTy = reshape(gradTy,size(Y));
gradTz = reshape(gradTz,size(Z));
figure
quiver3(X,Y,Z,gradTx, gradTy,gradTz)
axis equal
xlabel('x')
ylabel('y')
zlabel('z')
```



Alternatively, you can specify the grid by using a matrix of query points.
querypoints = [X(:) Y(:) Z(:)]';
[gradTx,gradTy,gradTz] = evaluateTemperatureGradient(thermalresults,querypoints);

```
gradTx = reshape(gradTx,size(X));
gradTy = reshape(gradTy,size(Y));
gradTz = reshape(gradTz,size(Z));
figure
quiver3(X,Y,Z,gradTx,gradTy,gradTz)
axis equal
xlabel('x')
ylabel('y')
zlabel('z')
```



## Temperature Gradients for Transient Thermal Model on Square

Solve a 2-D transient heat transfer problem on a square domain and compute temperature gradients at the convective boundary.

Create a transient thermal model for this problem.

```
thermalmodel = createpde('thermal','transient');
```

Create the geometry and include it in the model.
g = @squareg;
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels', 'on')
$x \lim ([-1.21 .2])$
$y \lim ([-1.21 .2])$
axis equal


Assign the following thermal properties: thermal conductivity is $100 \mathrm{~W} /\left(m^{\circ} \mathrm{C}\right)$, mass density is $7800 \mathrm{~kg} / \mathrm{m}^{3}$, and specific heat is $500 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$.

```
thermalProperties(thermalmodel,'ThermalConductivity',100, ...
 'MassDensity',7800, ...
 'SpecificHeat',500);
```

Apply insulated boundary conditions on three edges and the free convection boundary condition on the right edge.

```
thermalBC(thermalmodel,'Edge',[1 3 4],'HeatFlux',0);
thermalBC(thermalmodel,'Edge',2, ...
 'ConvectionCoefficient',5000, ...
 'AmbientTemperature',25);
```

Set the initial conditions: uniform room temperature across domain and higher temperature on the left edge.
thermalIC(thermalmodel,25);
thermalIC(thermalmodel,100,'Edge',4);
Generate a mesh and solve the problem using $0: 1000: 200000$ as a vector of times.

```
generateMesh(thermalmodel);
tlist = 0:1000:200000;
thermalresults = solve(thermalmodel,tlist)
thermalresults =
 TransientThermalResults with properties:
 Temperature: [1541\times201 double]
 SolutionTimes: [1x201 double]
 XGradients: [1541x201 double]
 YGradients: [1541x201 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Define a line at convection boundary and compute temperature gradients across that line.

```
X = -1:0.1:1;
Y = ones(size(X));
[gradTx,gradTy] = evaluateTemperatureGradient(thermalresults,X,Y,1:length(tlist));
```

Plot the interpolated gradient component gradTx along the x axis for the following values from the time interval tlist.

```
figure
t = [51:50:201];
for i = t
 p(i) = plot(X,gradTx(:,i),'DisplayName', strcat('t=', num2str(tlist(i))));
 hold on
end
legend(p(t))
xlabel('x')
ylabel('gradTx')
```



## Input Arguments

## thermalresults - Solution of thermal problem <br> SteadyStateThermalResults object | TransientThermalResults object

Solution of a thermal problem, specified as a SteadyStateThermalResults object or a TransientThermalResults object. Create thermal results using the solve function.
Example: thermalresults = solve(thermalmodel)

## $\mathrm{xq}-\mathrm{x}$-coordinate query points

real array
$x$-coordinate query points, specified as a real array. evaluateTemperatureGradient evaluates temperature gradient at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i) $y q(i) z q(i)]$. So $x q, y q$, and (if present) $z q$ must have the same number of entries.
evaluateTemperatureGradient converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) zq ( : ). It returns the temperature gradient in a form of a column vector of the same size. To ensure that the dimensions of the returned solution is consistent with the dimensions of the original query points, use reshape. For example, use gradTx $=$ reshape $(\operatorname{gradTx}, \operatorname{size}(x q))$.

## Data Types: double

## $y q-y$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. evaluateTemperatureGradient evaluates the temperature gradient at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i) $y q(i) z q(i)]$. So $x q, y q$, and (if present) $z q$ must have the same number of entries.
evaluateTemperatureGradient converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) zq (: ). It returns the temperature gradient in a form of a column vector of the same size. To ensure that the dimensions of the returned solution is consistent with the dimensions of the original query points, use reshape. For example, use gradTy = reshape(gradTy, size(yq)).

## Data Types: double

## zq - z-coordinate query points

real array
$z$-coordinate query points, specified as a real array. evaluateTemperatureGradient evaluates the temperature gradient at the 3-D coordinate points [xq(i) yq(i) zq(i)]. So xq, yq, and zq must have the same number of entries.
evaluateTemperatureGradient converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) zq (: ). It returns the temperature gradient in a form of a column vector of the same size. To ensure that the dimensions of the returned solution is consistent with the dimensions of the original query points, use reshape. For example, use gradTz = reshape (gradTz, size(zq)).
Data Types: double
querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry, or three rows for 3-D geometry. evaluateTemperatureGradient evaluates the temperature gradient at the coordinate points querypoints (: ,i), so each column of querypoints contains exactly one 2-D or 3-D query point.

Example: For 2-D geometry, querypoints $=$ [0.5 0.5 0.75 0.75; 1200.5$]$
Data Types: double

## iT - Time indices

vector of positive integers
Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT = 1:5:21 specifies every fifth time-step up to 21.
Data Types: double

## Output Arguments

## gradTx - $x$-component of the temperature gradient

## matrix

$x$-component of the temperature gradient, returned as a matrix. For query points that are outside the geometry, gradTx = NaN.

## gradTy $\boldsymbol{y} \boldsymbol{y}$-component of the temperature gradient

matrix
$y$-component of the temperature gradient, returned as a matrix. For query points that are outside the geometry, gradTy = NaN.

## gradTz - z-component of the temperature gradient

matrix
$z$-component of the temperature gradient, returned as a matrix. For query points that are outside the geometry, gradTz = NaN.

See Also<br>SteadyStateThermalResults | ThermalModel |TransientThermalResults | evaluateHeatFlux|evaluateHeatRate |interpolateTemperature

Introduced in R2017a

## evaluateVonMisesStress

Package: pde
Evaluate von Mises stress for dynamic structural analysis problem

## Syntax

vmStress = evaluateVonMisesStress(structuralresults)

## Description

vmStress = evaluateVonMisesStress(structuralresults) evaluates von Mises stress at nodal locations for all time- or frequency-steps.

## Examples

von Mises Stress for 3-D Structural Dynamic Problem
Evaluate the von Mises stress in a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', 'FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,' Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel,'Hmax',0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel,'Displacement', [0;0;0], 'Velocity', [0;0;0]);
Solve the model.

```
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);
```

Evaluate the von Mises stress in the beam.

```
vmStress = evaluateVonMisesStress(structuralresults);
```

Plot the von Mises stress for the last time-step.
figure
pdeplot3D(structuralmodel, 'ColorMapData', vmStress(: , end))
title('von Mises Stress in the Beam for the Last Time-Step')


## Input Arguments

structuralresults - Solution of dynamic structural analysis problem
TransientStructuralResults object|FrequencyStructuralResults object
Solution of a dynamic structural analysis problem, specified as a TransientStructuralResults or FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel,tlist)

## Output Arguments

vmStress - Von Mises Stress at nodes
matrix
Von Mises Stress at the nodes, returned as a matrix. The rows of the matrix contain the values of von Mises stress at nodal locations, while the columns correspond to the time or frequency steps.

## See Also

StructuralModel|TransientStructuralResults | evaluatePrincipalStrain | evaluatePrincipalStress | evaluateReaction | evaluateStrain|evaluateStress | interpolateAcceleration|interpolateDisplacement|interpolateStrain| interpolateStress | interpolateVelocity |interpolateVonMisesStress

Introduced in R2018a

## FEMesh Properties

Mesh object

## Description

An FEMesh object contains a description of the finite element mesh. A PDEModel container has an FEMesh object in its Mesh property.

Generate a mesh for your model using the generateMesh function.

## Properties

## Properties

## Nodes - Mesh nodes

matrix
Mesh nodes, returned as a matrix. Nodes is a D-by-Nn matrix, where $D$ is the number of geometry dimensions ( 2 or 3 ), and $N$ is the number of nodes in the mesh. Each column of Nodes contains the $x, y$, and in 3-D, $z$ coordinates for that mesh node.

2-D meshes have nodes at the mesh triangle corners for linear elements, and at the corners and edge midpoints for 'quadratic' elements. 3-D meshes have nodes at tetrahedral vertices, and the 'quadratic' elements have additional nodes at the center points of each edge. See "Mesh Data" on page 2-153.
Data Types: double

## Elements - Mesh elements

matrix
Mesh elements, returned as an M-by-Ne matrix, where $N e$ is the number of elements in the mesh, and $M$ is:

- 3 for 2-D triangles with ' linear' GeometricOrder
- 6 for 2-D triangles with 'quadratic' GeometricOrder
- 4 for 3-D tetrahedra with ' linear' GeometricOrder
- 10 for 3-D tetrahedra with 'quadratic' GeometricOrder

Each column in Elements contains the indices of the nodes for that mesh element.
Data Types: double

## MaxElementSize - Target maximum mesh element size

positive real number
Target maximum mesh element size, returned as a positive real number. The maximum mesh element size is the length of the longest edge in the mesh. The generateMesh Hmax name-value pair sets the target maximum size at the time it creates the mesh. generateMesh can occasionally create a mesh with some elements that exceed MaxElementSize by a few percent.

Data Types: double

## MinElementSize - Target minimum mesh element size

positive real number
Target minimum mesh element size, returned as a positive real number. The minimum mesh element size is the length of the shortest edge in the mesh. The Hmin name-value pair passed to the generateMesh function sets the target minimum size the at the time it creates the mesh. generateMesh can occasionally create a mesh with some elements that are smaller than MinElementSize.

Data Types: double

## MeshGradation - Mesh growth rate

1.5 (default) | scalar strictly between 1 and 2

Mesh growth rate, returned as a scalar strictly between 1 and 2 .
Data Types: double

## GeometricOrder - Element polynomial order

'linear'| 'quadratic'
Element polynomial order, returned as 'linear' or 'quadratic'. See Elements or "Mesh Data" on page 2-153.

Data Types: double

## See Also

PDEModel|area|findElements|findNodes | generateMesh|meshQuality|meshToPet | volume

## Topics

"Solve Problems Using PDEModel Objects" on page 2-2
"Finite Element Method Basics" on page 1-11
"Mesh Data" on page 2-153

## Introduced in R2015a

## extrude

## Package: pde

Vertically extrude 2-D geometry or specified faces of 3-D geometry

## Syntax

extrude(g, height)
extrude(g, FaceID, height)
h = extrude( $\qquad$ )

## Description

extrude( g , height) creates a 3-D discrete geometry by extruding a 2-D geometry along the $z$-axis by the value of height. You can create a stacked multilayered 3-D discrete geometry by specifying height as a vector of thicknesses of the layers.
extrude ( g , FaceID, height) extrudes specified faces of a 3-D geometry along the direction normal to the faces. Here, FaceID specifies which faces to extrude. You can extrude faces into multiple layers by specifying height as a vector of thicknesses of the layers.

All of the specified faces must be flat and have the same orientation. The extruded volumes must not intersect with each other or with the existing geometry.
$\mathrm{h}=\mathrm{extrude}(\ldots \quad$ ) returns a handle h. If the original geometry is a DiscreteGeometry object, then the function modifies the original geometry, and h a handle to the modified DiscreteGeometry object. If the original geometry is an AnalyticGeometry object, then $h$ is a handle to a new DiscreteGeomet ry object. In this case, the original geometry remains unchanged.

## Examples

## Single Layer Extrusion

Create a 3-D geometry by extruding a 2-D geometry along the $z$-axis.
Create a PDE model.
model = createpde;
Import a 2-D geometry.
g = importGeometry(model,'PlateHolePlanar.stl');
Plot the geometry and display the face labels.
pdegplot(g,'FaceLabels','on')


Create a 3-D geometry by extruding the 2-D geometry along the $z$-axis by 5 units. extrude( $\mathrm{g}, 5$ )
ans =
DiscreteGeometry with properties:
NumCells: 1
NumFaces: 7
NumEdges: 15
NumVertices: 10
Vertices: [10x3 double]

Plot the new geometry and display the face labels.
pdegplot(g,'FaceLabels','on', 'FaceAlpha', 0.5)


## Multiple Layer Extrusion

Create a stacked multilayered 3-D geometry by extruding a 2-D geometry along the $z$-axis.
Create a PDE model.
model = createpde;
Import a geometry.

```
g = importGeometry(model,'PlateHolePlanar.stl')
g =
 DiscreteGeometry with properties:
 NumCells: 0
 NumFaces: 1
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]
```

Plot the geometry and display the face labels.

```
pdegplot(g,'FaceLabels','on')
```



Create a 3-D geometry consisting of three blocks with holes stacked on top of each other. The heights of the blocks are 5,10 , and 20 units.

```
extrude(g,[5,10,20])
```

ans =
DiscreteGeometry with properties:
NumCells: 3
NumFaces: 19
NumEdges: 35
NumVertices: 20
Vertices: [20x3 double]

Plot the new geometry and display the cell labels.

```
pdegplot(g,'CellLabels','on','FaceAlpha',0.5)
```



## Geometry with an Added Vertex

Extrude a 2-D geometry that has a vertex added by the addVertex function. The layers of the extruded geometry all have a corresponding vertex, but there are no edges between these vertices.

Create a PDE model.
model = createpde;
Import a geometry.
$\mathrm{g}=$ importGeometry(model,'PlateHolePlanar.stl');
Plot the geometry and display the vertex labels.
pdegplot(g,'VertexLabels','on')


Add a new vertex on the right edge.
addVertex(g,'Coordinates',[10 12]);
Plot the new geometry and display the vertex labels.
pdegplot(g,'FaceLabels','on','VertexLabels','on')


Create a 3-D geometry consisting of three blocks with holes stacked on top of each other. The heights of the blocks are 5,10 , and 20 units.

```
extrude(g,[5,10,20])
ans =
 DiscreteGeometry with properties:
 NumCells: 3
 NumFaces: 19
 NumEdges: 35
 NumVertices: 24
 Vertices: [24\times3 double]
```

Plot the new geometry and display the vertex labels. The extrude function replicates the added vertex V6 into three new vertices: V12, V18, and V24. It does not create edges between these vertices.

```
pdegplot(g,'VertexLabels','on','FaceAlpha',0.5)
```



## Geometry with an Added Face

Extrude a 2-D geometry that has a face added by the addFace function.
Create a PDE model.
model = createpde;
Import a geometry.
g = importGeometry(model,'PlateHolePlanar.stl');
Plot the geometry and display the face and edge labels.
pdegplot(g,'FaceLabels','on','EdgeLabels','on')


Fill the hole in the center by adding a face.

```
addFace(g,5)
ans =
 DiscreteGeometry with properties:
 NumCells: 0
 NumFaces: 2
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]
```

Plot the modified geometry.

```
pdegplot(g,'FaceLabels','on')
```



Create a 3-D geometry by extruding the 2-D geometry along the $z$-axis by 2 units. extrude( $\mathrm{g}, 2$ )
ans =
DiscreteGeometry with properties:
NumCells: 2
NumFaces: 9
NumEdges: 15
NumVertices: 10
Vertices: [10x3 double]

Plot the new geometry and display the cell labels.
pdegplot(g,'CellLabels','on','FaceAlpha', 0.5)


## Faces of 3-D Geometry

Extrude specified faces of a 3-D geometry.
Import the geometry and plot it with the face and edge labels.
g = importGeometry('PlateHolePlanar.stl');
pdegplot(g,'FaceLabels','on','EdgeLabels','on')


Fill the hole in the center by adding a face. Plot the modified geometry.
addFace (g,5) ;
pdegplot(g,'FaceLabels','on')


Create a 3-D geometry by extruding the 2-D geometry along the $z$-axis by 2 units. extrude (g,2);

Plot the new geometry with the cell and face labels.

```
pdegplot(g,'CellLabels','on','Facelabels','on','FaceAlpha',0.5)
```



Now, extrude the center face of the geometry by 5 units.
extrude (g,4,5);
Plot the resulting geometry with the cell labels.
pdegplot(g,'CellLabels','on','FaceAlpha', 0.5)


Now, call extrude again, and this time specify a vector of heights. The function extrudes all specified faces by each of the specified heights, which creates multiple layers.
extrude(g,[1 2],[3 4]);
pdegplot(g,'CellLabels','on','FaceAlpha', 0.5)


## Input Arguments

## g - Geometry

DiscreteGeometry object | AnalyticGeometry object
Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.
height - Cell heights
positive real number | vector of positive real numbers
Cell heights, specified as a positive real number or a vector of positive real numbers.
If height is a vector and $g$ is a 2-D geometry, then height (i) specifies the height of the ith layer of a multilayered (stacked) 3-D geometry. Each layer constitutes a new cell.

If $g$ is a 3-D geometry, the function extrudes all specified faces into several layers, with height (i) specifying the height of the ith layer.

Example: extrude(g,5.5)

## FaceID - Faces to extrude in 3-D geometry

positive real number | vector of positive real numbers
Faces to extrude in 3-D geometry, specified as a positive real number or a vector of positive real numbers. If height is a vector, then the function extrudes all specified faces into several layers, same as it does for 2-D geometries.

## Output Arguments

## h - Resulting geometry

handle
Resulting geometry, returned as a handle. If the original geometry g is a DiscreteGeometry object, then h is a handle to the modified DiscreteGeometry object g . If g is an AnalyticGeometry object, then h is a handle to a new DiscreteGeometry object. In this case, the original geometry g remains unchanged.

## Tips

- extrude modifies a geometry, but it does not modify the corresponding mesh. After modifying a geometry, regenerate the mesh to ensure a proper mesh association with the new geometry.
- If a 2-D geometry has new vertices added by using the addVertex function, extrude replicates the new vertices on each new layer of the extruded 3-D geometry, but it does not connect these vertices by edges.
- If g is an AnalyticGeometry object, and you want to replace it with the extruded discrete 3-D geometry, assign the output to the original geometry, for example, $g=$ extrude $(g, 20)$.


## See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | addFace | addVertex | generateMesh | importGeometry|multicuboid|multicylinder|multisphere | pdegplot

Introduced in R2020b

## faceEdges

Find edges attached to specified faces

## Syntax

EdgeID = faceEdges(g,RegionID)
EdgeID $=$ faceEdges(g,RegionID,FilterType)

## Description

EdgeID = faceEdges( g ,RegionID) finds edges attached to the faces with ID numbers listed in RegionID.

EdgeID = faceEdges( g, RegionID,FilterType) returns internal, external, or all edges attached to the faces with ID numbers listed in RegionID. This syntax is valid for 3-D geometries only.

## Examples

## Edges Attached to Specified Faces of 3-D Geometry

Find edges attached to the top and bottom faces of a block.
Create a block geometry.

```
gm = multicuboid(3,2,1)
gm =
 DiscreteGeometry with properties:
```

        NumCells: 1
        NumFaces: 6
        NumEdges: 12
    NumVertices: 8
        Vertices: [8x3 double]
    Plot the geometry with the face labels.
pdegplot(gm,'FaceLabels','on',' FaceAlpha',0.2)


Find edges attached to faces 1 and 2.

```
edgeIDs = faceEdges(gm,[1 2])
edgeIDs = 1×8
```

1	2	3	4	5	6	7	8

Plot the geometry with the edge labels.
figure
pdegplot(gm,'EdgeLabels','on','FaceAlpha', 0.2)


## Edges Attached to Specified Faces of 2-D Geometry

Find edges attached to two faces of the L-shaped membrane.
Create a model and include this geometry. The geometry of the L-shaped membrane is described in the file lshapeg.

```
model = createpde();
gm = geometryFromEdges(model,@lshapeg)
gm =
 AnalyticGeometry with properties:
 NumCells: 0
 NumFaces: 3
 NumEdges: 10
 NumVertices: 8
 Vertices: [8x2 double]
```

Plot the geometry with the face labels.

```
pdegplot(gm,'FaceLabels','on')
```



Find edges attached to faces 1 and 2.

```
edgeIDs = faceEdges(gm,[1 2])
```

edgeIDs $=1 \times 8$

1	2	3	6	7	8	9	10

Plot the geometry with the edge labels.
figure
pdegplot(gm,'EdgeLabels','on')


## Edges Attached to Internal and External Faces

Find edges attached to the side face of the inner cuboid in a geometry consisting of two nested cuboids.

Create a geometry that consists of two nested cuboids of the same height.

```
gm = multicuboid([2 5],[4 10],3)
gm =
 DiscreteGeometry with properties:
```

        NumCells: 2
        NumFaces: 12
        NumEdges: 24
        NumVertices: 16
            Vertices: [16x3 double]
    Plot the geometry with the face labels.

```
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)
```



Find all edges attached to the side face of the inner cuboid.

```
edgeIDs = faceEdges(gm,6)
edgeIDs = 1×4
 1 5 10}1
```

From all edges attached to that face, return the edges attached to only the internal faces. Internal faces are faces shared between multiple cells.

```
edgeIDs = faceEdges(gm,6,'internal')
edgeIDs = 1\times2
 10 12
```

From all edges attached to that face, return the edges attached to the external faces.

```
edgeIDs = faceEdges(gm,6,'external')
edgeIDs = 1\times2
```

15

Plot the geometry with the edge labels.

```
pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.2)
```



## Input Arguments

## g - Geometry <br> DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

## RegionID - Face ID

positive number | vector of positive numbers
Face ID, specified as a positive number or a vector of positive numbers. Each number represents a face ID.

## FilterType - Type of edges to return

'all' (default)|'internal'| 'external'
Type of edges to return, specified as 'internal', 'external', or 'all'. Depending on this argument, faceEdges returns these types of faces for a 3-D geometry:

- 'internal' - Edges attached to only internal faces. Internal faces are faces shared between multiple cells.
- 'external ' - Edges attached to only external faces. External faces are faces not shared between multiple cells.
- 'all' - All edges attached to the specified cells.


## Output Arguments

## EdgeID - IDs of edges attached to specified faces

positive number | vector of positive numbers
IDs of edges attached to the specified faces, returned as a positive number or a vector of positive numbers.

## See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | cellEdges | cellFaces | facesAttachedToEdges | nearestEdge | nearestFace

Introduced in R2021a

## facesAttachedToEdges

Find faces attached to specified edges

## Syntax

```
FaceID = facesAttachedToEdges(g,RegionID)
FaceID = facesAttachedToEdges(g,RegionID,FilterType)
```


## Description

FaceID = facesAttachedToEdges(g,RegionID) finds faces attached to the edges with ID numbers listed in RegionID.

FaceID = facesAttachedToEdges(g,RegionID,FilterType) returns internal, external, or all faces attached to the edges with ID numbers listed in RegionID. This syntax is valid for 3-D geometries only.

## Examples

## Faces Attached to Specified Edges of 3-D Geometry

Find faces attached to particular edges of a block.
Create a block geometry.
gm = multicuboid (3, 2, 1)
gm $=$
DiscreteGeometry with properties:
NumCells: 1
NumFaces: 6
NumEdges: 12
NumVertices: 8
Vertices: [8x3 double]

Plot the geometry with the edge labels.

```
pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.2)
```



Find faces attached to edges 1,2 , and 5 .

```
faceIDs = facesAttachedToEdges(gm,[1 2 5])
faceIDs = 1×4
```

    \(\begin{array}{llll}1 & 2 & 5 & 6\end{array}\)
    Plot the geometry with the face labels.
figure
pdegplot(gm,'FaceLabels','on','FaceAlpha', 0.2)


## Faces Attached to Specified Edges of 2-D Geometry

Find faces attached to particular edges of the L-shaped membrane.
Create a model and include this geometry. The geometry of the L-shaped membrane is described in the file lshapeg.

```
model = createpde();
gm = geometryFromEdges(model,@lshapeg)
gm =
 AnalyticGeometry with properties:
 NumCells: 0
 NumFaces: 3
 NumEdges: 10
 NumVertices: 8
 Vertices: [8x2 double]
```

Plot the geometry with the edge labels.

```
pdegplot(gm,'EdgeLabels','on')
```



Find faces attached to edges 7 and 10.

```
faceIDs = facesAttachedToEdges(gm,[7 10])
faceIDs = 1×2
 2
```

Plot the geometry with the face labels.

```
figure
```

pdegplot(gm,'FaceLabels','on')


## Internal and External Faces Attached to Specified Edges

Find internal and external faces attached to the edges of the inner cuboid in a geometry consisting of two nested cuboids.

Create a geometry that consists of two nested cuboids of the same height.

```
gm = multicuboid([2 5],[4 10],3)
gm =
 DiscreteGeometry with properties:
```

        NumCells: 2
        NumFaces: 12
        NumEdges: 24
        NumVertices: 16
            Vertices: [16x3 double]
    Plot the geometry with the edge labels.

```
pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.2)
```



Find all faces attached to the top edges of the inner cuboid.

```
facesAttachedToEdges(gm,[5:8])
```

ans $=1 \times 6$
$\begin{array}{llllll}2 & 3 & 4 & 5 & 6 & 12\end{array}$

Find only the internal faces attached to the top edges of the inner cuboid. Internal faces are faces shared between multiple cells.

```
facesAttachedToEdges(gm,[5:8],'internal')
ans = 1\times4
```

    \(\begin{array}{llll}3 & 4 & 5 & 6\end{array}\)
    Find only the external faces attached to the top edges of the inner cuboid.

```
facesAttachedToEdges(gm,[5:8],'external')
ans = 1\times2
 2 12
```

Plot the geometry with the face labels.
figure

```
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)
```



## Input Arguments

g - Geometry
DiscreteGeometry object | AnalyticGeometry object
Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

## RegionID - Edge ID

positive number | vector of positive numbers
Edge ID, specified as a positive number or a vector of positive numbers. Each number represents an edge ID.

## FilterType - Type of faces to return

'all' (default)|'internal'|'external'
Type of faces to return, specified as 'internal', 'external', or 'all'. Depending on this argument, facesAttachedToEdges returns these types of faces for a 3-D geometry:

- 'internal ' - Internal faces, that is, faces shared between multiple cells.
- 'external' - External faces, that is, faces not shared between multiple cells.
- 'all' - All faces attached to the specified cells.


## Output Arguments

## FaceID - IDs of faces attached to specified edges

positive number | vector of positive numbers
IDs of faces attached to the specified edges, returned as a positive number or a vector of positive numbers.

## See Also

AnalyticGeometry Properties \| DiscreteGeometry Properties \| cellEdges | cellFaces | faceEdges | nearestEdge| nearestFace

Introduced in R2021a

## findBodyLoad

Package: pde
Find body load assigned to geometric region

## Syntax

```
bl = findBodyLoad(structuralmodel.BodyLoads,RegionType,RegionID)
```


## Description

bl = findBodyLoad(structuralmodel.BodyLoads,RegionType,RegionID) returns the body load assigned to a geometric region of the structural model. A body load must use units consistent with the geometry and other model attributes.

## Examples

## Find Body Load

Create a structural model.

```
structuralModel = createpde('structural','static-solid');
```

Create and plot the geometry.

```
gm = multicuboid(0.5,0.1,0.1);
structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceAlpha',0.5)
```



Specify the Young's modulus, Poisson's ratio, and mass density. Notice that the mass density value is required for modeling gravitational effects.

```
structuralProperties(structuralModel,'YoungsModulus',210E3, ...
 'PoissonsRatio',0.3,...
 'MassDensity',2.7E-6);
```

Specify the gravity load on the beam.
structuralBodyLoad(structuralModel,'GravitationalAcceleration',[0;0;-9.8]);
Check the body load specification for cell 1.

```
findBodyLoad(structuralModel.BodyLoads,'Cell',1)
ans =
 BodyLoadAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 GravitationalAcceleration: [3x1 double]
 AngularVelocity: []
 Temperature: []
 TimeStep: []
```


## Input Arguments

## structuralmodel. BodyLoads - Body loads

BodyLoads property of StructuralModel object
Body loads of the model, specified as a BodyLoads property of a StructuralModel object.

## RegionType - Geometric region type

'Face' for a 2-D model | 'Cell' for a 3-D model
Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Example: findBodyLoad (structuralmodel. BodyLoads, 'Cell' , 1)
Data Types: char|string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.

Example: findBodyLoad(structuralmodel.BodyLoads, 'Cell' , 1)
Data Types: double

## Output Arguments

## bl - Body load assignment

BodyLoadAssignment object
Body load assignment, returned as a BodyLoadAssignment object. For details, see BodyLoadAssignment Properties.

See Also<br>structuralBodyLoad<br>Introduced in R2017b

## findBoundaryConditions

Package: pde
Find boundary condition assignment for a geometric region

## Syntax

BCregion = findBoundaryConditions(BCs,RegionType,RegionID)

## Description

BC region = findBoundaryConditions(BCs,RegionType,RegionID) returns boundary condition BC region assigned to the specified region.

## Examples

## Find Boundary Conditions for Particular Regions

Create a PDE model and import a simple block geometry. Plot the geometry displaying the face labels.

```
model = createpde(3);
```

importGeometry(model,'Block.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha', 0.5)


Set zero Dirichlet conditions on faces 1 and 2 for all equations.

```
applyBoundaryCondition(model,'dirichlet','Face',1:2,'u',[0,0,0]);
```

On face 3, set the Neumann boundary condition for equation 1 and Dirichlet boundary condition for equations 2 and 3 .
$\mathrm{h}=[000 ; 0$ 1 $0 ; 0$ 0 1$]$;
$r=[0 ; 3 ; 3] ;$
$\mathrm{q}=[1000 ; 0$ 0 0;0 0 0];
$\mathrm{g}=[10 ; 0 ; 0]$;
applyBoundaryCondition(model,'mixed','Face', $\left.3,{ }^{\prime} h^{\prime}, h, ' r^{\prime}, r, ' g ', g, ' q ', q\right)$;
Set Neumann boundary conditions with opposite signs on faces 5 and 6 for all equations.

```
applyBoundaryCondition(model,'neumann','Face',4:5,'g',[1;1;1]);
applyBoundaryCondition(model,'neumann','Face',6,'g',[-1;-1;-1]);
```

Check the boundary condition specification on face 1.

```
findBoundaryConditions(model.BoundaryConditions,' Face',1)
ans =
 BoundaryCondition with properties:
 BCType: 'dirichlet'
 RegionType: 'Face'
 RegionID: [1 2]
```

```
 r: []
 h: []
 g: []
 q: []
 u: [0 0 0]
EquationIndex: []
 Vectorized: 'off'
```

Check the boundary condition specification on face 3.
findBoundaryConditions(model.BoundaryConditions, 'Face', 3)
ans $=$
BoundaryCondition with properties:

```
 BCType: 'mixed'
 RegionType: 'Face'
 RegionID: 3
 r: [3x1 double]
 h: [3x3 double]
 g: [3x1 double]
 q: [3x3 double]
 u: []
 EquationIndex: []
 Vectorized: 'off'
```

Check the boundary condition specification on face 5 .

```
findBoundaryConditions(model.BoundaryConditions,'Face',5)
ans =
 BoundaryCondition with properties:
 BCType: 'neumann'
 RegionType: 'Face'
 RegionID: [4 5]
 r: []
 h: []
 g: [3x1 double]
 q: []
 u: []
 EquationIndex: []
 Vectorized: 'off'
```


## Input Arguments

## BCs - Boundary conditions of a PDE model

BoundaryConditions property of a PDE model
Boundary conditions of a PDE model, specified as the BoundaryConditions property of PDEModel. Example: model. BoundaryConditions

## RegionType - Geometric region type

'Face' for 3-D geometry | 'Edge' for 2-D geometry

Geometric region type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Example: findBoundaryConditions(model.BoundaryConditions, 'Face' , 3)
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example: findBoundaryConditions(model.BoundaryConditions, 'Face', 3)
Data Types: double

## Output Arguments

## BCregion - Boundary condition for a particular region

BoundaryCondition object
Boundary condition for a particular region, returned as a BoundaryCondition object.

## See Also

BoundaryCondition | applyBoundaryCondition

## Topics

"Solve Problems Using PDEModel Objects" on page 2-2

## Introduced in R2016b

## findCoefficients

Package: pde
Locate active PDE coefficients

## Syntax

CA = findCoefficients(coeffs,RegionType,RegionID)

## Description

CA = findCoefficients(coeffs, RegionType,RegionID) returns the active coefficient assignment CA for the coefficients in the specified region.

## Examples

Find the Active Coefficients for a Region
Create a PDE model that has a few subdomains.

```
model = createpde();
```

geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal


Set coefficients on each pair of regions.

```
specifyCoefficients(model,'m',0,'d',0,'c',12,'a',0,'f',1,'Face',[1,2]);
specifyCoefficients(model,'m',0,'d',0,'c',13,'a',0,'f',2,'Face',[1,3]);
specifyCoefficients(model,'m',0,'d',0,'c',23,'a',0,'f',3,'Face',[2,3]);
```

Check the coefficient specification for region 1.

```
coeffs = model.EquationCoefficients;
ca = findCoefficients(coeffs,'Face',1)
ca =
 CoefficientAssignment with properties:
 RegionType: 'face'
 RegionID: [1 3]
 m: 0
 d: 0
 c: 13
 a: 0
 f: 2
```


## Input Arguments

```
coeffs - Model coefficients
```

EquationCoefficients property of a PDE model

Model coefficients, specified as the EquationCoefficients property of a PDE model. Coefficients can be complex numbers.

Example: model. EquationCoefficients

## RegionType - Geometric region type

'Face' for a 2-D model | 'Cell' for a 3-D model
Geometric region type, specified as 'Face' for a 2-D model, or 'Cell' for a 3-D model.
Example: ca = findCoefficients(coeffs,'Face',[1,3])
Data Types: char | string

## RegionID - Region ID

vector of positive integers
Region ID, specified as a vector of positive integers. View the subdomain labels for a 2-D model using pdegplot (model, 'FaceLabels', 'on'). Currently, there are no subdomains for 3-D models, so the only acceptable value for a 3-D model is 1 .

Example: ca = findCoefficients(coeffs,'Face',[1,3])
Data Types: double

## Output Arguments

## CA - Coefficient assignment

CoefficientAssignment object
Coefficient assignment, returned as a CoefficientAssignment object.

## See Also

CoefficientAssignment | specifyCoefficients

## Topics

"View, Edit, and Delete PDE Coefficients" on page 2-95
"Solve Problems Using PDEModel Objects" on page 2-2

## Introduced in R2016a

## findElectromagneticBC

Package: pde
Find electromagnetic boundary conditions assigned to geometric region

## Syntax

emBC = findElectromagneticBC(emagmodel.BoundaryConditions,RegionType, RegionID)

## Description

emBC = findElectromagneticBC(emagmodel.BoundaryConditions,RegionType, RegionID) returns the voltage or magnetic potential assigned to the specified region of the specified model.

## Examples

Find Electromagnetic Boundary Conditions for Edges of 2-D Geometry
Create an electromagnetic model for a magnetostatic analysis.

```
emagmodel = createpde('electromagnetic','magnetostatic');
```

Include the L-shaped membrane geometry in the model and plot it with the face labels.

```
geometryFromEdges(emagmodel,@lshapeg);
pdegplot(emagmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal
```



Assign magnetic potential values to edges 1 and 2.
electromagneticBC(emagmodel,'Edge',1,'MagneticPotential',1); electromagneticBC(emagmodel,'Edge',2,'MagneticPotential',0);

Check the boundary condition specifications for edge 1 and 2.

```
emBC = findElectromagneticBC(emagmodel.BoundaryConditions,'Edge',1:2);
emBC(1)
ans =
 ElectromagneticBCAssignment with properties:
 RegionType: 'Edge'
 RegionID: 1
 Voltage: []
 MagneticPotential: 1
 Vectorized: 'off'
emBC(2)
ans =
 ElectromagneticBCAssignment with properties:
 RegionType: 'Edge'
 RegionID: 2
 Voltage: []
```

MagneticPotential: 0
Vectorized: 'off'

## Input Arguments

## emagmodel.BoundaryConditions - Boundary conditions of electromagnetic model BoundaryConditions property

Boundary conditions of an electromagnetic model, specified as the BoundaryConditions property of the model.
Example: findElectromagneticBC(emagmodel.BoundaryConditions, 'Edge', 1)

## RegionType - Geometric region type

'Edge' for a 2-D model
Geometric region type, specified as 'Edge '.
Data Types: char|string

## RegionID - Edge ID

vector of positive integers
Edge ID, specified as a vector of positive integers. Find edge IDs by using pdegplot with the 'EdgeLabels ' name-value argument set to 'on'.

Data Types: double

## Output Arguments

emBC - Electromagnetic boundary condition assignment
ElectromagneticBCAssignment object
Electromagnetic boundary condition assignment, returned as an ElectromagneticBCAssignment object. For more information, see ElectromagneticBCAssignment Properties.

## See Also <br> ElectromagneticBCAssignment Properties | ElectromagneticModel | electromagneticBC <br> Introduced in R2021a

## findElectromagneticProperties

Package: pde
Find electromagnetic material properties assigned to geometric region

## Syntax

emProperties = findElectromagneticProperties(emagmodel.MaterialProperties, RegionType, RegionID)

## Description

emProperties = findElectromagneticProperties(emagmodel.MaterialProperties, RegionType, RegionID) returns the electromagnetic material properties assigned to the specified region of the specified model.

## Examples

## Find Relative Permittivity for Faces of 2-D Geometry

Create an electromagnetic model for an electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Include the L-shaped membrane geometry in the model and plot it with the face labels.

```
geometryFromEdges(emagmodel,@lshapeg);
pdegplot(emagmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal
```



Specify the vacuum permittivity value in the SI system of units.

```
emagmodel.VacuumPermittivity = 8.8541878128E-12;
```

Specify a different value of relative permittivity for each face.
electromagneticProperties(emagmodel,'RelativePermittivity',2.5,'Face',1); electromagneticProperties(emagmodel, 'RelativePermittivity',2.25, 'Face', 2); electromagneticProperties(emagmodel,'RelativePermittivity',1,'Face',3);

Check the electromagnetic material properties specification for each face.

```
findElectromagneticProperties(emagmodel.MaterialProperties,'Face',1)
ans =
 ElectromagneticMaterialAssignment with properties:
 RegionType: 'Face'
 RegionID: 1
 RelativePermittivity: 2.5000
 RelativePermeability: []
findElectromagneticProperties(emagmodel.MaterialProperties,'Face', 2)
ans =
 ElectromagneticMaterialAssignment with properties:
```

```
 RegionType: 'Face'
 RegionID: 2
 RelativePermittivity: 2.2500
 RelativePermeability: []
findElectromagneticProperties(emagmodel.MaterialProperties,'Face',3)
ans =
 ElectromagneticMaterialAssignment with properties:
 RegionType: 'Face'
 RegionID: 3
RelativePermittivity: 1
RelativePermeability: []
```


## Input Arguments

## emagmodel.MaterialProperties - Material properties of electromagnetic model <br> MaterialProperties property

Material properties of an electromagnetic model, specified as the MaterialProperties property of the model.

## Example: emagmodel.MaterialProperties

RegionType - Geometric region type
' Face' for a 2-D model
Geometric region type, specified as 'Face '.
Data Types: char | string

## RegionID - Face ID

vector of positive integers
Face ID, specified as a vector of positive integers. Find face IDs by using pdegplot.
Data Types: double

## Output Arguments

emProperties - Material properties assignment
ElectromagneticMaterialAssignment object
Material properties assignment, returned as an ElectromagneticMaterialAssignment object. For more information, see ElectromagneticMaterialAssignment Properties.

## See Also <br> ElectromagneticMaterialAssignment Properties | Elect romagneticModel| <br> electromagneticProperties

Introduced in R2021a

## findElectromagneticSource

Package: pde
Find electromagnetic source assigned to geometric region

## Syntax

emSource = findElectromagneticSource(emagmodel.Sources,RegionType,RegionID)

## Description

emSource = findElectromagneticSource(emagmodel.Sources,RegionType,RegionID) returns the change or current density emSource assigned to the specified region of the specified model.

## Examples

## Find Current Density for Faces of 2-D Geometry

Create an electromagnetic model for magnetostatic analysis.

```
emagmodel = createpde('electromagnetic','magnetostatic');
```

Include the L-shaped membrane geometry in the model and plot it with the face labels.

```
geometryFromEdges(emagmodel,@lshapeg);
pdegplot(emagmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal
```



Specify a different current density for each face.
electromagneticSource(emagmodel,' Face',1,'CurrentDensity',10); electromagneticSource(emagmodel,'Face', 2,'CurrentDensity', 20); electromagneticSource(emagmodel,'Face',3,'CurrentDensity',30);

Check the electromagnetic source specification for each face.

```
findElectromagneticSource(emagmodel.Sources,'Face',1)
ans =
 ElectromagneticSourceAssignment with properties:
 RegionType: 'Face'
 RegionID: 1
 ChargeDensity: []
 CurrentDensity: 10
findElectromagneticSource(emagmodel.Sources,'Face', 2)
ans =
 ElectromagneticSourceAssignment with properties:
 RegionType: 'Face'
 RegionID: 2
 ChargeDensity: []
 CurrentDensity: 20
```

```
findElectromagneticSource(emagmodel.Sources,'Face',3)
ans =
 ElectromagneticSourceAssignment with properties:
 RegionType: 'Face'
 RegionID: 3
 ChargeDensity: []
 CurrentDensity: 30
```


## Input Arguments

## emagmodel. Sources - Source in electromagnetic model <br> Sources property

Source in an electromagnetic model, specified as the Sources property of the model.
Example: findElectromagneticSource(emagmodel. Sources, 'Face', 1)

## RegionType - Geometric region type

' Face' for a 2-D model
Geometric region type, specified as 'Face '.
Data Types: char | string
RegionID - Face ID
vector of positive integers
Face ID, specified as a vector of positive integers. Find face IDs by using pdegplot.
Data Types: double

## Output Arguments

## emSource - Electromagnetic source assignment

ElectromagneticSourceAssignment object
Electromagnetic source assignment, returned as an ElectromagneticSourceAssignment object. For more information, see ElectromagneticSourceAssignment Properties.

## See Also

ElectromagneticModel | ElectromagneticSourceAssignment Properties |
electromagneticSource
Introduced in R2021a

## findElements

Package: pde
Find mesh elements in specified region

## Syntax

```
elemIDs = findElements(mesh,'region',RegionType,RegionID)
elemIDs = findElements(mesh,'box',xlim,ylim)
elemIDs = findElements(mesh,'box',xlim,ylim,zlim)
elemIDs = findElements(mesh,'radius',center,radius)
elemIDs = findElements(mesh,'attached',nodeID)
```


## Description

elemIDs = findElements(mesh,' region',RegionType,RegionID) returns the IDs of the mesh elements that belong to the specified geometric region.
elemIDs $=$ findElements(mesh,'box', xlim,ylim) returns the IDs of the mesh elements within a bounding box specified by xlim and y lim. Use this syntax for 2-D meshes.
elemIDs = findElements(mesh,'box',xlim,ylim,zlim) returns the IDs of the mesh elements located within a bounding box specified by $x$ lim, $y l i m$, and $z l i m$. Use this syntax for 3-D meshes.
elemIDs = findElements(mesh,'radius',center,radius) returns the IDs of mesh elements located within a circle (for 2-D meshes) or sphere (for 3-D meshes) specified by center and radius.
elemIDs = findElements(mesh,' attached', nodeID) returns the IDs of the mesh elements attached to the specified node. Here, nodeID is the ID of a corner node. This syntax ignores the IDs of the nodes located in the middle of element edges.

For multiple nodes, specify nodeID as a vector.

## Examples

## Elements Associated with Particular Face

Find the elements associated with a geometric region.
Create a PDE model.
model $=$ createpde;
Include the geometry of the built-in function lshapeg. Plot the geometry.

```
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on','EdgeLabels','on')
```



Generate a mesh.
mesh = generateMesh(model,'Hmax',0.5);
Find the elements associated with face 2.
Ef2 = findElements(mesh,'region','Face', 2);
Highlight these elements in green on the mesh plot.
figure
pdemesh(mesh,'ElementLabels','on')
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Ef2),'EdgeColor','green')


## Elements Within Bounding Box

Find the elements located within a specified box.
Create a PDE model.
model = createpde;
Import and plot the geometry.

```
importGeometry(model,'PlateHolePlanar.stl');
```

pdegplot(model)


Generate a mesh.

```
mesh = generateMesh(model,'Hmax',2,'Hmin',0.4)
mesh =
 FEMesh with properties:
 Nodes: [2\times386 double]
 Elements: [6x172 double]
 MaxElementSize: 2
 MinElementSize: 0.4000
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'
```

Find the elements located within the following box.

```
Eb = findElements(mesh,'box',[5 10],[10 20]);
```

Highlight these elements in green on the mesh plot.

```
figure
pdemesh(model)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Eb),'EdgeColor','green')
```



## Elements Within Bounding Disk

Find the elements located within a specified disk.
Create a PDE model.
model = createpde;
Import and plot the geometry.
importGeometry(model,'PlateHolePlanar.stl'); pdegplot(model)


Generate a mesh.

```
mesh = generateMesh(model,'Hmax',2,'Hmin',0.4,'GeometricOrder','linear')
mesh =
 FEMesh with properties:
 Nodes: [2x107 double]
 Elements: [3x172 double]
 MaxElementSize: 2
 MinElementSize: 0.4000
 MeshGradation: 1.5000
 GeometricOrder: 'linear'
```

Find the elements located within radius 2 from the center [5,10].

```
Er = findElements(mesh,'radius',[5 10],2);
```

Highlight these elements in green on the mesh plot.

```
figure
pdemesh(model)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Er),'EdgeColor','green')
```



## Elements Attached to Specified Nodes

Find the elements attached to a specified corner node.
Create a PDE model.
model = createpde;
Import and plot the geometry.
importGeometry(model,'PlateHolePlanar.stl'); pdegplot(model)


Generate a linear triangular mesh by setting the geometric order value to linear. This mesh contains only corner nodes.

```
mesh = generateMesh(model,'Hmax',2,'Hmin',0.4, ...
 'GeometricOrder','linear');
```

Find the node closest to the point [15;10].

```
N_ID = findNodes(mesh,'nearest',[15;10])
N_ID = 10
```

Find the elements attached to this node.

```
En = findElements(mesh,'attached',N_ID)
En = 1\times3
 95 97 98
```

Highlight the node and the elements in green on the mesh plot.

```
figure
pdemesh(model)
hold on
plot(mesh.Nodes(1,N_ID),mesh.Nodes(2,N_ID),'or','Color','g', ...
 'MarkerFaceColor','g')
pdemesh(mesh.Nodes,mesh.Elements(:,En),'EdgeColor','green')
```



## Input Arguments

mesh - Mesh object
Mesh property of a PDEModel object | output of generateMesh
Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.

Example: model. Mesh

## RegionType - Geometric region type

'Cell' for a 3-D model | 'Face' for a 2-D model
Geometric region type, specified as 'Cell' or 'Face'.
Example: findElements(mesh,'region', 'Face', 1:3)
Data Types: char

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.
Example: findElements(mesh,'region','Face', 1:3)

## Data Types: double

## xlim - x-limits of bounding box

two-element row vector
$x$-limits of the bounding box, specified as a two-element row vector. The first element of $x$ lim is the lower $x$-bound, and the second element is the upper $x$-bound.
Example: findElements(mesh,'box',[5 10],[10 20])
Data Types: double

## $y$ lim $-y$-limits of bounding box

two-element row vector
$y$-limits of the bounding box, specified as a two-element row vector. The first element of $y$ lim is the lower $y$-bound, and the second element is the upper $y$-bound.
Example: findElements(mesh,'box',[5 10],[10 20])
Data Types: double

## zlim - z-limits of bounding box

two-element row vector
$z$-limits of the bounding box, specified as a two-element row vector. The first element of $z$ lim is the lower $z$-bound, and the second element is the upper $z$-bound. You can specify zlim only for 3-D meshes.

Example: findElements(mesh,'box',[5 10],[10 20],[1 2])
Data Types: double

## center - Center of bounding circle or sphere

two-element row vector for a 2-D mesh | three-element row vector for a 3-D mesh
Center of the bounding circle or sphere, specified as a two-element row vector for a 2-D mesh or three-element row vector for a 3-D mesh. The elements of these vectors contain the coordinates of the center of a circle or a sphere.

```
Example: findElements(mesh,'radius',[0 0 0],0.5)
```

Data Types: double

## radius - Radius of bounding circle or sphere

positive number
Radius of the bounding circle or sphere, specified as a positive number.
Example: findElements(mesh,'radius',[0 0 0],1)
Data Types: double

## nodeID - ID of corner node of element

positive integer | vector of positive integers
ID of the corner node of the element, specified as a positive integer or a vector of positive integers. The findElements function can find an ID of the element by the ID of the corner node of the element. The function ignores IDs of the nodes located in the middle of element edges. For multiple nodes, specify nodeID as a vector.

Example: findElements(mesh,'attached',[7 8 21])
Data Types: double

## Output Arguments

## elemIDs - Element IDs

positive integer | row vector of positive integers
Element IDs, returned as a positive integer or a row vector of positive integers.

## See Also

FEMesh Properties | area | findNodes | meshQuality | volume
Topics
"Finite Element Method Basics" on page 1-11
Introduced in R2018a

## findHeatSource

Package: pde
Find heat source assigned to a geometric region

## Syntax

hsa = findHeatSource(thermalmodel.HeatSources,RegionType,RegionID)

## Description

hsa = findHeatSource(thermalmodel.HeatSources,RegionType,RegionID) returns the heat source value hsa assigned to the specified region.

## Examples

## Find Heat Sources for Faces of 2-D Geometry

Create a thermal model that has three faces.

```
thermalmodel = createpde('thermal');
```

geometryFromEdges (thermalmodel,@lshapeg) ;
pdegplot(thermalmodel, 'FaceLabels', 'on')
ylim([-1.1 1.1])
axis equal


Specify that face 1 generates heat at $10 \mathrm{~W} / \mathrm{m}^{\wedge} 3$, face 2 generates heat at $20 \mathrm{~W} / \mathrm{m}^{\wedge} 3$, and face 3 generates heat at $30 \mathrm{~W} / \mathrm{m}^{\wedge} 3$.

```
internalHeatSource(thermalmodel,10, 'Face',1);
internalHeatSource(thermalmodel,20,'Face',2);
internalHeatSource(thermalmodel,30,'Face',3);
```

Check the heat source specification for face 1.

```
hsaFace1 = findHeatSource(thermalmodel.HeatSources,'Face',1)
hsaFace1 =
 HeatSourceAssignment with properties:
 RegionType: 'face'
 RegionID: 1
 HeatSource: 10
```

Check the heat source specification for faces 2 and 3.

```
hsa = findHeatSource(thermalmodel.HeatSources,'Face',[2 3]);
hsaFace2 = hsa(1)
hsaFace2 =
 HeatSourceAssignment with properties:
 RegionType: 'face'
```

```
 RegionID: 2
 HeatSource: 20
hsaFace3 = hsa(2)
hsaFace3 =
 HeatSourceAssignment with properties:
 RegionType: 'face'
 RegionID: 3
 HeatSource: 30
```


## Find Heat Sources for Cells of 3-D Geometry

Create a geometry that consists of three stacked cylinders and include the geometry in a thermal model.

```
gm = multicylinder(10,[1 2 3],'ZOffset',[0 1 3])
gm =
 DiscreteGeometry with properties:
 NumCells: 3
 NumFaces: 7
 NumEdges: 4
 NumVertices: 4
 Vertices: [4\times3 double]
thermalmodel = createpde('thermal');
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'CellLabels','on','FaceAlpha',0.5)
```



Specify that the cylinder C1 generates heat at $10 \mathrm{~W} / \mathrm{m}^{3}$, the cylinder C 2 generates heat at $20 \mathrm{~W} / \mathrm{m}^{3}$, and the cylinder C 3 generates heat at $30 \mathrm{~W} / \mathrm{m}^{3}$.

```
internalHeatSource(thermalmodel,10,'Cell',1);
internalHeatSource(thermalmodel,20,'Cell',2);
internalHeatSource(thermalmodel,30,'Cell',3);
```

Check the heat source specification for cell 1.

```
hsaCell1 = findHeatSource(thermalmodel.HeatSources,'Cell',1)
hsaCell1 =
 HeatSourceAssignment with properties:
 RegionType: 'cell'
 RegionID: 1
 HeatSource: 10
```

Check the heat source specification for cells 2 and 3 .

```
hsa = findHeatSource(thermalmodel.HeatSources,'Cell',[2:3]);
hsaCell2 = hsa(1)
hsaCell2 =
 HeatSourceAssignment with properties:
 RegionType: 'cell'
```

```
 RegionID: 2
 HeatSource: 20
hsaCell3 = hsa(2)
hsaCell3 =
 HeatSourceAssignment with properties:
 RegionType: 'cell'
 RegionID: 3
 HeatSource: 30
```


## Input Arguments

thermalmodel. HeatSources - Internal heat source of the model
HeatSources property of a thermal model
Internal heat source of the model, specified as the HeatSources property of a ThermalModel object.

## RegionType - Geometric region type

```
'Face'| 'Cell'
```

Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using the pdegplot function.
Data Types: double

## Output Arguments

## hsa - Heat source assignment

HeatSourceAssignment object
Heat source assignment, returned as a HeatSourceAssignment object.

## See Also

HeatSourceAssignment | internalHeatSource
Introduced in R2017a

## findInitialConditions

Package: pde
Locate active initial conditions

## Syntax

ic = findInitialConditions(ics,RegionType,RegionID)

## Description

ic = findInitialConditions(ics,RegionType,RegionID) returns the active initial condition assignment ic for the initial conditions in the specified region.

## Examples

## Find the Active Initial Conditions

This example shows find the active initial conditions for a region.
Create a PDE model that has a few subdomains.

```
model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal
```



Set initial conditions on each pair of regions.

```
setInitialConditions(model,12,'Face',[1,2]);
setInitialConditions(model,13,'Face',[1,3]);
setInitialConditions(model,23,'Face',[2,3]);
```

Check the initial conditions specification for region 1.

```
ics = model.InitialConditions;
ic = findInitialConditions(ics,'Face',1)
ic =
 GeometricInitialConditions with properties:
 RegionType: 'face'
 RegionID: [1 3]
 InitialValue: 13
 InitialDerivative: []
```


## Input Arguments

## ics - Model initial conditions

InitialConditions property of a PDE model

Model initial conditions, specified as the InitialConditions property of a PDE model. Initial conditions can be complex numbers.

Example: model.InitialConditions

## RegionType - Geometric region type

'Edge' for a 2-D model | 'Face' for a 2-D model or 3-D model | 'Cell' for a 3-D model
Geometric region type, specified as 'Edge' for a 2-D model, 'Face' for a 2-D model or 3-D model, or 'Cell' for a 3-D model.
Example: ca = findInitialConditions(ics,'Face',[1,3])
Data Types: char \| string

## RegionID - Region ID

vector of positive integers
Region ID, specified as a vector of positive integers. View the subdomain labels for a 2-D model using pdegplot (model, 'FaceLabels', 'on'). Currently, there are no subdomains for 3-D models, so the only acceptable value for a 3-D model is 1 .
Example: ca = findInitialConditions(ics,'Face',[1,3])
Data Types: double

## Output Arguments

## ic - Initial condition assignment <br> GeometricInitialConditions object | NodalInitialConditions object <br> Initial condition assignment, returned as a GeometricInitialConditions or NodalInitialConditions object.

## See Also

GeometricInitialConditions | NodalInitialConditions | setInitialConditions

## Topics

"View, Edit, and Delete Initial Conditions" on page 2-107
"Solve Problems Using PDEModel Objects" on page 2-2

## Introduced in R2016a

## findNodes

Package: pde
Find mesh nodes in specified region

## Syntax

```
nodes = findNodes(mesh,'region',RegionType,RegionID)
nodes = findNodes(mesh,'box',xlim,ylim)
nodes = findNodes(mesh,'box',xlim,ylim,zlim)
nodes = findNodes(mesh,'radius',center,radius)
nodes = findNodes(mesh,'nearest',point)
```


## Description

nodes = findNodes(mesh,'region' , RegionType,RegionID) returns the IDs of the mesh nodes that belong to the specified geometric region.
nodes = findNodes(mesh,'box',xlim,ylim) returns the IDs of the mesh nodes within a bounding box specified by $x$ lim and $y l i m$. Use this syntax for 2-D meshes.
nodes $=$ findNodes(mesh,'box',xlim,ylim,zlim) returns the IDs of the mesh nodes located within a bounding box specified by $x$ lim, ylim, and zlim. Use this syntax for 3-D meshes.
nodes $=$ findNodes(mesh,'radius', center, radius) returns the IDs of mesh nodes located within a circle (for 2-D meshes) or sphere (for 3-D meshes) specified by center and radius.
nodes = findNodes(mesh,' nearest', point) returns the IDs of mesh nodes closest to a query point or multiple query points with Cartesian coordinates specified by point.

## Examples

## Nodes Associated with Particular Edges and Faces

Find the nodes associated with a geometric region.
Create a PDE model.
model = createpde;
Include the geometry of the built-in function lshapeg. Plot the geometry.

```
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on','EdgeLabels','on')
```



Generate a mesh.
mesh = generateMesh(model,'Hmax',0.5);
Find the nodes associated with face 2.
Nf2 = findNodes(mesh,'region','Face', 2);
Highlight these nodes in green on the mesh plot.
figure
pdemesh(model,'NodeLabels','on')
hold on
plot(mesh. Nodes (1,Nf2) , mesh. Nodes (2,Nf2) , 'ok', 'MarkerFaceColor', 'g')


Find the nodes associated with edges 5 and 7.

```
Ne57 = findNodes(mesh,'region','Edge',[5 7]);
```

Highlight these nodes in green on the mesh plot.
figure
pdemesh(model,'NodeLabels','on')
hold on
plot(mesh.Nodes(1,Ne57),mesh.Nodes(2,Ne57), 'or','MarkerFaceColor','g')


## Nodes Within Bounding Box

Find the nodes located within a specified box.
Create a PDE model.
model = createpde;
Import and plot the geometry.

```
importGeometry(model,'PlateHolePlanar.stl');
pdegplot(model)
```



Generate a mesh.
mesh = generateMesh(model,'Hmax',2,'Hmin',0.4,'GeometricOrder','linear');
Find the nodes located within the following box.
$\mathrm{Nb}=$ findNodes(mesh,'box',[5 10],[10 20]);
Highlight these nodes in green on the mesh plot.
figure
pdemesh(model)
hold on
plot(mesh.Nodes (1, Nb) , mesh. Nodes ( $2, N b$ ), 'or', 'MarkerFaceColor', 'g')


## Nodes Within Bounding Disk

Find the nodes located within a specified disk.
Create a PDE model.
model = createpde;
Import and plot the geometry.
importGeometry(model,'PlateHolePlanar.stl'); pdegplot(model)


Generate a mesh.
mesh = generateMesh(model,'Hmax',2,'Hmin',0.4,'GeometricOrder','linear');
Find the nodes located within radius 2 from the center [5 10].
Nb = findNodes(mesh,'radius',[5 10],2);
Highlight these nodes in green on the mesh plot.
figure
pdemesh(model)
hold on
plot(mesh.Nodes (1, Nb) , mesh. Nodes ( $2, N b$ ), 'or', 'MarkerFaceColor', 'g')


## Nodes Closest to Specified Points

Find the node closest to a specified point and highlight it on the mesh plot.
Create a PDE model.
model = createpde;
Import and plot the geometry.
importGeometry(model,'PlateHolePlanar.stl'); pdegplot(model)


Generate a mesh.
mesh = generateMesh(model,'Hmax',2,'Hmin',0.4);
Find the node closest to the point $[15 ; 10]$.
N_ID = findNodes(mesh,'nearest',[15;10])
N_ID = 10
Highlight this node in green on the mesh plot.
figure
pdemesh(model)
hold on
plot(mesh.Nodes(1,N_ID),mesh.Nodes(2,N_ID),'or','MarkerFaceColor','g')


## Input Arguments

mesh - Mesh object
Mesh property of a PDEModel object | output of generateMesh
Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.
Example: model. Mesh

## RegionType - Geometric region type

'Cell'|'Face'|'Edge' | 'Vertex'
Geometric region type, specified as 'Cell', 'Face', 'Edge', or 'Vertex'.
Example: findNodes(mesh, 'region', 'Face', 1:3)
Data Types: char

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.
Example: findNodes(mesh, 'region', 'Face', 1:3)

Data Types: double

## $x \lim -x$-limits of bounding box

two-element row vector
$x$-limits of the bounding box, specified as a two-element row vector. The first element of $x$ lim is the lower $x$-bound, and the second element is the upper $x$-bound.
Example: findNodes(mesh,'box',[5 10],[10 20])
Data Types: double

## $y \lim \boldsymbol{-} \boldsymbol{y}$-limits of bounding box

two-element row vector
$y$-limits of the bounding box, specified as a two-element row vector. The first element of $y$ lim is the lower $y$-bound, and the second element is the upper $y$-bound.
Example: findNodes(mesh,'box',[5 10],[10 20])
Data Types: double

## zlim - z-limits of bounding box

two-element row vector
$z$-limits of the bounding box, specified as a two-element row vector. The first element of $z$ lim is the lower $z$-bound, and the second element is the upper $z$-bound. You can specify zlim only for 3-D meshes.
Example: findNodes(mesh,'box',[5 10],[10 20],[1 2])
Data Types: double

## center - Center of bounding circle or sphere

two-element row vector for a 2-D mesh | three-element row vector for a 3-D mesh
Center of the bounding circle or sphere, specified as a two-element row vector for a 2-D mesh or three-element row vector for a 3-D mesh. The elements of these vectors contain the coordinates of the center of a circle or a sphere.

Example: findNodes(mesh,'radius',[0 0 0],0.5)
Data Types: double
radius - Radius of bounding circle or sphere
positive number
Radius of the bounding circle or sphere, specified as a positive number.
Example: findNodes(mesh,'radius',[0 0 0],0.5)
Data Types: double
point - Cartesian coordinates of query points
2-by-N or 3-by-N matrix
Cartesian coordinates of query points, specified as a 2 -by- $N$ or 3 -by- $N$ matrix. These matrices contain the coordinates of the query points. Here, $N$ is the number of query points.
Example: findNodes(mesh,'nearest',[15 10.5 1; 1210 1.2])

Data Types: double

## Output Arguments

nodes - Node IDs
positive integer | row vector of positive integers
Node IDs, returned as a positive integer or a row vector of positive integers.

## See Also

FEMesh Properties | area | findElements | meshQuality | volume

## Topics

"Finite Element Method Basics" on page 1-11
Introduced in R2018a

## findStructuralBC

Package: pde
Find structural boundary conditions and boundary loads assigned to geometric region

## Syntax

sbca = findStructuralBC(structuralmodel.BoundaryConditions,RegionType, RegionID)

## Description

sbca $=$ findStructuralBC(structuralmodel.BoundaryConditions,RegionType, RegionID) returns the structural boundary conditions and boundary loads assigned to the region specified by RegionType and RegionID. The function returns structural boundary conditions assigned by structuralBC and boundary loads assigned by structuralBoundaryLoad.

## Examples

## Find Structural Boundary Conditions

Find the structural boundary conditions for the faces of a 3-D geometry.
Create a structural model and include a block geometry.

```
structuralmodel = createpde('structural','static-solid');
```

Include the block geometry in the model and plot the geometry.

```
importGeometry(structuralmodel,'Block.stl');
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
```



Specify the surface traction on face 1 of the block.
structuralBoundaryLoad(structuralmodel, 'Face',1,'SurfaceTraction' , [100;10;300]);
Specify the pressure on face 3 of the block.
structuralBoundaryLoad(structuralmodel, 'Face',3, 'Pressure',300);
Apply free constraint on faces 5 and 6 of the block.
structuralBC(structuralmodel,'Face',[5,6],'Constraint','free');
Check the boundary condition specification for faces 1 and 3.

```
sbca = findStructuralBC(structuralmodel.BoundaryConditions,'Face',[1,3]);
sbcaFacel = sbca(1)
sbcaFace1 =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: 1
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
```

```
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Boundary Loads
 Force: []
 SurfaceTraction: [3x1 double]
 Pressure: []
TranslationalStiffness: []
sbcaFace3 = sbca(2)
sbcaFace3 =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: 3
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: 300
 TranslationalStiffness: []
```

Check the boundary condition specification for faces 5 and 6.

```
sbca = findStructuralBC(structuralmodel.BoundaryConditions,'Face',[5,6]);
sbcaFace5 = sbca(1)
sbcaFace5 =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: [5 6]
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "free"
 Radius: []
 Reference: []
 Boundary Loads
```

```
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
sbcaFace6 = sbca(2)
sbcaFace6 =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: [5 6]
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "free"
 Radius: []
 Reference: []
 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
```


## Input Arguments

## structuralmodel.BoundaryConditions - Structural boundary conditions

BoundaryConditions property of StructuralModel object
Structural boundary conditions of the model, specified as the BoundaryConditions property of a StructuralModel object.

## RegionType - Geometric region type

'Edge' for a 2-D model | 'Face' for a 3-D model
Geometric region type, specified as 'Edge' for a 2-D model or 'Face' for a 3-D model.
Example: findStructuralBC(structuralmodel.BoundaryConditions,'Edge',1)
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.
Example: findStructuralBC(structuralmodel.BoundaryConditions, 'Face', 1:3)
Data Types: double

## Output Arguments

sbca - Structural boundary conditions and boundary loads assignment
StructuralBC object
Structural boundary conditions and boundary loads assignment, returned as a StructuralBC object. For details, see StructuralBC Properties.

## See Also

structuralBC| structuralBoundaryLoad

Introduced in R2017b

## findStructurallC

Package: pde
Find initial displacement and velocity assigned to geometric region

## Syntax

sica = findStructuralIC(structuralmodel.InitialConditions,RegionType, RegionID)

## Description

sica $=$ findStructuralIC(structuralmodel.InitialConditions,RegionType, RegionID) returns the initial displacement and velocity assigned to the specified region.

## Examples

## Find Initial Conditions for Cells of 3-D Geometry

Find the initial displacement and velocity assigned to the cells of a 3-D geometry.
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create the geometry consisting of the three nested cylinders and include it in the model. Plot the geometry.

```
gm = multicylinder([5 10 15],2);
structuralmodel = createpde('structural','transient-solid');
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'CellLabels','on','FaceAlpha',0.5)
```



Set the initial conditions for each cell. When you specify only the initial velocity or initial displacement, structuralIC assumes that the omitted parameter is zero.

```
structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0],'Cell',1);
structuralIC(structuralmodel,'Displacement',[0;0.1;0],'Cell',2);
structuralIC(structuralmodel,'Velocity',[0;0.2;0],'Cell',3);
```

Check the initial condition specification for cell 1.
SICACell1 = findStructuralIC(structuralmodel.InitialConditions,'Cell',1)
SICACell1 =
GeometricStructuralICs with properties:
RegionType: 'Cell'
RegionID: 1
InitialDisplacement: [3x1 double]
InitialVelocity: [3x1 double]

## SICACelll.InitialDisplacement

```
ans = 3x1
```

0
0
0

```
SICACelll.InitialVelocity
ans = 3\times1
 0
 0
 0
```

Find Initial Displacement Set as Previously Obtained Static Solution
Use a static solution as an initial condition for a dynamic structural model. Check and plot the initial displacement.

Create a static model.

```
staticmodel = createpde('structural','static-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
staticmodel.Geometry = gm;
pdegplot(staticmodel,'FaceLabels','on',' FaceAlpha',0.5)
view(50,20)
```


$\times 10^{-3}$

Specify the Young's modulus, Poisson's ratio, and mass density.

```
structuralProperties(staticmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);
```

Apply the boundary condition and static load.

```
structuralBC(staticmodel,'Face',5,'Constraint','fixed');
structuralBoundaryLoad(staticmodel,'Face',3,'SurfaceTraction',[0;1E6;0]);
generateMesh(staticmodel,'Hmax',0.02);
Rstatic = solve(staticmodel);
```

Create a dynamic model and assign geometry.

```
dynamicmodel = createpde('structural','transient-solid');
gm = multicuboid(0.06,0.005,0.01);
dynamicmodel.Geometry = gm;
```

Apply the boundary condition.

```
structuralBC(dynamicmodel,'Face',5,'Constraint','fixed');
```

Specify the initial condition using the static solution.

```
generateMesh(dynamicmodel,'Hmax',0.02);
structuralIC(dynamicmodel,Rstatic)
ans =
 NodalStructuralICs with properties:
 InitialDisplacement: [113x3 double]
 InitialVelocity: [113x3 double]
```

Check the initial condition specification for dynamicmodel.

```
sica = findStructuralIC(dynamicmodel.InitialConditions,'Cell',1)
sica =
 NodalStructuralICs with properties:
 InitialDisplacement: [113x3 double]
 InitialVelocity: [113x3 double]
```

Plot the z -component of the initial displacement.

```
pdeplot3D(dynamicmodel,'ColorMapData',sica.InitialDisplacement(:,3))
title('Initial Displacement in the Z-direction')
```



## Input Arguments

## structuralmodel.InitialConditions - Initial conditions

InitialConditions property of a StructuralModel object
Initial conditions of a transient structural model, specified as the InitialConditions property of a StructuralModel object.

## RegionType - Geometric region type

'Face' | 'Edge' | 'Vertex' | 'Cell' for a 3-D model
Geometric region type, specified as 'Face', 'Edge', or 'Vertex' for a 2-D model or 3-D model, or 'Cell' for a 3-D model.

Data Types: char

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.
Data Types: double

## Output Arguments

## sica - Structural initial condition assignment

GeometricStructuralICs object | NodalStructuralICs object
Structural initial condition for a particular region, returned as a GeometricStructuralICs or NodalStructuralICs object. For details, see GeometricStructuralICs Properties and NodalStructuralICs Properties.

## See Also

GeometricStructuraliCs Properties | NodalStructuralICs Properties | StructuralModel| structuralIC

## Introduced in R2018a

## findStructuralProperties

Package: pde
Find structural material properties assigned to geometric region

## Syntax

smpa = findStructuralProperties(structuralmodel.MaterialProperties, RegionType, RegionID)

## Description

smpa = findStructuralProperties(structuralmodel. MaterialProperties, RegionType, RegionID) returns the structural material properties assigned to the specified region. Structural properties include the Young's modulus, Poisson's ratio, and mass density of the material.

## Examples

## Find Young's Modulus and Poisson's Ratio

Find Young's modulus and Poisson's ratio for cells of a 3-D geometry.
Create a structural model.

```
structuralmodel = createpde('structural','static-solid');
```

Create the geometry consisting of three stacked cylinders and include it in the model. Plot the geometry.

```
gm = multicylinder(10,[1 2 3],'ZOffset',[0 1 3]);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'CellLabels','on','FaceAlpha',0.5)
```



Assign different values of the Young's modulus and Poisson's ratio to each cell.

```
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',200E9, ...
 'PoissonsRatio',0.3);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);
structuralProperties(structuralmodel,'Cell',3,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.35);
```

Check the structural properties specification for cell 1.

```
mC1 = findStructuralProperties(structuralmodel.MaterialProperties,'Cell',1)
mC1 =
 StructuralMaterialAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 2.0000e+11
 PoissonsRatio: 0.3000
 MassDensity: []
 CTE: []
```

Check the structural properties specification for cells 2 and 3.

```
mC23 = findStructuralProperties(structuralmodel.MaterialProperties,'Cell',[2,3]);
mC2 = mC23(1)
```

```
mC2 =
 StructuralMaterialAssignment with properties:
 RegionType: 'Cell'
 RegionID: 2
 YoungsModulus: 2.1000e+11
 PoissonsRatio: 0.3000
 MassDensity: []
 CTE: []
mC3 = mC23(2)
mC3 =
 StructuralMaterialAssignment with properties:
 RegionType: 'Cell'
 RegionID: 3
 YoungsModulus: 1.1000e+11
 PoissonsRatio: 0.3500
 MassDensity: []
 CTE: []
```


## Input Arguments

## structuralmodel.MaterialProperties - Material properties

MaterialProperties property of StructuralModel object
Material properties of the model, specified as the MaterialProperties property of a StructuralModel object.
Example: structuralmodel. MaterialProperties

## RegionType - Geometric region type

'Face' for a 2-D model \| ' Cell' for a 3-D model
Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Example: findStructuralProperties(structuralmodel.MaterialProperties, 'Cell' , 1)
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.

Example:
findStructuralProperties(structuralmodel.MaterialProperties,'Face',1:3)
Data Types: double

## Output Arguments

## smpa - Material properties assignment

StructuralMaterialAssignment object
Material properties assignment, returned as a StructuralMaterialAssignment object. For details, see StructuralMaterialAssignment Properties.

## See Also

StructuralMaterialAssignment Properties | structuralProperties

Introduced in R2017b

## findThermalBC

Package: pde
Find thermal boundary conditions assigned to a geometric region

## Syntax

tbca = findThermalBC(thermalmodel.BoundaryConditions,RegionType,RegionID)

## Description

tbca $=$ findThermalBC(thermalmodel. BoundaryConditions,RegionType, RegionID) returns the thermal boundary condition assigned to the specified region.

## Examples

Find Thermal Boundary Conditions for Edges of 2-D Geometry
Create a thermal model and include a square geometry.

```
thermalmodel = createpde('thermal');
```

geometryFromEdges(thermalmodel,@squareg);
pdegplot(thermalmodel,'EdgeLabels','on')
ylim([-1.1 1.1])
axis equal


Apply temperature boundary conditions on edges 1 and 3 of the square.
thermalBC(thermalmodel,'Edge',[1 3],'Temperature',100);
Apply a heat flux boundary condition on edge 4 of the square.
thermalBC(thermalmodel,'Edge',4,'HeatFlux', 20);
Check the boundary condition specification on edge 1.

```
tbcaEdge1 = findThermalBC(thermalmodel.BoundaryConditions,'Edge',1)
tbcaEdge1 =
 ThermalBC with properties:
 RegionType: 'Edge'
 RegionID: [1 3]
 Temperature: 100
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
```

Check the boundary condition specifications on edges 3 and 4 .

```
tbca = findThermalBC(thermalmodel.BoundaryConditions,'Edge',[3:4]);
```

tbcaEdge3 $=$ tbca(1)

```
tbcaEdge3 =
 ThermalBC with properties:
 RegionType: 'Edge'
 RegionID: [1 3]
 Temperature: 100
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
tbcaEdge4 = tbca(2)
tbcaEdge4 =
 ThermalBC with properties:
 RegionType: 'Edge'
 RegionID: 4
 Temperature: []
 HeatFlux: 20
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
```


## Find Thermal Boundary Conditions for Faces of 3-D Geometry

Create a thermal model and include a block geometry.
thermalmodel = createpde('thermal','transient'); gm = importGeometry(thermalmodel,'Block.stl'); pdegplot(thermalmodel,'FaceLabels','on', 'FaceAlpha', 0.5)


Apply temperature boundary condition on faces 1 and 3 of a block.
thermalBC(thermalmodel,' Face',1,'Temperature',100);
thermalBC(thermalmodel,'Face',3,'Temperature',300);
Apply convection boundary condition on faces 5 and 6 of a block.

```
thermalBC(thermalmodel,'Face',[5,6],...
 'ConvectionCoefficient',5,...
 'AmbientTemperature',27);
```

Check the boundary condition specification on faces 1 and 3.

```
tbca = findThermalBC(thermalmodel.BoundaryConditions,'Face',[1,3]);
tbcaFacel = tbca(1)
tbcaFace1 =
 ThermalBC with properties:
 RegionType: 'Face'
 RegionID: 1
 Temperature: }10
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
```

```
tbcaFace3 = tbca(2)
tbcaFace3 =
 ThermalBC with properties:
 RegionType: 'Face'
 RegionID: 3
 Temperature: 300
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
```

Check the boundary condition specifications on faces 5 and 6.

```
tbcaFace5 = findThermalBC(thermalmodel.BoundaryConditions,'Face',5)
```

tbcaFace5 =
ThermalBC with properties:
RegionType: 'Face'
RegionID: [5 6]
Temperature: []
HeatFlux: []
ConvectionCoefficient: 5
Emissivity: []
AmbientTemperature: 27
Vectorized: 'off'
tbcaFace6 = findThermalBC(thermalmodel.BoundaryConditions,'Face',6)
tbcaFace6 =
ThermalBC with properties:
RegionType: 'Face'
RegionID: [5 6]
Temperature: []
HeatFlux: []
ConvectionCoefficient: 5
Emissivity: []
AmbientTemperature: 27
Vectorized: 'off'

## Input Arguments

thermalmodel. BoundaryConditions - Boundary conditions of a thermal model
BoundaryConditions property of a thermal model
Boundary conditions of a thermal model, specified as the BoundaryConditions property of a ThermalModel object.
Example: thermalmodel.BoundaryConditions

## RegionType - Geometric region type

## 'Face'|'Edge'

Geometric region type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs using pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.

Data Types: double

## Output Arguments

## tbca - Thermal boundary condition for a particular region

ThermalBC object
Thermal boundary condition for a particular region, returned as a ThermalBC object.

## See Also

ThermalBC | thermalBC
Introduced in R2017a

## findThermallC

Package: pde
Find thermal initial conditions assigned to a geometric region

## Syntax

tica = findThermalIC(thermalmodel.InitialConditions,RegionType,RegionID)

## Description

tica $=$ findThermalIC(thermalmodel.InitialConditions,RegionType,RegionID) returns the thermal initial condition assigned to the specified region.

## Examples

## Find Initial Temperatures for Faces of 2-D Geometry

Create a transient thermal model that has three faces.

```
thermalmodel = createpde('thermal','transient');
geometryFromEdges(thermalmodel,@lshapeg);
pdegplot(thermalmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal
```



Set initial temperatures for each face.
thermalIC(thermalmodel,10,'Face',1);
thermalIC(thermalmodel,20,'Face', 2);
thermalIC(thermalmodel,30,'Face',3);
Check the initial condition specification for face 1.

```
ticaFace1 = findThermalIC(thermalmodel.InitialConditions,'Face',1)
ticaFace1 =
 GeometricThermalICs with properties:
 RegionType: 'face'
 RegionID: 1
 InitialTemperature: 10
```

Check the initial temperature specifications for faces 2 and 3.

```
tica = findThermalIC(thermalmodel.InitialConditions,'Face',[2 3]);
ticaFace2 = tica(1)
ticaFace2 =
 GeometricThermalICs with properties:
 RegionType: 'face'
 RegionID: 2
```

```
ticaFace3 = tica(2)
ticaFace3 =
 GeometricThermalICs with properties:
 RegionType: 'face'
 RegionID: 3
 InitialTemperature: 30
```


## Find Initial Temperatures for Cells of 3-D Geometry

Create a geometry that consists of three nested cylinders and include the geometry in a transient thermal model.

```
gm = multicylinder([5 10 15],2)
gm =
 DiscreteGeometry with properties:
 NumCells: 3
 NumFaces: 9
 NumEdges: 6
 NumVertices: 6
 Vertices: [6x3 double]
thermalmodel = createpde('thermal','transient');
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'CellLabels','on','FaceAlpha',0.5)
```



Set initial temperatures for each cell.
thermalIC(thermalmodel, $0,{ }^{\prime} \mathrm{Cell}$ ', 1);
thermalIC(thermalmodel,100,'Cell',2);
thermalIC(thermalmodel,0,'Cell',3);
Check the initial condition specification for cell 1.

```
ticaCell1 = findThermalIC(thermalmodel.InitialConditions,'Cell',1)
ticaCell1 =
 GeometricThermalICs with properties:
 RegionType: 'cell'
 RegionID: 1
 InitialTemperature: 0
```

Check the initial condition specification for cells 2 and 3.

```
tica = findThermalIC(thermalmodel.InitialConditions,'Cell',[2:3]);
ticaCell2 = tica(1)
ticaCell2 =
 GeometricThermalICs with properties:
 RegionType: 'cell'
 RegionID: 2
```

```
ticaCell3 = tica(2)
ticaCell3 =
 GeometricThermalICs with properties:
 RegionType: 'cell'
 RegionID: 3
 InitialTemperature: 0
```

Find Initial Temperature Set by Using Previously Obtained Solution
Create a thermal model and include a square geometry.

```
thermalmodel = createpde('thermal','transient');
```

gm = @squareg;
geometryFromEdges(thermalmodel,gm);
pdegplot (thermalmodel,' FaceLabels', 'on')
ylim([-1.1 1.1])
axis equal


Specify material properties, heat source, set initial and boundary conditions.

```
thermalProperties(thermalmodel,'ThermalConductivity',500,...
 'MassDensity',200,...
 SpecificHeat',100);
internalHeatSource(thermalmodel,2);
thermalBC(thermalmodel,'Edge',[1 3],'Temperature',100);
thermalIC(thermalmodel,0);
```

Generate a mesh and solve the problem.

```
generateMesh(thermalmodel);
tlist = 0:0.5:10;
resultl = solve(thermalmodel,tlist)
result1 =
 TransientThermalResults with properties:
 Temperature: [1541x21 double]
 SolutionTimes: [1x21 double]
 XGradients: [1541x21 double]
 YGradients: [1541x21 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Check the currently active initial temperature specification.

```
tica = findThermalIC(thermalmodel.InitialConditions,'Face',1)
tica =
 GeometricThermalICs with properties:
 RegionType: 'face'
 RegionID: 1
 InitialTemperature: 0
```

Now, resume the analysis and solve the problem for times from 10 to 15 seconds. Use the previously obtained solution for 10 seconds as an initial condition. Since 10 seconds is the last element in tlist, you do not need to specify the solution time index. By default, thermalIC uses the last solution index.

```
ic = thermalIC(thermalmodel,result1);
```

Solve the problem

```
tlist = 10:0.5:15;
result2 = solve(thermalmodel,tlist);
```

Check the currently active initial temperature specification.

```
tica = findThermalIC(thermalmodel.InitialConditions,'Face',1)
tica =
 NodalThermalICs with properties:
 InitialTemperature: [1541x1 double]
pdeplot(thermalmodel,'XYData',tica.InitialTemperature)
```



## Input Arguments

## thermalmodel.InitialConditions - Initial conditions of a thermal model

InitialConditions property of a thermal model
Initial conditions of a thermal model, specified as the InitialConditions property of a ThermalModel object.

## RegionType - Geometric region type

'Edge' | 'Face' | 'Vertex' | 'Cell' for a 3-D model
Geometric region type, specified as 'Edge', 'Face', or 'Vertex' for a 2-D model or 3-D model, or 'Cell' for a 3-D model.

Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs using the pdegplot function with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on '.
Data Types: double

## Output Arguments

## tica - Thermal initial condition for a particular region

GeometricThermalICs object| NodalThermalICs object
Thermal initial condition for a particular region, returned as a GeometricThermalICs or NodalThermalICs object.

## See Also

GeometricThermaliCs | NodalThermalICs | thermalIC
Introduced in R2017a

## findThermalProperties

Package: pde
Find thermal material properties assigned to a geometric region

## Syntax

tmpa = findThermalProperties(thermalmodel.MaterialProperties,RegionType, RegionID)

## Description

tmpa = findThermalProperties(thermalmodel.MaterialProperties,RegionType, RegionID) returns thermal material properties tmpa assigned to the specified region.

## Examples

Find Thermal Conductivity, Mass Density, and Specific Heat for Faces of 2-D Geometry
Create a transient thermal model that has three faces.

```
thermalmodel = createpde('thermal','transient');
geometryFromEdges(thermalmodel,@lshapeg);
pdegplot(thermalmodel,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal
```



For face 1, specify the following thermal properties:

- Thermal conductivity is $10 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$
- Mass density is $1 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat is $0.1 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$

```
thermalProperties(thermalmodel,'ThermalConductivity',10,...
 'MassDensity',1,...
 'SpecificHeat',0.1,...
 'Face',1);
```

For face 2 , specify the following thermal properties:

- Thermal conductivity is $20 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$
- Mass density is $2 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat is $0.2 \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$
thermalProperties(thermalmodel,'ThermalConductivity', 20,...
'MassDensity',2,...
'SpecificHeat',0.2,...
'Face',2);
For face 3, specify the following thermal properties:
- Thermal conductivity is $30 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$ )
- Mass density is $3 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat is $0.3 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$

```
thermalProperties(thermalmodel,'ThermalConductivity',30,...
 'MassDensity',3,...
 'SpecificHeat',0.3,...
 'Face',3);
```

Check the material properties specification for face 1.

```
mpaFace1 = findThermalProperties(thermalmodel.MaterialProperties,'Face',1)
mpaFace1 =
 ThermalMaterialAssignment with properties:
 RegionType: 'face'
 RegionID: 1
 ThermalConductivity: 10
 MassDensity: 1
 SpecificHeat: 0.1000
```

Check the heat source specification for faces 2 and 3.

```
mpa = findThermalProperties(thermalmodel.MaterialProperties,'Face',[2,3]);
mpaFace2 = mpa(1)
mpaFace2 =
 ThermalMaterialAssignment with properties:
 RegionType: 'face'
 RegionID: 2
 ThermalConductivity: 20
 MassDensity: 2
 SpecificHeat: 0.2000
mpaFace3 = mpa(2)
mpaFace3 =
 ThermalMaterialAssignment with properties:
 RegionType: 'face'
 RegionID: 3
 ThermalConductivity: 30
 MassDensity: 3
 SpecificHeat: 0.3000
```


## Find Thermal Conductivity for Cells of 3-D Geometry

Create a geometry that consists of three stacked cylinders and include the geometry in a thermal model.

```
gm = multicylinder(10,[1 2 3],'ZOffset',[0 1 3])
gm =
 DiscreteGeometry with properties:
 NumCells: 3
 NumFaces: 7
 NumEdges: 4
 NumVertices: 4
 Vertices: [4x3 double]
thermalmodel = createpde('thermal');
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'CellLabels','on','FaceAlpha',0.5)
```



Thermal conductivity of the cylinder C 1 is $10 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$.
thermalProperties(thermalmodel,'ThermalConductivity',10,'Cell',1);
Thermal conductivity of the cylinder C 2 is $20 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$.
thermalProperties(thermalmodel,'ThermalConductivity', 20, 'Cell' , 2);
Thermal conductivity of the cylinder C 3 is $30 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$.
thermalProperties(thermalmodel,'ThermalConductivity', 30, 'Cell' , 3);

```
Check the material properties specification for cell 1:
mpaCelll = findThermalProperties(thermalmodel.MaterialProperties,'Cell',1)
mpaCell1 =
 ThermalMaterialAssignment with properties:
 RegionType: 'cell'
 RegionID: 1
 ThermalConductivity: 10
 MassDensity: []
 SpecificHeat: []
```

Check the heat source specification for cells 2 and 3 :

```
mpa = findThermalProperties(thermalmodel.MaterialProperties,'Cell',2:3);
mpaCell2 = mpa(1)
mpaCell2 =
 ThermalMaterialAssignment with properties:
 RegionType: 'cell'
 RegionID: 2
 ThermalConductivity: 20
 MassDensity: []
 SpecificHeat: []
mpaCell3 = mpa(2)
mpaCell3 =
 ThermalMaterialAssignment with properties:
 RegionType: 'cell'
 RegionID: 3
 ThermalConductivity: 30
 MassDensity: []
 SpecificHeat: []
```


## Input Arguments

## thermalmodel.MaterialProperties - Material properties of the model

MaterialProperties property of a thermal model
Material properties of the model, specified as the MaterialProperties property of a thermal model.

Example: thermalmodel.MaterialProperties

## RegionType - Geometric region type

'Face' for a 2-D model | 'Cell' for a 3-D model
Geometric region type, specified as 'Face' or 'Cell'.
Example: findThermalProperties(thermalmodel.MaterialProperties, 'Cell', 1)

Data Types: char|string
RegionID - Geometric region ID
vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.

Example: findThermalProperties(thermalmodel.MaterialProperties, 'Face', 1:3)
Data Types: double

## Output Arguments

tmpa - Material properties assignment
ThermalMaterialAssignment object
Material properties assignment, returned as a ThermalMaterialAssignment object. See ThermalMaterialAssignment.

## See Also

ThermalMaterialAssignment | ThermalModel | thermalProperties

Introduced in R2017a

## generateMesh

Package: pde

Create triangular or tetrahedral mesh

## Syntax

```
generateMesh(model)
generateMesh(model,Name,Value)
mesh = generateMesh(
```

$\qquad$

``` )
```


## Description

generateMesh (model) creates a mesh and stores it in the model object. model must contain a geometry. To include 2-D geometry in a model, use geometryFromEdges. To include 3-D geometry, use importGeometry or geomet ryFromMesh.
generateMesh can return slightly different meshes in different releases. For example, the number of elements in the mesh can change. Avoid writing code that relies on explicitly specified node and element IDs.
generateMesh(model, Name, Value) modifies the mesh creation according to the Name, Value arguments.
mesh = generateMesh (__ ) also returns the mesh to the MATLAB workspace, using any of the previous syntaxes.

## Examples

## Generate 2-D Mesh

Generate the default 2-D mesh for the L-shaped geometry.
Create a PDE model and include the L-shaped geometry.

```
model = createpde(1);
geometryFromEdges(model,@lshapeg);
```

Generate the default mesh for the geometry.
generateMesh(model);
View the mesh.
pdeplot(model)


## Generate 3-D Mesh

Create a mesh that is finer than the default.
Create a PDE model and include the BracketTwoHoles geometry.

```
model = createpde(1);
importGeometry(model,'BracketTwoHoles.stl');
```

Generate a default mesh for comparison.

```
generateMesh(model)
ans =
 FEMesh with properties:
```

```
 Nodes: [3x10003 double]
```

                Nodes: [3x10003 double]
            Elements: [10x5774 double]
            Elements: [10x5774 double]
        MaxElementSize: 9.7980
        MaxElementSize: 9.7980
        MinElementSize: 4.8990
        MinElementSize: 4.8990
        MeshGradation: 1.5000
        MeshGradation: 1.5000
        GeometricOrder: 'quadratic'
    ```
 GeometricOrder: 'quadratic'
```

View the mesh.


Create a mesh with target maximum element size 5 instead of the default 7.3485.

```
generateMesh(model,'Hmax',5)
```

```
ans =
```

    FEMesh with properties:
            Nodes: [3x66965 double]
                Elements: [10x44080 double]
        MaxElementSize: 5
        MinElementSize: 2.5000
            MeshGradation: 1.5000
        GeometricOrder: 'quadratic'
    View the mesh.
pdeplot3D(model)


## Input Arguments

## model - Model object

PDEModel object | ThermalModel object | StructuralModel object| ElectromagneticModel object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or ElectromagneticModel object.

Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: generateMesh (model, 'Hmax' , 0.25) ;

## GeometricOrder - Element geometric order

'quadratic' (default) | 'linear'

Element geometric order, specified as the comma-separated pair consisting of 'GeometricOrder' and 'linear' or 'quadratic'.

A triangle or tetrahedron representing a linear element has nodes at the corners. A triangle or tetrahedron representing a quadratic element has nodes at its corners and edge centers. The center nodes in quadratic meshes are always added at half-distance between corners. For geometries with curved surfaces and edges, center nodes might not appear on the edge or surface itself.

In general, ' quadratic' elements produce more accurate solutions. Override the default ' quadratic' only to save memory or to solve a 2-D problem using a legacy solver. Legacy PDE solvers use linear triangular mesh for 2-D geometries.

Example: generateMesh(model,'GeometricOrder','linear');
Data Types: char | string

## Hgrad - Mesh growth rate

1.5 (default) | number greater than or equal to 1 and less than or equal to 2

Mesh growth rate, specified as the comma-separated pair consisting of Hgrad and a number greater than or equal to 1 and less than or equal to 2 .
Example: generateMesh(model, 'Hgrad', 1.3) ;
Data Types: double

## Hmax - Target maximum mesh edge length

positive real number
Target maximum mesh edge length, specified as the comma-separated pair consisting of Hmax and a positive real number.

Hmax is an approximate upper bound on the mesh edge lengths. Occasionally, generateMesh can create a mesh with some elements that exceed Hmax.
generateMesh estimates the default value of Hmax from overall dimensions of the geometry.
Small Hmax values let you create finer meshes, but mesh generation can take a very long time in this case. You can interrupt mesh generation by using Ctrl+C. Note that generateMesh can take additional time to respond to the interrupt.

Example: generateMesh(model, 'Hmax', 0.25) ;
Data Types: double

## Hmin - Target minimum mesh edge length

nonnegative real number
Target minimum mesh edge length, specified as the comma-separated pair consisting of Hmin and a nonnegative real number.

Hmin is an approximate lower bound on the mesh edge lengths. Occasionally, generateMesh can create a mesh with some elements that are smaller than Hmin.
generateMesh estimates the default value of Hmin from overall dimensions of the geometry.
Example: generateMesh (model, 'Hmin' , 0.05) ;
Data Types: double

## Output Arguments

## mesh - Mesh description

FEMesh object
Mesh description, returned as an FEMesh object. mesh is the same as model.Mesh.

## More About

## Element

An element is a basic unit in the finite-element method.
For 2-D problems, an element is a triangle in the model.Mesh.Element property. If the triangle represents a linear element, it has nodes only at the triangle corners. If the triangle represents a quadratic element, then it has nodes at the triangle corners and edge centers.

For 3-D problems, an element is a tetrahedron with either four or ten points. A four-point (linear) tetrahedron has nodes only at its corners. A ten-point (quadratic) tetrahedron has nodes at its corners and at the center point of each edge.

For details, see "Mesh Data" on page 2-153.

## See Also

FEMesh | PDEModel | geometryFromEdges | importGeometry

## Topics

"Solve Problems Using PDEModel Objects" on page 2-2
"Finite Element Method Basics" on page 1-11
"Mesh Data" on page 2-153
"Mesh Data as [p,e,t] Triples" on page 2-150

## Introduced in R2015a

## GeometricInitialConditions Properties

Initial conditions over a region or region boundary

## Description

A GeometricInitialConditions object contains a description of the initial conditions over a geometric region or boundary of the region. A PDEModel container has a vector of GeometricInitialConditions objects in its InitialConditions.InitialConditionAssignments property.

Set initial conditions for your model using the setInitialConditions function.

## Properties

## Properties

## RegionType - Region type

'face'|'cell'
Region type, returned as ' face' for a 2-D region, or 'cell' for a 3-D region.
Data Types: char | string

## RegionID - Region ID

vector of positive integers
Region ID, returned as a vector of positive integers. To determine which ID corresponds to which portion of the geometry, use the pdegplot function. Set the 'FacenLabels ' name-value pair to 'on'.

Data Types: double

## InitialValue - Initial value

scalar | vector | function handle
Initial value, returned as a scalar, vector, or function handle. For details, see setInitialConditions.

Data Types: double | function_handle
Complex Number Support: Yes
InitialDerivative - Initial derivative
scalar | vector | function handle
Initial derivative, returned as a scalar, vector, or function handle. For details, see setInitialConditions.

Data Types: double | function_handle
Complex Number Support: Yes

## See Also

NodalInitialConditions | findInitialConditions | setInitialConditions
Topics
"Set Initial Conditions" on page 2-98
"View, Edit, and Delete Initial Conditions" on page 2-107
"Solve Problems Using PDEModel Objects" on page 2-2
Introduced in R2016a

## GeometricStructuralICs Properties

Initial displacement and velocity over a region

## Description

A GeometricStructuralICs object contains a description of the initial displacement and velocity over a geometric region for a transient structural model. A StructuralModel container has a vector of GeometricStructuralICs objects in its InitialConditions.StructuralICAssignments property.

To set initial conditions for your structural model, use the structuralIC function.

## Properties

## Properties

## RegionType - Geometric region type

'Face' | 'Edge' | 'Vertex' | 'Cell' for a 3-D model
Geometric region type, returned as 'Face', 'Edge ', or 'Vertex' for a 2-D model or 3-D model, or 'Cell' for a 3-D model.
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, returned as a vector of positive integers. Find the region IDs by using pdegplot.
Data Types: double

## InitialDisplacement - Initial displacement

numeric vector | function handle
Initial displacement, returned as a numeric vector or function handle. For details, see structuralIC.
Data Types: double | function_handle
InitialVelocity - Initial velocity
numeric vector | function handle
Initial velocity, returned as a numeric vector or function handle. For details, see structuralIC.
Data Types: double | function_handle

## See Also

NodalStructuralICs Properties | findStructuralIC | structuralIC

Introduced in R2018a

## GeometricThermallCs Properties

Initial temperature over a region or region boundary

## Description

A GeometricThermalICs object contains a description of the initial temperature over a geometric region or a boundary of the region. A ThermalModel container has a vector of GeometricThermalICs objects in its InitialConditions.ThermalICAssignments property.

Set initial conditions for your model using the thermalIC function.

## Properties

## Properties

RegionType - Region type
'Vertex'|'Edge'|'Face'|'Cell'
Region type, returned as 'Vertex', 'Edge' , or 'Face' for a 2-D or 3-D region, or 'Cell' for a 3-D region.
Data Types: char | string

## RegionID - Region ID

vector of positive integers
Region ID, returned as a vector of positive integers. To determine which ID corresponds to which portion of the geometry, use the pdegplot function and setting the 'FaceLabels' name-value pair to 'on'.

Data Types: double
InitialTemperature - Initial temperature
scalar | vector | function handle
Initial temperature, returned as a scalar, vector, or function handle. For details, see thermalIC.
Data Types: double | function_handle

## See Also

NodalThermalICs | findThermalIC| thermalIC
Introduced in R2017a

## NodalInitialConditions Properties

Initial conditions at mesh nodes

## Description

A Nodal InitialConditions object contains a description of the initial conditions at mesh nodes. A PDEModel container has a vector of NodalInitialConditions objects in its InitialConditions.InitialConditionAssignments property.

Set initial conditions for your model using the setInitialConditions function.

## Properties

## Properties

## InitialValue - Initial value

scalar | vector | function handle
Initial value, returned as a scalar, vector, or function handle. For details, see setInitialConditions.

Data Types: double | function_handle
Complex Number Support: Yes

## InitialDerivative - Initial derivative

scalar | vector | function handle
Initial derivative, returned as a scalar, vector, or function handle. For details, see setInitialConditions.

Data Types: double | function_handle
Complex Number Support: Yes

## See Also

GeometricInitialConditions | findInitialConditions| setInitialConditions

## Topics

"Set Initial Conditions" on page 2-98
"View, Edit, and Delete Initial Conditions" on page 2-107
"Solve Problems Using PDEModel Objects" on page 2-2

Introduced in R2016b

## NodalStructuralICs Properties

Initial displacement and velocity at mesh nodes

## Description

A NodalStructuralICs object contains a description of the initial displacement and velocity at mesh nodes. A StructuralModel container has a vector of GeometricStructuralICs objects in its InitialConditions.StructuralICAssignments property.

To set initial conditions for your structural model, use the structuralIC function.

## Properties

Properties
InitialDisplacement - Initial displacement
numeric vector | function handle
Initial displacement, returned as a numeric vector or function handle. For details, see structuralIC.
Data Types: double | function_handle
InitialVelocity - Initial velocity
numeric vector | function handle
Initial velocity, returned as a numeric vector or function handle. For details, see structuralIC.
Data Types: double | function_handle

## See Also

GeometricStructuralICs Properties | findStructuralIC | structuralIC
Introduced in R2018a

## NodalThermallCs Properties

Initial temperature at mesh nodes

## Description

A NodalThermal ICs object contains a description of the initial temperatures at mesh nodes. A ThermalModel container has a vector of NodalThermalICs objects in its InitialConditions.ThermalICAssignments property.

Set initial conditions for your model using the thermalIC function.

## Properties

Properties
InitialTemperature - Initial temperature
scalar | vector | function handle
Initial temperature, returned as a scalar, vector, or function handle. For details, see thermalIC.
Data Types: double | function_handle

## See Also

GeometricThermalICs | findThermalIC | thermalIC
Introduced in R2017a

## geometryFromEdges

Package: pde
Create 2-D geometry from decomposed geometry matrix

## Syntax

geometryFromEdges (model, g)
pg = geometryFromEdges(model,g)

## Description

geometryFromEdges (model, g ) adds the 2-D geometry described in g to the model container.
$\mathrm{pg}=$ geometryFromEdges(model, g ) additionally returns the geometry to the Workspace.

## Examples

## Geometry from Decomposed Solid Geometry

Create a decomposed solid geometry model and include it in a PDE model.
Create a default scalar PDE model.
model = createpde;
Define a circle in a rectangle, place these in one matrix, and create a set formula that subtracts the circle from the rectangle.

```
R1 = [3,4,-1,1,1,-1,0.5,0.5,-0.75,-0.75]';
C1 = [1,0.5,-0.25,0.25]';
C1 = [C1;zeros(length(R1) - length(C1),1)];
gm = [R1,C1];
sf = 'R1-C1';
```

Create the geometry.

```
ns = char('R1','C1');
ns = ns';
g = decsg(gm,sf,ns);
```

Include the geometry in the model and plot it.

```
geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
axis equal
xlim([-1.1,1.1])
```



## Predefined Geometry Functions

The toolbox provides the several geometry functions. Specify them by using the following function handles.
model = createpde;
$\mathrm{g}=$ geometryFromEdges(model,@cardg); pdegplot(model)

clear model
model = createpde;
g = geometryFromEdges(model, @circleg);
pdegplot(model)

clear model
model = createpde;
g = geometryFromEdges(model,@cirsg); pdegplot(model)

clear model
model = createpde;
g = geometryFromEdges(model, @crackg); pdegplot(model)

clear model
model = createpde;
g = geometryFromEdges(model, @lshapeg); pdegplot(model)

clear model
model = createpde;
g = geometryFromEdges(model,@scatterg); pdegplot(model)

clear model
model = createpde;
$\mathrm{g}=$ geometryFromEdges(model,@squareg);
pdegplot(model)


## Input Arguments

## model - Model object

PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or ElectromagneticModel object.
Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

## g - Geometry description

decomposed geometry matrix | name of a geometry function | handle to a geometry function
Geometry description, specified as a decomposed geometry matrix, as the name of a geometry function, or as a handle to a geometry function. For details about a decomposed geometry matrix, see decsg.

A geometry function must return the same result for the same input arguments in every function call. Thus, it must not contain functions and expressions designed to return a variety of results, such as random number generators.

Example: geometryFromEdges(model, @circleg)
Data Types: double | char | function_handle

## Output Arguments

## pg - Geometry object

AnalyticGeometry object
Geometry object, returned as an AnalyticGeometry object. This object is stored in model. Geometry.

## See Also

AnalyticGeometry | PDEModel

## Topics

"Solve PDEs with Constant Boundary Conditions" on page 2-119
"Solve Problems Using PDEModel Objects" on page 2-2
Introduced in R2015a

## geometryFromMesh

Package: pde
Create 2-D or 3-D geometry from mesh

## Syntax

geometryFromMesh(model, nodes, elements)
geometryFromMesh(model, nodes, elements, ElementIDToRegionID)
[G,mesh] = geometryFromMesh(model,nodes,elements)

## Description

geometryFromMesh(model, nodes,elements) creates geometry within model. For planar and volume triangulated meshes, this function also incorporates nodes in the model.Mesh.Nodes property and elements in the model.Mesh.Elements property. To replace the imported mesh with a mesh having a different target element size, use generateMesh.

If elements represents a surface triangular mesh that bounds a closed volume, then geometryFromMesh creates the geometry, but does not incorporate the mesh into the corresponding properties of the model. To generate a mesh in this case, use generateMesh.
geometryFromMesh(model, nodes,elements,ElementIDToRegionID) creates a multidomain geometry. Here, ElementIDToRegionID specifies the subdomain IDs for each element of the mesh.
[G,mesh] = geometryFromMesh(model, nodes,elements) returns a handle G to the geometry in model. Geometry, and a handle mesh to the mesh in model. Mesh.

## Examples

## Geometry from Volume Mesh

Import a tetrahedral mesh into a PDE model.
Load a tetrahedral mesh into your workspace. The tetmesh file ships with your software. Put the data in the correct shape for geometryFromMesh.

```
load tetmesh
nodes = X';
elements = tet';
```

Create a PDE model and import the mesh into the model.

```
model = createpde();
geometryFromMesh(model,nodes,elements);
```

View the geometry and face numbers.

```
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
```



## Geometry from Convex Hull

Create a geometric block from the convex hull of a mesh grid of points.
Create a 3-D mesh grid.
[ $x, y, z]=$ meshgrid(-2:4:2);
Create the convex hull.
$x=x(:)$;
$y=y(:)$;
z = z(:);
K = convhull ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ );
Put the data in the correct shape for geomet ryFromMesh.

```
nodes = [x';y';z'];
elements = K';
```

Create a PDE model and import the mesh.
model = createpde();
geometryFromMesh(model, nodes, elements);
View the geometry and face numbers.

```
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
```



## Geometry from alphaShape

Create a 3-D geometry using the MATLAB alphaShape function. First, create an alphaShape object of a block with a cylindrical hole. Then import the geometry into a PDE model from the alphaShape boundary.

Create a 2-D mesh grid.
[xg,yg] = meshgrid(-3:0.25:3);
xg = xg(:);
$\mathrm{yg}=\mathrm{yg}(:)$;
Create a unit disk. Remove all the mesh grid points that fall inside the unit disk, and include the unit disk points.
$\mathrm{t}=(\mathrm{pi} / 24: \mathrm{pi} / 24: 2 * \mathrm{pi})^{\prime} ;$
$x=\cos (t)$;
$y=\sin (t)$;
circShp $=$ alphaShape $(x, y, 2)$;
in = inShape(circShp,xg,yg);
xg $=[x g(\sim i n) ; ~ c o s(t)] ;$
$\mathrm{yg}=[\mathrm{yg}(\sim \mathrm{in}) ; \mathrm{sin}(\mathrm{t})]$;

Create 3-D copies of the remaining mesh grid points, with the z-coordinates ranging from 0 through 1. Combine the points into an alphaShape object.

```
zg = ones(numel(xg),1);
xg = repmat(xg,5,1);
yg = repmat(yg,5,1);
zg = zg*(0:.25:1);
zg = zg(:);
shp = alphaShape(xg,yg,zg);
```

Obtain a surface mesh of the alphaShape object.
[elements,nodes] = boundaryFacets(shp);
Put the data in the correct shape for geometryFromMesh.

```
nodes = nodes';
elements = elements';
```

Create a PDE model and import the surface mesh.

```
model = createpde();
```

geometryFromMesh(model, nodes,elements);

View the geometry and face numbers.

```
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
```



To use the geometry in an analysis, create a volume mesh.
generateMesh(model);

## 2-D Multidomain Geometry

Create a 2-D multidomain geometry from a mesh.
Load information about nodes, elements, and element-to-domain correspondence into your workspace. The file MultidomainMesh2D ships with your software.
load MultidomainMesh2D
Create a PDE model.
model = createpde;
Import the mesh into the model.
geometryFromMesh(model, nodes,elements,ElementIdToRegionId);
View the geometry and face numbers.
pdegplot(model,'FaceLabels','on')


## 3-D Multidomain Geometry

Create a 3-D multidomain geometry from a mesh.
Load information about nodes, elements, and element-to-domain correspondence into your workspace. The file MultidomainMesh3D ships with your software.
load MultidomainMesh3D
Create a PDE model.
model = createpde;
Import the mesh into the model.
geometryFromMesh(model, nodes, elements, ElementIdToRegionId);
View the geometry and cell numbers.

```
pdegplot(model,'CellLabels','on')
```



## Input Arguments

model - Model object
PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or ElectromagneticModel object.
Example: model = createpde (3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

## nodes - Mesh nodes

matrix of real numbers
Mesh nodes, specified as a matrix of real numbers. The matrix size is 2-by-Nnodes for a 2-D case and 3-by-Nnodes for a 3-D case. Nnodes is the number of nodes in the mesh.

Node $j$ has $x, y$, and $z$ coordinates in column $j$ of nodes.
Data Types: double

## elements - Mesh elements

3-by-Nelements integer matrix | 4-by-Nelements integer matrix | 6-by-Nelements integer matrix | 10-by-Nelements integer matrix

Mesh elements, specified as an integer matrix with $3,4,6$, or 10 rows, and Nelements columns, where Nelements is the number of elements in the mesh.

- Linear planar mesh or linear mesh on the geometry surface has size 3-by-Nelements. Each column of elements contains the indices of the triangle corner nodes for a surface element. In this case, the resulting geometry does not contain a full mesh. Create the mesh using the generateMesh function.
- Linear elements have size 4-by-Nelements. Each column of elements contains the indices of the tetrahedral corner nodes for an element.
- Quadratic planar mesh or quadratic mesh on the geometry surface has size 6-by-Nelements. Each column of elements contains the indices of the triangle corner nodes and edge centers for a surface element. In this case, the resulting geometry does not contain a full mesh. Create the mesh using the generateMesh function.
- Quadratic elements have size 10-by-Nelements. Each column of elements contains the indices of the tetrahedral corner nodes and the tetrahedral edge midpoint nodes for an element.

For details on node numbering for linear and quadratic elements, see "Mesh Data" on page 2-153.

## Data Types: double

## ElementIDToRegionID - Domain information for each element

vector of positive integers
Domain information for each mesh element, specified as a vector of positive integers. Each element is an ID of a geometric region for an element of the mesh. The length of this vector equals the number of elements in the mesh.
Data Types: double

## Output Arguments

## G - Geometry

handle to model. Geometry
Geometry, returned as a handle to model . Geometry. This geometry is of class DiscreteGeometry.

## mesh - Finite element mesh

handle to model. Mesh
Finite element mesh, returned as a handle to model. Mesh.

- If elements is a 3-by-Nelements matrix representing a surface mesh, then mesh is []. In this case, create a mesh for the geometry using the generateMesh function.
- If elements is a matrix with more than three rows representing a volume mesh, then mesh has the same nodes and elements as the inputs. You can get a different mesh for the geometry by using the generateMesh function.


## See Also

DiscreteGeometry | alphaShape | generateMesh | importGeometry

## Topics

"STL File Import" on page 2-31
"Solve Problems Using PDEModel Objects" on page 2-2
Introduced in R2015b

## HeatSourceAssignment Properties

Heat source assignments

## Description

A HeatSourceAssignment object contains a description of the heat sources for a thermal model. A ThermalModel container has a vector of HeatSourceAssignment objects in its HeatSources.HeatSourceAssignments property.

Create heat source assignments for your thermal model using the internalHeatSource function.

## Properties

## Properties

RegionType - Region type
'Face'|'Cell'
Region type, returned as 'Face' for a 2-D region, or 'Cell' for a 3-D region.
Data Types: char \| string

## RegionID - Region ID

vector of positive integers
Region ID, returned as a vector of positive integers. To determine which ID corresponds to which portion of the geometry, use the pdegplot function. Set the 'FaceLabels ' name-value pair to 'on'.

Data Types: double

## HeatSource - Heat source value

number | function handle
Heat source value, returned as a number or a function handle. A heat source with a negative value is called a heat sink.

Data Types: double | function_handle

## See Also

findHeatSource |internalHeatSource
Introduced in R2017a

## hyperbolic

(Not recommended) Solve hyperbolic PDE problem

Note hyperbolic is not recommended. Use solvepde instead.

## Syntax

u = hyperbolic(u0,ut0,tlist,model, c,a,f,d)
$u=$ hyperbolic(u0,ut0,tlist, $b, p, e, t, c, a, f, d)$
$u=$ hyperbolic(u0, ut0, tlist, Kc, Fc, B, ud, M)
$\mathrm{u}=$ hyperbolic( $\qquad$ , rtol)
u = hyperbolic( $\qquad$ ,rtol,atol)
u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M, $\qquad$ ,'DampingMatrix',D)
u = hyperbolic( $\qquad$ ,'Stats','off')

## Description

Hyperbolic equation solver
Solves PDE problems of the type

$$
d \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u=f
$$

on a 2-D or 3-D region $\Omega$, or the system PDE problem

$$
\mathbf{d} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

The variables $c, a, f$, and $d$ can depend on position, time, and the solution $u$ and its gradient.
$u=$ hyperbolic (u0, ut0, tlist, model $, \mathrm{c}, \mathrm{a}, \mathrm{f}, \mathrm{d})$ produces the solution to the FEM formulation of the scalar PDE problem

$$
d \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u=f
$$

on a 2-D or 3-D region $\Omega$, or the system PDE problem

$$
\mathbf{d} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

with geometry, mesh, and boundary conditions specified in model, with initial value u0 and initial derivative with respect to time ut0. The variables $c, a, f$, and $d$ in the equation correspond to the function coefficients $\mathrm{c}, \mathrm{a}, \mathrm{f}$, and d respectively.
$\mathrm{u}=$ hyperbolic (u0, ut0, tlist, $\mathrm{b}, \mathrm{p}, \mathrm{e}, \mathrm{t}, \mathrm{c}, \mathrm{a}, \mathrm{f}, \mathrm{d}$ ) solves the problem using boundary conditions $b$ and finite element mesh specified in $[p, e, t]$.
$u=$ hyperbolic(u0, ut0, tlist, Kc, Fc, $B, u d, M)$ solves the problem based on finite element matrices that encode the equation, mesh, and boundary conditions.
$\mathrm{u}=$ hyperbolic( $\qquad$ ,rtol) and $u=$ hyperbolic( $\qquad$ , rtol, atol) modify the solution process by passing to the ODE solver a relative tolerance rtol, and optionally an absolute tolerance atol.
$\mathrm{u}=$ hyperbolic(u0,ut0,tlist, Kc, Fc, B, ud, M, $\qquad$ ,'DampingMatrix',D) modifies the problem to include a damping matrix D .
u = hyperbolic( $\qquad$ , 'Stats', 'off') turns off the display of internal ODE solver statistics during the solution process.

## Examples

## Hyperbolic Equation

Solve the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\Delta u
$$

on the square domain specified by squareg.
Create a PDE model and import the geometry.

```
model = createpde;
geometryFromEdges(model,@squareg);
pdegplot(model,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal
```



Set Dirichlet boundary conditions $u=0$ for $x= \pm 1$, and Neumann boundary conditions

$$
\nabla u \cdot \mathbf{n}=\mathbf{0}
$$

for $y= \pm 1$. (The Neumann boundary condition is the default condition, so the second specification is redundant.)
applyBoundaryCondition(model,'dirichlet','Edge',[2,4],'u', 0);
applyBoundaryCondition(model,'neumann','Edge',[1,3],'g',0);
Set the initial conditions
u0 = 'atan(cos(pi/2*x))';
ut0 = '3*sin(pi*x).*exp(cos(pi*y))';
Set the solution times.
tlist = linspace(0,5,31);
Give coefficients for the problem.
c = 1;
a $=0$;
f = 0;
d = 1;
Generate a mesh and solve the PDE.

```
generateMesh(model,'Geometric0rder','linear','Hmax',0.1);
u1 = hyperbolic(u0,ut0,tlist,model,c,a,f,d);
4 6 0 \text { successful steps}
51 failed attempts
1024 function evaluations
l partial derivatives
135 LU decompositions
1023 solutions of linear systems
```

Plot the solution at the first and last times.
figure
pdeplot(model,'XYData',u1(:,1))

figure
pdeplot(model,'XYData',u1(:,end))


For a version of this example with animation, see "Wave Equation on Square Domain" on page 3-251.

## Hyperbolic Equation using Legacy Syntax

Solve the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\Delta u
$$

on the square domain specified by squareg, using a geometry function to specify the geometry, a boundary function to specify the boundary conditions, and using initmesh to create the finite element mesh.

Specify the geometry as @squareg and plot the geometry.

```
g = @squareg;
pdegplot(g,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal
```



Set Dirichlet boundary conditions $u=0$ for $x= \pm 1$, and Neumann boundary conditions

$$
\nabla u \cdot \mathbf{n}=\mathbf{0}
$$

for $y= \pm 1$. (The Neumann boundary condition is the default condition, so the second specification is redundant.)

The squareb3 function specifies these boundary conditions.
b = @squareb3;
Set the initial conditions

```
u0 = 'atan(cos(pi/2*x))';
ut0 = '3*sin(pi*x).*exp(cos(pi*y))';
```

Set the solution times.
tlist $=$ linspace(0,5,31);
Give coefficients for the problem.
c = 1;
a = 0;
$\mathrm{f}=0$;
d = 1;
Create a mesh and solve the PDE.

```
[p,e,t] = initmesh(g);
u = hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d);
4 6 2 ~ s u c c e s s f u l ~ s t e p s
70 failed attempts
1066 function evaluations
1 partial derivatives
156 LU decompositions
1065 solutions of linear systems
```

Plot the solution at the first and last times.
figure
pdeplot(p,e,t,'XYData',u(:,1))

figure
pdeplot(p,e,t,'XYData',u(:,end))


For a version of this example with animation, see "Wave Equation on Square Domain" on page 3-251.

## Hyperbolic Solution Using Finite Element Matrices

Solve a hyperbolic problem using finite element matrices.
Create a model and import the BracketWithHole.stl geometry.

```
model = createpde();
```

importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view (30, 30)
title('Bracket with Face Labels')

## Bracket with Face Labels


figure
pdegplot(model,' FaceLabels', 'on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

## Bracket with Face Labels, Rear View



Set coefficients $c=1, a=0, f=0.5$, and $d=1$.
c = 1;
a = 0;
f = 0.5;
$\mathrm{d}=1$;
Generate a mesh for the model.
generateMesh(model);
Create initial conditions and boundary conditions. The boundary condition for the rear face is Dirichlet with value 0 . All other faces have the default boundary condition. The initial condition is $u(0)=0, d u / d t(0)=x / 2$. Give the initial condition on the derivative by calculating the $x$ position of each node in xpts, and passing $\times / 2$.

```
applyBoundaryCondition(model,'Face',4,'u',0);
u0 = 0;
xpts = model.Mesh.Nodes(1,:);
ut0 = xpts(:)/2;
```

Create the associated finite element matrices.
[Kc,Fc,B,ud] = assempde(model, c,a,f);
[~,M,~] = assema(model,0,d,f);
Solve the PDE for times from 0 to 2 .

```
tlist = linspace(0,5,50);
u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M);
1493 successful steps
70 failed attempts
2972 function evaluations
l partial derivatives
276 LU decompositions
2 9 7 1 ~ s o l u t i o n s ~ o f ~ l i n e a r ~ s y s t e m s
```

View the solution at a few times. Scale all the plots to have the same color range by using the caxis command.

```
umax = max(max(u));
umin = min(min(u));
subplot(2,2,1)
pdeplot3D(model,'ColorMapData',u(:,5))
caxis([umin umax])
title('Time 1/2')
subplot(2,2,2)
pdeplot3D(model,'ColorMapData',u(:,10))
caxis([umin umax])
title('Time 1')
subplot(2,2,3)
pdeplot3D(model,'ColorMapData',u(:,15))
caxis([umin umax])
title('Time 3/2')
subplot(2,2,4)
pdeplot3D(model,'ColorMapData',u(:,20))
caxis([umin umax])
title('Time 2')
```



The solution seems to have a frequency of one, because the plots at times $1 / 2$ and $3 / 2$ show maximum values, and those at times 1 and 2 show minimum values.

## Hyperbolic Equation with Damping

Solve a hyperbolic problem that includes damping. You must use the finite element matrix form to use damping.

Create a model and import the BracketWithHole.stl geometry.

```
model = createpde();
```

importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view (30,30)
title('Bracket with Face Labels')

## Bracket with Face Labels


figure
pdegplot(model,' FaceLabels', 'on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

## Bracket with Face Labels, Rear View



Set coefficients $c=1, a=0, f=0.5$, and $d=1$.
c = 1;
a = 0;
f = 0.5;
$\mathrm{d}=1$;
Generate a mesh for the model.
generateMesh(model);
Create initial conditions and boundary conditions. The boundary condition for the rear face is Dirichlet with value 0 . All other faces have the default boundary condition. The initial condition is $u(0)=0, d u / d t(0)=x / 2$. Give the initial condition on the derivative by calculating the $x-$ position of each node in xpts, and passing $\times / 2$.

```
applyBoundaryCondition(model,'Face',4,'u',0);
u0 = 0;
xpts = model.Mesh.Nodes(1,:);
ut0 = xpts(:)/2;
```

Create the associated finite element matrices.
[Kc,Fc,B,ud] = assempde(model, c,a,f);
[~,M,~] = assema(model,0,d,f);
Use a damping matrix that is $10 \%$ of the mass matrix.

Damping $=0.1 * M$;
Solve the PDE for times from 0 to 2 .

```
tlist = linspace(0,5,50);
u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M,'DampingMatrix',Damping);
1 4 4 1 ~ s u c c e s s f u l ~ s t e p s
70 failed attempts
2844 function evaluations
1 partial derivatives
288 LU decompositions
2 8 4 3 \text { solutions of linear systems}
```

Plot the maximum value at each time. The oscillations damp slightly as time increases.
plot(max(u))
xlabel('Time')
ylabel('Maximum value')
title('Maximum of Solution')

Maximum of Solution


## Input Arguments

## u0 - Initial condition

vector | character vector $\mid$ character array $\mid$ string scalar \| string vector

Initial condition, specified as a scalar, vector of nodal values, character vector, character array, string scalar, or string vector. The initial condition is the value of the solution $u$ at the initial time, specified as a column vector of values at the nodes. The nodes are either $p$ in the [ $p, e, t$ ] data structure, or are model. Mesh. Nodes.

- If the initial condition is a constant scalar $v$, specify $u 0$ as $v$.
- If there are $N p$ nodes in the mesh, and $N$ equations in the system of PDEs, specify u0 as a column vector of $N p^{*} N$ elements, where the first Np elements correspond to the first component of the solution $u$, the second $N p$ elements correspond to the second component of the solution $u$, etc.
- Give a text expression of a function, such as 'x.^2 + 5* $\cos (x . * y)^{\prime}$. If you have a system of $N>1$ equations, give a text array such as

```
char('x.^2 + 5* cos(x.*y)',...
 'tanh(x.*y)./(1+z.^2)')
```

Example: $x .{ }^{\wedge} 2+5^{*} \cos \left(y .{ }^{*} x\right)$
Data Types: double | char | string
Complex Number Support: Yes

## ut0 - Initial derivative

vector | character vector | character array | string scalar | string vector
Initial derivative, specified as a vector, character vector, character array, string scalar, or string vector. The initial gradient is the value of the derivative of the solution $u$ at the initial time, specified as a vector of values at the nodes. The nodes are either $p$ in the $[p, e, t]$ data structure, or are model. Mesh.Nodes.

- If the initial derivative is a constant value $v$, specify $u 0$ as $v$.
- If there are $N p$ nodes in the mesh, and $N$ equations in the system of PDEs, specify ut0 as a vector of $N p * N$ elements, where the first $N p$ elements correspond to the first component of the solution $u$, the second $N p$ elements correspond to the second component of the solution $u$, etc.
- Give a text expression of a function, such as 'x.^2 + 5* $\cos (x . * y)$ '. If you have a system of $N>1$ equations, use a text array such as

```
char('x.^2 + 5* cos(x.*y)',...
 'tanh(x.*y)./(1+z.^2)')
Example: p(1,:).^2+5*cos(p(2,:).*p(1,:))
Data Types: double|char| string
Complex Number Support: Yes
```


## tlist - Solution times

real vector
Solution times, specified as a real vector. The solver returns the solution to the PDE at the solution times.

Example: 0:0.2:4
Data Types: double

## model - PDE model

PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

## c - PDE coefficient

scalar | matrix | character vector $\mid$ character array $\mid$ string scalar $\mid$ string vector $\mid$ coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. $c$ represents the $c$ coefficient in the scalar PDE

$$
d \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs

$$
\mathbf{d} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

Example: ' cosh (x+y.^2) '
Data Types: double|char|string|function_handle
Complex Number Support: Yes

## a - PDE coefficient

scalar $\mid$ matrix $\mid$ character vector $\mid$ character array $\mid$ string scalar $\mid$ string vector $\mid$ coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. a represents the $a$ coefficient in the scalar PDE

$$
d \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs

$$
\mathbf{d} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

Example: 2*eye (3)
Data Types: double | char|string|function_handle
Complex Number Support: Yes

## f - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. f represents the $f$ coefficient in the scalar PDE

$$
d \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs

$$
\mathbf{d} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double | char | string|function_handle Complex Number Support: Yes

## d - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. d represents the $d$ coefficient in the scalar PDE

$$
d \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs

$$
\mathbf{d} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

Example: 2*eye (3)
Data Types: double|char|string|function_handle
Complex Number Support: Yes

## b - Boundary conditions

boundary matrix | boundary file
Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double|char|string|function_handle

## p - Mesh points

matrix
Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [ $p, e, t$ ] Triples" on page 2-150.

Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

## e-Mesh edges

matrix
Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)

Data Types: double
t - Mesh triangles
matrix
Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: $[\mathrm{p}, \mathrm{e}, \mathrm{t}]=$ initmesh(gd)
Data Types: double

## Kc - Stiffness matrix

sparse matrix | full matrix
Stiffness matrix, specified as a sparse matrix or as a full matrix. See "Elliptic Equations" on page 593. Typically, Kc is the output of assempde.

## Fc - Load vector

vector
Load vector, specified as a vector. See "Elliptic Equations" on page 5-93. Typically, Fc is the output of assempde.

## B - Dirichlet nullspace

sparse matrix
Dirichlet nullspace, returned as a sparse matrix. See "Algorithms" on page 5-93. Typically, B is the output of assempde.

## ud - Dirichlet vector

vector
Dirichlet vector, returned as a vector. See "Algorithms" on page 5-93. Typically, ud is the output of assempde.

## M - Mass matrix

sparse matrix | full matrix
Mass matrix. specified as a sparse matrix or a full matrix. See "Elliptic Equations" on page 5-93.
To obtain the input matrices for pdeeig, hyperbolic or parabolic, run both assema and assempde:
[Kc,Fc,B,ud] = assempde(model, $\mathrm{C}, \mathrm{a}, \mathrm{f})$;
[~,M,~] = assema(model,0,d,f);

Note Create the M matrix using assema with d, not a, as the argument before f.

Data Types: double
Complex Number Support: Yes
rtol - Relative tolerance for ODE solver
1e-3 (default) | positive real
Relative tolerance for ODE solver, specified as a positive real.
Example: 2e-4
Data Types: double
atol - Absolute tolerance for ODE solver
1e-6 (default) | positive real
Absolute tolerance for ODE solver, specified as a positive real.
Example: 2e-7
Data Types: double

## D - Damping matrix

matrix
Damping matrix, specified as a matrix. D has the same size as the stiffness matrix Kc or the mass matrix M. When you include $D$, hyperbolic solves the following ODE for the variable $v$ :

$$
B^{T} M B \frac{d^{2} v}{d t^{2}}+B^{T} D B \frac{d v}{d t}+K v=F
$$

with initial condition $u 0$ and initial derivative ut0. Then hyperbolic returns the solution $u=B^{*} v+u d$.

For an example using D, see "Dynamics of Damped Cantilever Beam" on page 3-21.
Example: alpha*M + beta*K
Data Types: double
Complex Number Support: Yes

## Output Arguments

## u - PDE solution

matrix
PDE solution, returned as a matrix. The matrix is $N p * N$-by-T, where $N p$ is the number of nodes in the mesh, $N$ is the number of equations in the PDE ( $N=1$ for a scalar PDE), and T is the number of solution times, meaning the length of tlist. The solution matrix has the following structure.

- The first Np elements of each column in u represent the solution of equation 1 , then next Np elements represent the solution of equation 2 , etc. The solution $u$ is the value at the corresponding node in the mesh.
- Column i of $u$ represents the solution at time $t$ list (i).

To obtain the solution at an arbitrary point in the geometry, use pdeInterpolant.
To plot the solution, use pdeplot for 2-D geometry, or see "3-D Solution and Gradient Plots with MATLAB® Functions" on page 3-297.

## Algorithms

## Hyperbolic Equations

Partial Differential Equation Toolbox solves equations of the form

$$
m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

When the $d$ coefficient is 0 , but $m$ is not, the documentation calls this a hyperbolic equation, whether or not it is mathematically of the hyperbolic form.

Using the same ideas as for the parabolic equation, hyperbolic implements the numerical solution of

$$
m \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u=f
$$

for $\mathbf{x}$ in $\Omega$, where $\mathbf{x}$ represents a 2-D or 3-D point, with the initial conditions

$$
\begin{gathered}
u(\mathbf{x}, 0)=u_{0}(\mathbf{x}) \\
\frac{\partial u}{\partial t}(\mathbf{x}, 0)=v_{0}(\mathbf{x})
\end{gathered}
$$

for all $\mathbf{x}$ in $\Omega$, and usual boundary conditions. In particular, solutions of the equation $u_{t t}-c \Delta u=0$ are waves moving with speed $\sqrt{c}$.

Using a given mesh of $\Omega$, the method of lines yields the second order ODE system

$$
M \frac{d^{2} U}{d t^{2}}+K U=F
$$

with the initial conditions

$$
\begin{gathered}
U_{i}(0)=u_{0}\left(\mathbf{x}_{i}\right) \forall i \\
\frac{d}{d t} U_{i}(0)=v_{0}\left(\mathbf{x}_{i}\right) \forall i
\end{gathered}
$$

after we eliminate the unknowns fixed by Dirichlet boundary conditions. As before, the stiffness matrix $K$ and the mass matrix $M$ are assembled with the aid of the function assempde from the problems
$-\nabla \cdot(c \nabla u)+a u=f$ and $-\nabla \cdot(0 \nabla u)+m u=0$.
hyperbolic internally calls assema, assemb, and assempde to create finite element matrices corresponding to the problem. It calls ode15s to solve the resulting system of ordinary differential equations.

## Finite Element Basis for 3-D

The finite element method for 3-D geometry is similar to the 2-D method described in "Elliptic Equations" on page 5-93. The main difference is that the elements in 3-D geometry are tetrahedra, which means that the basis functions are different from those in 2-D geometry.

It is convenient to map a tetrahedron to a canonical tetrahedron with a local coordinate system ( $r, s, t$ ).


In local coordinates, the point $p 1$ is at $(0,0,0), p 2$ is at $(1,0,0), p 3$ is at $(0,1,0)$, and $p 4$ is at $(0,0,1)$.
For a linear tetrahedron, the basis functions are

$$
\begin{gathered}
\phi_{1}=1-r-s-t \\
\phi_{2}=r \\
\phi_{3}=s \\
\phi_{4}=t
\end{gathered}
$$

For a quadratic tetrahedron, there are additional nodes at the edge midpoints.


The corresponding basis functions are

$$
\begin{gathered}
\phi_{1}=2(1-r-s-t)^{2}-(1-r-s-t) \\
\phi_{2}=2 r^{2}-r \\
\phi_{3}=2 s^{2}-s \\
\phi_{4}=2 t^{2}-t \\
\phi_{5}=4 r(1-r-s-t) \\
\phi_{6}=4 r s \\
\phi_{7}=4 s(1-r-s-t) \\
\phi_{8}=4 t(1-r-s-t) \\
\phi_{9}=4 r t \\
\phi_{10}=4 s t
\end{gathered}
$$

As in the 2-D case, a 3-D basis function $\phi_{i}$ takes the value 0 at all nodes $j$, except for node $i$, where it takes the value 1.

## Systems of PDEs

Partial Differential Equation Toolbox software can also handle systems of $N$ partial differential equations over the domain $\Omega$. We have the elliptic system

$$
-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

the parabolic system

$$
\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

the hyperbolic system

$$
\mathbf{d} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

and the eigenvalue system

$$
-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\lambda \mathbf{d u}
$$

where $\mathbf{c}$ is an $N$-by- $N$-by- $D$-by- $D$ tensor, and $D$ is the geometry dimensions, 2 or 3 .
For 2-D systems, the notation $\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an $N$-by-1 matrix with an (i,1)-component

$$
\sum_{j=1}^{N}\left(\frac{\partial}{\partial x} c_{i, j, 1,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial x} c_{i, j, 1,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial y} c_{i, j, 2,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial y} c_{i, j, 2,2} \frac{\partial}{\partial y}\right) u_{j}
$$

For 3-D systems, the notation $\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an $N$-by-1 matrix with an (i,1)-component

$$
\begin{aligned}
& \sum_{j=1}^{N}\left(\frac{\partial}{\partial x} c_{i, j, 1,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial x} c_{i, j, 1,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial x} c_{i, j, 1,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\frac{\partial}{\partial y} c_{i, j, 2,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial y} c_{i, j, 2,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial y} c_{i, j, 2,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\frac{\partial}{\partial z} c_{i, j, 3,1} \frac{\partial}{\partial x}+\frac{\partial}{\partial z} c_{i, j, 3,2} \frac{\partial}{\partial y}+\frac{\partial}{\partial z} c_{i, j, 3,3} \frac{\partial}{\partial z}\right) u_{j}
\end{aligned}
$$

The symbols a and $\mathbf{d}$ denote $N$-by- $N$ matrices, and $\mathbf{f}$ denotes a column vector of length $N$.
The elements $c_{i j k l}, a_{i j}, d_{i j}$, and $f_{i}$ of $\mathbf{c}, \mathbf{a}, \mathbf{d}$, and $\mathbf{f}$ are stored row-wise in the MATLAB matrices $\mathrm{c}, \mathrm{a}, \mathrm{d}$, and $f$. The case of identity, diagonal, and symmetric matrices are handled as special cases. For the tensor $c_{i j k l}$ this applies both to the indices $i$ and $j$, and to the indices $k$ and $l$.

Partial Differential Equation Toolbox software does not check the ellipticity of the problem, and it is quite possible to define a system that is not elliptic in the mathematical sense. The preceding procedure that describes the scalar case is applied to each component of the system, yielding a symmetric positive definite system of equations whenever the differential system possesses these characteristics.

The boundary conditions now in general are mixed, i.e., for each point on the boundary a combination of Dirichlet and generalized Neumann conditions,

$$
\begin{aligned}
& \mathbf{h u}=\mathbf{r} \\
& \mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{q u}=\mathbf{g}+\mathbf{h}^{\prime} \mu
\end{aligned}
$$

For 2-D systems, the notation $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an $N$-by-1 matrix with (i,1)-component

$$
\sum_{j=1}^{N}\left(\cos (\alpha) c_{i, j, 1,1} \frac{\partial}{\partial x}+\cos (\alpha) c_{i, j, 1,2} \frac{\partial}{\partial y}+\sin (\alpha) c_{i, j, 2,1} \frac{\partial}{\partial x}+\sin (\alpha) c_{i, j, 2,2} \frac{\partial}{\partial y}\right) u_{j}
$$

where the outward normal vector of the boundary is $\mathbf{n}=(\cos (\alpha), \sin (\alpha))$.
For 3-D systems, the notation $\mathbf{n} \cdot(\mathbf{c} \otimes \nabla \mathbf{u})$ represents an $N$-by-1 matrix with (i,1)-component

$$
\begin{aligned}
& \sum_{j=1}^{N}\left(\cos (\alpha) c_{i, j, 1,1} \frac{\partial}{\partial x}+\cos (\alpha) c_{i, j, 1,2} \frac{\partial}{\partial y}+\cos (\alpha) c_{i, j, 1,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\cos (\beta) c_{i, j, 2,1} \frac{\partial}{\partial x}+\cos (\beta) c_{i, j, 2,2} \frac{\partial}{\partial y}+\cos (\beta) c_{i, j, 2,3} \frac{\partial}{\partial z}\right) u_{j} \\
& +\sum_{j=1}^{N}\left(\cos (\gamma) c_{i, j, 3,1} \frac{\partial}{\partial x}+\cos (\gamma) c_{i, j, 3,2} \frac{\partial}{\partial y}+\cos (\gamma) c_{i, j, 3,3} \frac{\partial}{\partial z}\right) u_{j}
\end{aligned}
$$

where the outward normal to the boundary is

$$
\mathbf{n}=(\cos (\alpha), \cos (\beta), \cos (\gamma))
$$

There are $M$ Dirichlet conditions and the $\mathbf{h}$-matrix is $M$-by- $N, M \geq 0$. The generalized Neumann condition contains a source $\mathbf{h}^{\prime} \mu$, where the Lagrange multipliers $\mu$ are computed such that the Dirichlet conditions become satisfied. In a structural mechanics problem, this term is exactly the reaction force necessary to satisfy the kinematic constraints described by the Dirichlet conditions.

The rest of this section details the treatment of the Dirichlet conditions and may be skipped on a first reading.

Partial Differential Equation Toolbox software supports two implementations of Dirichlet conditions. The simplest is the "Stiff Spring" model, so named for its interpretation in solid mechanics. See "Elliptic Equations" on page 5-93 for the scalar case, which is equivalent to a diagonal $\mathbf{h}$-matrix. For the general case, Dirichlet conditions
$h \mathbf{u}=\mathbf{r}$
are approximated by adding a term

$$
L\left(\mathbf{h}^{\prime} \mathbf{h} u-\mathbf{h}^{\prime} r\right)
$$

to the equations $\mathbf{K U}=\mathbf{F}$, where $L$ is a large number such as $10^{4}$ times a representative size of the elements of $K$.

When this number is increased, $\mathbf{h u}=\mathbf{r}$ will be more accurately satisfied, but the potential illconditioning of the modified equations will become more serious.

The second method is also applicable to general mixed conditions with nondiagonal $\mathbf{h}$, and is free of the ill-conditioning, but is more involved computationally. Assume that there are $N_{p}$ nodes in the mesh. Then the number of unknowns is $N_{p} N=N_{u}$. When Dirichlet boundary conditions fix some of the unknowns, the linear system can be correspondingly reduced. This is easily done by removing rows and columns when $u$ values are given, but here we must treat the case when some linear combinations of the components of $u$ are given, $\mathbf{h u}=\mathbf{r}$. These are collected into $H U=R$ where $H$ is an $M$-by- $N_{u}$ matrix and $R$ is an $M$-vector.

With the reaction force term the system becomes
$K U+H^{\prime} \mu=F$
$H U=R$.
The constraints can be solved for $M$ of the $U$-variables, the remaining called $V$, an $N_{u}$ - $M$ vector. The null space of $H$ is spanned by the columns of $B$, and $U=B V+u_{d}$ makes $U$ satisfy the Dirichlet conditions. A permutation to block-diagonal form exploits the sparsity of $H$ to speed up the following computation to find $B$ in a numerically stable way. $\mu$ can be eliminated by pre-multiplying by $B^{\prime}$ since, by the construction, $H B=0$ or $B^{\prime} H^{\prime}=0$. The reduced system becomes
$B^{\prime} K B V=B^{\prime} F-B^{\prime} K u_{d}$
which is symmetric and positive definite if $K$ is.

## See Also <br> solvepde

Introduced before R2006a

## importGeometry

Package: pde
Import 2-D or 3-D geometry from STL data

## Syntax

gm = importGeometry(geometryfile)
importGeometry(model, geometryfile)
gm = importGeometry(model, geometryfile)

## Description

gm = importGeometry(geometryfile) creates a geometry object from the specified STL geometry file.
importGeometry(model, geometryfile) creates a geometry object from the specified STL geometry file and includes the geometry in the model container.
gm = importGeometry(model, geometryfile) includes the geometry in the model container and also returns the geometry gm to the MATLAB workspace.

## Examples

## Import 3-D Geometry Without Creating Model

Create a geometry object from an STL geometry file.
gm = importGeometry('ForearmLink.stl');
Plot the geometry.
pdegplot(gm)


## Import Planar Geometry into Model

Import a planar STL geometry and include it in a PDE model. When importing a planar geometry, importGeometry converts it to a 2-D geometry by mapping it to the X-Y plane.

Create a PDEModel container.

```
model = createpde;
```

Import a geometry into the container.

```
importGeometry(model,'PlateHolePlanar.stl')
ans =
 DiscreteGeometry with properties:
 NumCells: 0
 NumFaces: 1
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]
```

Plot the geometry with the edge labels.

```
pdegplot(model,'EdgeLabels','on')
```



## Input Arguments

## model - Model object

PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or ElectromagneticModel object.
Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

## geometryfile - Path to STL file

character vector | string scalar
Path to STL file, specified as a character vector or a string scalar ending with the file extension '.stl' or '. STL'.

Example: '../geometries/Carburetor.stl'
Data Types: char \| string

## Output Arguments

gm - Geometry<br>DiscreteGeometry object

Geometry, returned as a DiscreteGeometry object. See DiscreteGeometry for details.

## Limitations

- importGeomet ry does not allow you to import a multidomain 2-D or 3-D geometry where subdomains have any common points. If the subdomains of the geometry have common points, the toolbox still treats these subdomains as disconnected, without any common interface between them. Each subdomain has its own mesh.

Because of this limitation, you cannot import nested 3-D geometries directly. As a workaround, you can import a mesh and then create a multidomain geometry from the mesh by using the geometryFromMesh function. See "Multidomain Geometry Reconstructed from Mesh" on page 267.

## Tips

- The STL format approximates the boundary of a CAD geometry by a collection of triangles, and the importGeometry function reconstructs the faces and edges from this data. Reconstruction from STL data is not precise and can result in a loss of edges and, therefore, the merging of adjacent faces. Typically, lost edges are the edges between two adjacent faces meeting at a small angle, or smooth edges bounding blend surfaces. Usually, the loss of such edges does not affect the analysis workflow.

- Because STL geometries are only approximations of the original CAD geometries, the areas and volumes of the STL and CAD geometries can differ.


## See Also

DiscreteGeometry | ElectromagneticModel | PDEModel | StructuralModel | ThermalModel | geometryFromMesh | pdegplot

## Topics

"STL File Import" on page 2-31
"Multidomain Geometry Reconstructed from Mesh" on page 2-67
"Sphere in Cube" on page 2-59
"Geometry from Triangulated Mesh" on page 2-47

Introduced in R2015a

## initmesh

Package: pde
Create initial 2-D mesh

Note This page describes the legacy workflow. New features might not be compatible with the legacy workflow. For the corresponding step in the recommended workflow, see generateMesh.

## Syntax

[p,e,t] = initmesh(g)
[p,e,t] = initmesh(g,Name,Value)

## Description

$[\mathrm{p}, \mathrm{e}, \mathrm{t}]=\operatorname{initmesh}(\mathrm{g})$ generates a triangular mesh for a 2-D geometry. The function uses a Delaunay triangulation algorithm.
[ $\mathrm{p}, \mathrm{e}, \mathrm{t}$ ] = initmesh( g, Name, Value) generates a 2-D mesh using one or more Name, Value pair arguments.

## Examples

## Initial Mesh for L-shaped Membrane

Generate a triangular mesh of the L-shaped membrane.
[p,e,t] = initmesh('lshapeg');
Plot the mesh.
pdemesh(p,e,t)


## Maximum Mesh Edge Length

Generate a triangular mesh of the L-shaped membrane with the target maximum mesh edge length of 0.1.
[p,e,t] = initmesh('lshapeg','Hmax', 0.1);
Plot the mesh.
pdemesh ( $\mathrm{p}, \mathrm{e}, \mathrm{t}$ )


## Input Arguments

## g-Geometry description

decomposed geometry matrix | geometry function | handle to geometry function
Geometry description, specified as a decomposed geometry matrix, a geometry function, or a handle to the geometry function. For details about a decomposed geometry matrix, see decsg. For details about a geometry function, see "Parametrized Function for 2-D Geometry Creation" on page 2-10.

A geometry function must return the same result for the same input arguments in every function call. Thus, it must not contain functions and expressions designed to return a variety of results, such as random number generators.

Data Types: double|char|string|function_handle

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: [p,e,t] = initmesh('lshapeg','Hmax',0.1);

## Hmax - Target maximum mesh edge length

positive real number

Target maximum mesh edge length, specified as the comma-separated pair consisting of 'Hmax' and a positive real number.

Hmax is an approximate upper bound on the mesh edge lengths. initmesh estimate the default value of Hmax from overall dimensions of the geometry.

Small Hmax values let you create finer meshes, but mesh generation can take a very long time in this case. You can interrupt mesh generation by using Ctrl+C. Note that initmesh can take additional time to respond to the interrupt.
Example: $[\mathrm{p}, \mathrm{e}, \mathrm{t}]=$ initmesh(g,'Hmax',0.25);
Data Types: double

## Hgrad - Mesh growth rate

1.3 (default) | number strictly greater than 1 and less than 2

Mesh growth rate, specified as the comma-separated pair consisting of 'Hgrad ' and a number strictly greater than 1 and less than 2.
Example: [p,e,t] = initmesh(g,'Hgrad',1.5);
Data Types: double

## Box - Toggle to preserve bounding box

'off' (default)|'on'
Toggle to preserve bounding box, specified as the comma-separated pair consisting of 'Box' and ' on ' or 'off'. By turning on 'Box' you can get a good idea of how the mesh generation algorithm works within the bounding box.

Example: [p,e,t] = initmesh(g,'Box','on');
Data Types: char|string

## Init - Toggle to use edge triangulation

'off' (default)|'on'
Toggle to use edge triangulation, specified as the comma-separated pair consisting of 'Init ' and 'on' or 'off'. By turning on Init you can see the initial triangulation of the boundaries. For example, use these commands to determine the subdomain number $n$ of the point $x y$.

```
[p,e,t] = initmesh(g,'Hmax',Inf,'Init','on');
[uxy,tn,a2,a3] = tri2grid(p,t,zeros(size(p,2)), x,y);
n = t(4,tn);
```

If the point is outside the geometry, tn is NaN , and the command $\mathrm{n}=\mathrm{t}(4, \mathrm{tn})$ results in a failure.
Data Types: char \| string

## Jiggle - Toggle to call jigglemesh after creating the mesh

'mean' (default) | 'minimum'| 'on'|'off'
Toggle to call jigglemesh after creating the mesh, specified as the comma-separated pair consisting of 'Jiggle' and 'mean', 'minimum' 'on', or 'off'.

- 'mean' - call jigglemesh with the argument 'Opt' set to 'mean'.
- 'minimum' - call jigglemesh with the argument 'Opt' set to 'minimum'.
- 'on' - call jigglemesh with the argument 'Opt' set to 'off'.
- 'off' - do not call jigglemesh.

Example: [p,e,t] = initmesh(g,'Jiggle','minimum');
Data Types: char|string
JiggleIter - Maximum number of iterations for jigglemesh
10 (default) | positive integer
 'JiggleIter' and a positive integer.
Example: [p,e,t] = initmesh(g,'Jiggle','on','JiggleIter',50);
Data Types: double

## MesherVersion - Algorithm for generating initial mesh

'preR2013a' (default) | 'R2013a'
Algorithm for generating initial mesh, specified as the comma-separated pair consisting of 'MesherVersion' and either 'R2013a' or 'preR2013a'. The 'R2013a' algorithm runs faster, and can triangulate more geometries than the 'preR2013a' algorithm. Both algorithms use Delaunay triangulation.

Data Types: char|string

## Output Arguments

## p - Mesh points

2-by-Np matrix
Mesh points, returned as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k of $p$ consists of the $x$-coordinate of point $k$ in $p(1, k)$ and the $y$-coordinate of point $k$ in $p(2, k)$. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

## e-Mesh edges

7-by-Ne matrix
Mesh edges, returned as a 7-by-Ne matrix, where Ne is the number of boundary edges in the mesh. An edge is a pair of points in $p$ containing a boundary between subdomains, or containing an outer boundary. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

## t - Mesh elements

4-by-Nt matrix
Mesh elements, returned as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.
The $t(i, k)$, with i ranging from 1 through end - 1 , contain indices to the corner points of element k. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150. The last row, t (end, k) , contains the subdomain number of the element.

## References

[1] George, P. L. Automatic Mesh Generation - Application to Finite Element Methods. Wiley, 1991.

## See Also

adaptmesh|decsg|jigglemesh|refinemesh

## Topics

"Mesh Data as [p,e,t] Triples" on page 2-150
Introduced before R2006a

## internalHeatSource

Package: pde
Specify internal heat source for a thermal model

## Syntax

internalHeatSource(thermalmodel, heatSourceValue)
internalHeatSource(thermalmodel, heatSourceValue,RegionType,RegionID)
heatSource = internalHeatSource( $\qquad$ )

## Description

internalHeatSource(thermalmodel, heatSourceValue) specifies an internal heat source for the thermal model. This syntax declares that the entire geometry is a heat source.

Note Use internalHeatSource for specifying internal heat generators, that is, for specifying heat sources that belong to the geometry of the model. To specify a heat influx from an external source, use the thermalBC function with the HeatFlux parameter.
internalHeatSource(thermalmodel, heatSourceValue,RegionType,RegionID) specifies geometry regions of type RegionType with ID numbers in RegionID as heat sources. Always specify heatSourceValue first, then specify RegionType and RegionID.
heatSource = internalHeatSource( ___ ) returns the heat source object.

## Examples

## Specify Internal Heat Generation on Entire Geometry

Create a transient thermal model.

```
thermalmodel = createpde('thermal','transient');
```

Import the geometry.

```
gm = importGeometry(thermalmodel,'SquareBeam.STL');
```

Set thermal conductivity to 0.2 , mass density to $2700 \mathrm{e}-9$, and specific heat to 920 .

```
thermalProperties(thermalmodel,'ThermalConductivity',0.2, ...
 'MassDensity',2700e-9, ...
 'SpecificHeat',920)
ans =
 ThermalMaterialAssignment with properties:
RegionType: 'cell'
 RegionID: 1
```

```
ThermalConductivity: 0.2000
 MassDensity: 2.7000e-06
 SpecificHeat: 920
```

Specify that the entire geometry generates heat at the rate $2 \mathrm{e}-4$.

```
internalHeatSource(thermalmodel,2e-4)
ans =
 HeatSourceAssignment with properties:
 RegionType: 'cell'
 RegionID: 1
 HeatSource: 2.0000e-04
```


## Specify a Face of a 2-D Geometry as a Heat Source

Create a steady-state thermal model.

```
thermalModel = createpde('thermal','transient');
```

Create the geometry.

```
SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);
geometryFromEdges(thermalModel,dl);
```

Set thermal conductivity to 50 , mass density to 2500 , and specific heat to 600 .

```
thermalProperties(thermalModel,'ThermalConductivity',50, ...
 'MassDensity',2500, ...
 'SpecificHeat',600);
```

Specify that face 1 generates heat at 25 .

```
internalHeatSource(thermalModel, 25, 'Face',1)
ans =
 HeatSourceAssignment with properties:
 RegionType: 'face'
 RegionID: 1
 HeatSource: 25
```


## Specify Nonconstant Internal Heat Source

Use a function handle to specify an internal heat source that depends on coordinates.
Create a thermal model for transient analysis and include the geometry. The geometry is a rod with a circular cross section. The 2-D model is a rectangular strip whose $y$-dimension extends from the axis of symmetry to the outer surface, and whose $x$-dimension extends over the actual length of the rod.

```
thermalmodel = createpde('thermal','transient');
g = decsg([3 4 -1.5 1.5 1.5 -1.5 0 0 .2 .2]');
geometryFromEdges(thermalmodel,g);
```

The heat is generated within the rod due to the radioactive decay. Therefore, the entire geometry is an internal nonlinear heat source and can be represented by a function of the $y$-coordinate, for example, $q=2000 \mathrm{y}$.

```
q = @(location,state)2000*location.y;
```

Specify the internal heat source for the transient model.

```
internalHeatSource(thermalmodel,q)
ans =
 HeatSourceAssignment with properties:
 RegionType: 'face'
 RegionID: 1
 HeatSource: @(location,state)2000*location.y
```


## Specify Time-Dependent Internal Heat Source

Use a function handle to specify an internal heat source that depends on time.
Create a thermal model for transient analysis and include the geometry. The geometry is a rectangular strip.

```
thermalmodel = createpde('thermal','transient');
g = decsg([3 4 -1.5 1.5 1.5 -1.5 0 0 .2 .2]');
geometryFromEdges(thermalmodel,g);
```

Specify the thermal properties of the rod.

```
thermalProperties(thermalmodel,'ThermalConductivity',40,...
 'MassDensity',7800,...
 'SpecificHeat',500);
```

Specify the boundary conditions and initial temperature.

```
thermalBC(thermalmodel,'Edge',2,'Temperature',100);
thermalBC(thermalmodel,'Edge',3,...
 'ConvectionCoefficient',50,...
 'AmbientTemperature',100);
thermalIC(thermalmodel,0);
```

Specify that the entire geometry generates heat at the rate $20000 t$ during the first 500 seconds, and then the heat source turns off. For details, see Time-Dependent Heat Source Function on page 5-0
internalHeatSource(thermalmodel,@heatSource);
Generate the mesh, solve the model using the solution times from 0 to 50000 seconds, and plot the results.

```
generateMesh(thermalmodel);
tfinal = 50000;
tlist = 0:100:tfinal;
result = solve(thermalmodel,tlist);
T = result.Temperature;
figure
subplot(2,1,1)
pdeplot(thermalmodel,'XYData',T(:,6),'Contour','on')
axis equal
title(sprintf('Temperature at %g s',tlist(6)))
subplot(2,1,2)
pdeplot(thermalmodel,'XYData',T(:,end),'Contour','on')
axis equal
title(sprintf('Temperature at %g s',tfinal))
```



Always ensure that your function returns a matrix of NaN of the correct size when state.time is NaN . The solver properly recognizes a time-dependent problem by passing NaN state values and
looking for returned NaN values. Without this condition, the solver might fail or return incorrect results.

```
internalHeatSource(thermalmodel,@heatSourceInvalid);
result = solve(thermalmodel,tlist);
T = result.Temperature;
figure
subplot(2,1,1)
pdeplot(thermalmodel,'XYData',T(:,6),'Contour','on')
axis equal
title(sprintf('Temperature at %g s',tlist(6)))
subplot(2,1,2)
pdeplot(thermalmodel,'XYData',T(:,end),'Contour','on')
axis equal
title(sprintf('Temperature at %g s',tfinal))
```



## Time-Dependent Heat Source Function

```
function Q = heatSource(location,state)
 Q = zeros(1,numel(location.x));
if(isnan(state.time))
% Returning a NaN when time=NaN tells the solver that the heat source is a function of time.
 Q(1,:) = NaN;
 return
end
if state.time < 500
```

```
 Q(1,:) = 20000*state.time;
end
end
function Q = heatSourceInvalid(location,state) % No checks for NaN
 Q = zeros(1,numel(location.x));
if state.time < 500
 Q(1,:) = 20000*state.time;
end
end
```


## Input Arguments

## thermalmodel - Thermal model

ThermalModel object
Thermal model, specified as a ThermalModel object. The model contains the geometry, mesh, thermal properties of the material, internal heat source, boundary conditions, and initial conditions.
Example: thermalmodel = createpde('thermal','steadystate')

## RegionType - Geometric region type

'Face'| 'Cell'
Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Example: internalHeatSource(thermalmodel, 25, 'Cell',1)
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.

Example: internalHeatSource(thermalmodel,25, 'Cell',1:3)
Data Types: double
heatSourceValue - Heat source value
number | function handle
Heat source value, specified as a number or a function handle. Use a function handle to specify the internal heat source that depends on space, time, or temperature. For details, see "More About" on page 5-489.

Example: internalHeatSource(thermalmodel,25)
Data Types: double | function_handle

## Output Arguments

## heatSource - Handle to heat source

HeatSourceAssignment object
Handle to heat source, returned as a HeatSourceAssignment object. See HeatSourceAssignment Properties.
heatSourceValue associates the heat source value with the geometric region.

## More About

## Specifying Nonconstant Parameters of a Thermal Model

Use a function handle to specify these thermal parameters when they depend on space, temperature, and time:

- Thermal conductivity of the material
- Mass density of the material
- Specific heat of the material
- Internal heat source
- Temperature on the boundary
- Heat flux through the boundary
- Convection coefficient on the boundary
- Radiation emissivity coefficient on the boundary
- Initial temperature

For example, use function handles to specify the thermal conductivity, internal heat source, convection coefficient, and initial temperature for this model.

```
thermalProperties(model,'ThermalConductivity',@myfun)
internalHeatSource(model,' Face', 2,@myfun)
thermalBC(model,'Edge',[3,4], ...
 'ConvectionCoefficient',@myfun, ...
 'AmbientTemperature',27)
thermalIC(model,@myfun)
```

The function must be of the form:

```
function thermalVal = myfun(location,state)
```

The solver passes the location and state data to your function:

- location - A structure containing these fields:
- location. $x$ - The $x$-coordinate of the point or points
- location. y - The $y$-coordinate of the point or points
- location.z - For a 3-D or an axisymmetric geometry, the $z$-coordinate of the point or points
- location. r-For an axisymmetric geometry, the $r$-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

- location. $n x-x$-component of the normal vector at the evaluation point or points
- location.ny - y-component of the normal vector at the evaluation point or points
- location.nz - For a 3-D or an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- location.nz - For an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- state - A structure containing these fields for transient or nonlinear problems:
- state.u-Temperatures at the corresponding points of the location structure
- state.ux - Estimates of the $x$-component of temperature gradients at the corresponding points of the location structure
- state. uy - Estimates of the $y$-component of temperature gradients at the corresponding points of the location structure
- state. uz - For a 3-D or an axisymmetric geometry, estimates of the $z$-component of temperature gradients at the corresponding points of the location structure
- state. ur - For an axisymmetric geometry, estimates of the $r$-component of temperature gradients at the corresponding points of the location structure
- state. time - Time at evaluation points

Thermal material properties (thermal conductivity, mass density, and specific heat) and internal heat source get these data from the solver:

- location.x, location.y, location.z, location.r
- Subdomain ID
- state.u, state.ux, state.uy, state.uz, state.r, state.time

Boundary conditions (temperature on the boundary, heat flux, convection coefficient, and radiation emissivity coefficient) get these data from the solver:

- location.x, location.y, location.z, location.r
- location.nx, location.ny, location.nz, location.nr
- state.u, state.time

Initial temperature gets the following data from the solver:

- location.x, location.y, location.z, location. r
- Subdomain ID

For all thermal parameters, except for thermal conductivity, your function must return a row vector thermalVal with the number of columns equal to the number of evaluation points, for example, $\mathrm{M}=$ length(location.y).

For thermal conductivity, your function must return a matrix thermalVal with number of rows equal to 1 , Ndim, Ndim* (Ndim+1)/2, or Ndim*Ndim, where Ndim is 2 for 2-D problems and 3 for 3-D problems. The number of columns must equal the number of evaluation points, for example, $\mathrm{M}=$ length(location.y). For details about dimensions of the matrix, see "c Coefficient for specifyCoefficients" on page 2-76.

If properties depend on the time or temperature, ensure that your function returns a matrix of NaN of the correct size when state. u or state. time are NaN. Solvers check whether a problem is time dependent by passing NaN state values and looking for returned NaN values.

## See Also

HeatSourceAssignment Properties | thermalBC | thermalProperties

Introduced in R2017a

## interpolateAcceleration

Package: pde
Interpolate acceleration at arbitrary spatial locations for all time or frequency steps for dynamic structural model

## Syntax

```
intrpAccel = interpolateAcceleration(structuralresults,xq,yq)
intrpAccel = interpolateAcceleration(structuralresults,xq,yq,zq)
intrpAccel = interpolateAcceleration(structuralresults,querypoints)
```


## Description

intrpAccel = interpolateAcceleration(structuralresults, $\mathrm{xq}, \mathrm{yq}$ ) returns the interpolated acceleration values at the 2-D points specified in $x q$ and $y q$ for all time or frequency steps.
intrpAccel = interpolateAcceleration(structural results, $x q, y q, z q$ ) uses the 3-D points specified in $\mathrm{xq}, \mathrm{yq}$, and zq .
intrpAccel = interpolateAcceleration(structuralresults,querypoints) uses the points specified in querypoints.

## Examples

## Interpolate Acceleration for 3-D Structural Dynamic Problem

Interpolate acceleration at the geometric center of a beam under a harmonic excitation
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel,'Hmax',0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel,'Displacement', [0;0;0], 'Velocity', [0;0;0]);
Solve the model.
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);
Interpolate acceleration at the geometric center of the beam.

```
coordsMidSpan = [0;0;0.005];
intrpAccel = interpolateAcceleration(structuralresults,coordsMidSpan);
```

Plot the y-component of acceleration of the geometric center of the beam.
figure
plot(structuralresults. SolutionTimes,intrpAccel.ay)
title('Y-Acceleration of the Geometric Center of the Beam')


## Input Arguments

structuralresults - Solution of dynamic structural analysis problem
TransientStructuralResults object|FrequencyStructuralResults object
Solution of the dynamic structural analysis problem, specified as a TransientStructuralResults or FrequencyStructuralResults object. Create structuralresults by using the solve function.

Example: structuralresults $=$ solve(structuralmodel,tlist)
$\mathrm{xq}-\mathrm{x}$-coordinate query points
real array
$x$-coordinate query points, specified as a real array. interpolateAcceleration evaluates accelerations at the 2-D coordinate points [xq(i), $\mathrm{yq}(\mathrm{i})$ ] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. Therefore, $x q, y q$, and (if present) $z q$ must have the same number of entries.
interpolateAcceleration converts the query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) zq (: ). The function returns accelerations as an FEStruct object with the properties containing vectors of the same size as these column vectors. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use the reshape function. For example, use intrpAccel = reshape(intrpAccel.ux, size(xq)).

## Data Types: double

$y q-y$-coordinate query points
real array
$y$-coordinate query points, specified as a real array. interpolateAcceleration evaluates accelerations at the 2-D coordinate points [xq(i), $\mathrm{yq}(\mathrm{i})$ ] or at the 3-D coordinate points [ $x q(i), y q(i), z q(i)]$. Therefore, $x q, y q$, and (if present) $z q$ must have the same number of entries. Internally, interpolateAcceleration converts the query points to the column vector $\mathrm{yq}(:)$.

## Data Types: double

## zq - z-coordinate query points

real array
$z$-coordinate query points, specified as a real array. interpolateAcceleration evaluates accelerations at the 3-D coordinate points [xq(i),yq(i), zq(i)]. Therefore, $x q, y q$, and $z q$ must have the same number of entries. Internally, interpolateAcceleration converts the query points to the column vector zq(:).

## Data Types: double

querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D geometry. interpolateAcceleration evaluates accelerations at the coordinate points querypoints (: i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints $=[0.5,0.5,0.75,0.75 ; 1,2,0,0.5]$
Data Types: double

## Output Arguments

## intrpAccel - Accelerations at query points <br> FEStruct object

Accelerations at the query points, returned as an FEStruct object with the properties representing spatial components of acceleration at the query points. For query points that are outside the geometry, intrpAccel returns NaN. Properties of an FEStruct object are read-only.

## See Also

StructuralModel|TransientStructuralResults | evaluatePrincipalStrain| evaluatePrincipalStress|evaluateReaction|evaluateStrain|evaluateStress |

```
evaluateVonMisesStress|interpolateDisplacement |interpolateStrain|
interpolateStress|interpolateVelocity|interpolateVonMisesStress
Introduced in R2018a
```


## interpolateDisplacement

Package: pde
Interpolate displacement at arbitrary spatial locations

## Syntax

```
intrpDisp = interpolateDisplacement(structuralresults,xq,yq)
intrpDisp = interpolateDisplacement(structuralresults,xq,yq,zq)
intrpDisp = interpolateDisplacement(structuralresults,querypoints)
```


## Description

intrpDisp = interpolateDisplacement(structuralresults, $x q, y q$ ) returns the interpolated displacement values at the 2-D points specified in xq and yq . For transient and frequency response structural models, interpolateDisplacement returns the interpolated displacement values for all time- or frequency-steps, respectively.
intrpDisp = interpolateDisplacement(structuralresults, xq,yq,zq) uses 3-D points specified in $x q, y q$, and $z q$.
intrpDisp = interpolateDisplacement(structuralresults,querypoints) uses points specified in querypoints.

## Examples

## Interpolate Displacement for Plane-Strain Problem

Create a structural analysis model for a plane-strain problem.
structuralmodel = createpde('structural','static-planestrain');
Include the square geometry in the model. Plot the geometry.

```
geometryFromEdges(structuralmodel,@squareg);
pdegplot(structuralmodel,'EdgeLabels','on')
axis equal
```



Specify the Young's modulus and Poisson's ratio.

```
structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);
```

Specify the $x$-component of the enforced displacement for edge 1.
structuralBC(structuralmodel,'XDisplacement',0.001,'Edge',1);
Specify that edge 3 is a fixed boundary.
structuralBC(structuralmodel,'Constraint','fixed','Edge',3);
Generate a mesh and solve the problem.
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);
Create a grid and interpolate the $x$ - and $y$-components of the displacement to the grid.

```
v = linspace(-1,1,21);
[X,Y] = meshgrid(v);
intrpDisp = interpolateDisplacement(structuralresults,X,Y);
```

Reshape the displacement components to the shape of the grid. Plot the displacement.

```
ux = reshape(intrpDisp.ux,size(X));
uy = reshape(intrpDisp.uy,size(Y));
quiver(X,Y,ux,uy)
```



## Interpolate Displacement for 3-D Static Structural Analysis Problem

Solve a static structural model representing a bimetallic cable under tension, and interpolate the displacement on a cross-section of the cable.

Create a static structural model for solving a solid (3-D) problem.
structuralmodel = createpde('structural','static-solid');
Create the geometry and include it in the model. Plot the geometry.

```
gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','CellLabels','on','FaceAlpha',0.5)
```



Specify the Young's modulus and Poisson's ratio for each metal.

```
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);
```

Specify that faces 1 and 4 are fixed boundaries.
structuralBC(structuralmodel, 'Face', [1,4], 'Constraint','fixed');
Specify the surface traction for faces 2 and 5 .
structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'SurfaceTraction', [0;0;100]);
Generate a mesh and solve the problem.
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)
structuralresults =
StaticStructuralResults with properties:

```
 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]
 Mesh: [1x1 FEMesh]
```

Define coordinates of a midspan cross-section of the cable.
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(linspace(-0.015,0.015,50));
$Z=$ ones(size(X))*0.025;
Interpolate the displacement and plot the result.
intrpDisp = interpolateDisplacement(structuralresults, X,Y,Z); surf( $\mathrm{X}, \mathrm{Y}$, reshape(intrpDisp.uz, size(X)))


Alternatively, you can specify the grid by using a matrix of query points.

```
querypoints = [X(:),Y(:),Z(:)]';
intrpDisp = interpolateDisplacement(structuralresults,querypoints);
surf(X,Y,reshape(intrpDisp.uz,size(X)))
```



## Interpolate Displacement for Transient Structural Analysis Problem

Interpolate the displacement at the geometric center of a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel,'Hmax',0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel, 'Displacement', [0;0;0], 'Velocity', [0;0;0]);
Solve the model.

```
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);
```

Interpolate the displacement at the geometric center of the beam.

```
coordsMidSpan = [0;0;0.005];
intrpDisp = interpolateDisplacement(structuralresults,coordsMidSpan);
```

Plot the $y$-component of displacement of the geometric center of the beam.
figure
plot(structuralresults.SolutionTimes,intrpDisp.uy)
title('y-Displacement of the Geometric Center of the Beam')


## Input Arguments

## structuralresults - Solution of structural analysis problem

StaticStructuralResults object|TransientStructuralResults object| FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults, TransientStructuralResults, or FrequencyStructuralResults object. Create structuralresults by using the solve function. For TransientStructuralResults and FrequencyStructuralResults objects, interpolateDisplacement returns the interpolated displacement values for all time- and frequency-steps, respectively.

Example: structuralresults = solve(structuralmodel)
$\mathrm{xq}-\mathrm{x}$-coordinate query points
real array
$x$-coordinate query points, specified as a real array. interpolateDisplacement evaluates the displacements at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [ $x q(i), y q(i), z q(i)]$. Therefore, $x q, y q$, and (if present) $z q$ must have the same number of entries.
interpolateDisplacement converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) zq (: ). The function returns displacements as an FEStruct object with the properties containing vectors of the same size as these column vectors. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use the reshape function. For example, use intrpDisp = reshape(intrpDisp.ux, size(xq)).
Data Types: double

## $y q-y$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateDisplacement evaluates the displacements at the 2-D coordinate points [ $\mathrm{xq}(\mathrm{i}), \mathrm{yq}(\mathrm{i})$ ] or at the 3-D coordinate points [ $x q(i), y q(i), z q(i)]$. Therefore, $x q, y q$, and (if present) $z q$ must have the same number of entries. Internally, interpolateDisplacement converts query points to the column vector $\mathrm{yq}(:)$.

## Data Types: double

## zq - z-coordinate query points

real array
$z$-coordinate query points, specified as a real array. interpolateDisplacement evaluates the displacements at the 3-D coordinate points [ $x q(i), y q(i), z q(i)]$. Therefore, $x q, y q$, and $z q$ must have the same number of entries. Internally, interpolateDisplacement converts query points to the column vector zq (: ).

Data Types: double
querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D geometry. interpolateDisplacement evaluates the displacements at the coordinate points querypoints (: i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints $=[0.5,0.5,0.75,0.75 ; 1,2,0,0.5]$
Data Types: double

## Output Arguments

## intrpDisp - Displacements at query points

FESt ruct object
Displacements at the query points, returned as an FEStruct object with the properties representing spatial components of displacement at the query points. For query points that are outside the geometry, intrpDisp returns NaN. Properties of an FEStruct object are read-only.

## See Also

StaticStructuralResults |StructuralModel|TransientStructuralResults| evaluatePrincipalStrain|evaluatePrincipalStress|evaluateReaction|

```
evaluateStrain|evaluateStress|evaluateVonMisesStress |interpolateAcceleration | interpolateStrain |interpolateStress|interpolateVelocity|
interpolateVonMisesStress
```

Introduced in R2017b

## interpolateElectricField

Package: pde
Interpolate electric field in electrostatic result at arbitrary spatial locations

## Syntax

Eintrp = interpolateElectricField(electrostaticresults,xq,yq)
Eintrp = interpolateElectricField(electrostaticresults,querypoints)

## Description

Eintrp = interpolateElectricField(electrostaticresults, $\mathrm{xq}, \mathrm{yq}$ ) returns the interpolated electric field values at the points specified in xq and yq .

Eintrp = interpolateElectricField(electrostaticresults,querypoints) returns the interpolated electric field values at the points specified in querypoints.

## Examples

## Interpolate Electric Field in 2-D Electrostatic Analysis

Create an electromagnetic model for electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

```
R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal
```



Specify the vacuum permittivity in the SI system of units.
emagmodel.VacuumPermittivity $=8.8541878128 \mathrm{E}-12$;
Specify the relative permittivity of the material.
electromagneticProperties(emagmodel,'RelativePermittivity',1);
Apply the voltage boundary conditions on the edges of the square.
electromagneticBC(emagmodel,'Voltage', 0 ,'Edge', [1 3]);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',[2 4]);
Specify the charge density for the entire geometry.
electromagneticSource(emagmodel,'ChargeDensity',5E-9);
Generate the mesh.
generateMesh(emagmodel);
Solve the model and plot the electric field.
R = solve(emagmodel);
pdeplot(emagmodel,'FlowData',[R.ElectricField.Ex ...
R.ElectricField.Ey])
axis equal


Interpolate the resulting electric field to a grid covering the central portion of the geometry, for x and y from -0.5 to 0.5 .

```
v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);
Eintrp = interpolateElectricField(R,X,Y)
Eintrp =
 FEStruct with properties:
 Ex: [2601x1 double]
 Ey: [2601x1 double]
```

Reshape Eintrp.Ex and Eintrp.Ey and plot the resulting electric field.
EintrpX $=$ reshape(Eintrp.Ex, size(X));
EintrpY = reshape(Eintrp.Ey,size(Y));
figure
quiver(X,Y,EintrpX,EintrpY,'Color', 'red')


Alternatively, you can specify the grid by using a matrix of query points.
querypoints = [X(:), Y(:)]';
Eintrp = interpolateElectricField(R,querypoints);

## Input Arguments

electrostaticresults - Solution of electrostatic problem
ElectrostaticResults object
Solution of an electrostatic problem, specified as an ElectrostaticResults object. Create electrostaticresults using the solve function.
Example: electrostaticresults = solve(emagmodel)

## xq - x-coordinate query points

real array
$x$-coordinate query points, specified as a real array. interpolateElectricField evaluates the electric field at the coordinate points [xq(i) $y q(i)]$ for every i. Because of this, $x q$ and yq must have the same number of entries.
interpolateElectricField converts the query points to column vectors $x q(:)$ and $y q(:)$. It returns electric field values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use EintrpX = reshape(Eintrp.Ex,size(xq)).

Example: $x q=\left[\begin{array}{llll}0.5 & 0.5 & 0.75 & 0.75\end{array}\right]$
Data Types: double

## yq - $\boldsymbol{y}$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateElectricField evaluates the electric field at the coordinate points [xq(i) $y q(i)]$ for every i. Because of this, $x q$ and yq must have the same number of entries.
interpolateElectricField converts the query points to column vectors $\mathrm{xq}(:)$ and $\mathrm{yq}(:)$. It returns electric field values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use EintrpY = reshape(Eintrp.Ey,size(yq)).

Example: yq $=\left[\begin{array}{llll}1 & 2 & 0 & 0.5\end{array}\right]$
Data Types: double

## querypoints - Query points

2-by-N real matrix
Query points, specified as a real matrix with two rows for 2-D geometry. interpolateElectricField evaluates the electric field at the coordinate points querypoints (: ,i) for every $i$, so each column of querypoints contains exactly one 2-D query point.
Example: querypoints $=[0.50 .50 .750 .75 ; 1200.5]$
Data Types: double

## Output Arguments

## Eintrp - Electric field at query points

FEStruct
Electric field at query points, returned as an FEStruct object with the properties representing the spatial components of the electric field at the query points. For query points that are outside the geometry, Eintrp.Ex(i) and Eintrp.Ey(i) are NaN. Properties of an FEStruct object are readonly.

## See Also <br> ElectromagneticModel|ElectrostaticResults|interpolateElectricFlux| interpolateElectricPotential|solve

## Introduced in R2021a

## interpolateElectricFlux

Package: pde
Interpolate electric flux density in electrostatic result at arbitrary spatial locations

## Syntax

Dintrp = interpolateElectricFlux(electrostaticresults,xq,yq)
Dintrp = interpolateElectricFlux(electrostaticresults,querypoints)

## Description

Dintrp = interpolateElectricFlux(electrostaticresults, xq,yq) returns the interpolated electric flux density at the points specified in $x q$ and $y q$.

Dintrp = interpolateElectricFlux(electrostaticresults,querypoints) returns the interpolated electric flux density at the points specified in querypoints.

## Examples

## Interpolate Electric Flux Density in 2-D Electrostatic Analysis

Create an electromagnetic model for electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

```
R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1, 'R1', ('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal
```



Specify the vacuum permittivity in the SI system of units.
emagmodel. VacuumPermittivity $=8.8541878128 \mathrm{E}-12$;
Specify the relative permittivity of the material.
electromagneticProperties(emagmodel, 'RelativePermittivity',1);
Apply the voltage boundary conditions on the edges of the square.
electromagneticBC(emagmodel,'Voltage', 0,'Edge',[1 3]);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',[2 4]);
Specify the charge density for the entire geometry.
electromagneticSource(emagmodel,'ChargeDensity',5E-9);
Generate the mesh.
generateMesh(emagmodel);
Solve the model and plot the electric flux density.
R = solve(emagmodel);
pdeplot(emagmodel,'FlowData',[R.ElectricFluxDensity.Dx ...
R.ElectricFluxDensity.Dy])
axis equal


Interpolate the resulting electric flux density to a grid covering the central portion of the geometry, for $x$ and $y$ from -0.5 to 0.5 .
$v=$ linspace(-0.5,0.5,51);
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(v);
Dintrp $=$ interpolateElectricFlux (R,X,Y)
Dintrp =
FEStruct with properties:
Dx: [2601x1 double]
Dy: [2601x1 double]

Reshape Dintrp.Dx and Dintrp.Dy and plot the resulting electric flux density.
DintrpX = reshape(Dintrp.Dx, size(X));
DintrpY = reshape(Dintrp.Dy,size(Y));
figure
quiver (X, Y, DintrpX, DintrpY, 'Color', 'red')


Alternatively, you can specify the grid by using a matrix of query points.
querypoints = [X(:), Y(:)]';
Dintrp = interpolateElectricFlux(R,querypoints);

## Input Arguments

electrostaticresults - Solution of electrostatic problem
ElectrostaticResults object
Solution of thermal problem, specified as an ElectrostaticResults object. Create electrostaticresults using the solve function.

Example: electrostaticresults = solve(emagmodel)

## $\mathrm{xq}-\mathrm{x}$-coordinate query points

real array
$x$-coordinate query points, specified as a real array. interpolateElectricFlux evaluates the electric flux density at the coordinate points [ $x q(i) y q(i)$ ] for every $i$. Because of this, $x q$ and $y q$ must have the same number of entries.
interpolateElectricFlux converts the query points to column vectors $\mathrm{xq}(:)$ and $\mathrm{yq}(:)$. It returns electric flux density as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use DintrpX = reshape(Dintrp.Dx,size(xq)).

Example: $x q=\left[\begin{array}{llll}0.5 & 0.5 & 0.75 & 0.75\end{array}\right]$
Data Types: double

## yq - $\boldsymbol{y}$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateElectricFlux evaluates the electric flux density at the coordinate points [xq(i) $y q(i)$ ] for every i. Because of this, $x q$ and $y q$ must have the same number of entries.
interpolateElectricFlux converts the query points to column vectors $\mathrm{xq}(:)$ and $\mathrm{yq}(:)$. It returns electric flux density as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use DintrpY = reshape(Dintrp.Dy,size(yq)).

Example: yq = [1 2 0 0.5]
Data Types: double

## querypoints - Query points

2-by-N real matrix
Query points, specified as a real matrix with two rows for 2-D geometry.
interpolateElectricFlux evaluates the electric flux density at the coordinate points querypoints (: ,i) for every i, so each column of querypoints contains exactly one 2-D query point.
Example: querypoints $=[0.50 .50 .750 .75 ; 1200.5]$
Data Types: double

## Output Arguments

## Dintrp - Electric flux density at query points

FEStruct
Electric flux density at query points, returned as an FEStruct object with the properties representing the spatial components of the electric flux density at the query points. For query points that are outside the geometry, Dintrp.Dx(i) and Dintrp.Dy(i) are NaN. Properties of an FEStruct object are read-only.

## See Also

ElectromagneticModel|ElectrostaticResults |interpolateElectricField| interpolateElectricPotential|solve

## Introduced in R2021a

## interpolateElectricPotential

Package: pde
Interpolate electric potential in electrostatic result at arbitrary spatial locations

## Syntax

Vintrp = interpolateElectricPotential(electrostaticresults,xq,yq)
Vintrp = interpolateElectricPotential(electrostaticresults,querypoints)

## Description

Vintrp = interpolateElectricPotential(electrostaticresults, $x q, y q)$ returns the interpolated electric potential values at the points specified in $x q$ and $y q$.

Vintrp = interpolateElectricPotential(electrostaticresults,querypoints) returns the interpolated electric potential values at the points specified in querypoints.

## Examples

## Interpolate Electric Potential in 2-D Electrostatic Analysis

Create an electromagnetic model for electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

```
R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1, 'R1', ('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal
```



Specify the vacuum permittivity in the SI system of units.
emagmodel.VacuumPermittivity $=8.8541878128 \mathrm{E}-12$;
Specify the relative permittivity of the material.
electromagneticProperties(emagmodel,'RelativePermittivity',1);
Apply the voltage boundary conditions on the edges of the square.
electromagneticBC(emagmodel,'Voltage', 0,'Edge',[13]);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',[2 4]);
Specify the charge density for the entire geometry.
electromagneticSource(emagmodel,'ChargeDensity',5E-9);
Generate the mesh.
generateMesh(emagmodel);
Solve the model and plot the electric potential.
R = solve(emagmodel);
pdeplot(emagmodel,'XYData',R.ElectricPotential, ...
'Contour','on')
axis equal


Interpolate the resulting electric potential to a grid covering the central portion of the geometry, for x and $y$ from -0.5 to 0.5 .

```
v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);
Vintrp = interpolateElectricPotential(R,X,Y)
Vintrp = 2601×1
```

    602.2959
    616.0208
    629.0498
    641.4049
    653.0828
    664.0757
    674.4209
    684.1432
    693.2704
    701.8026
    Reshape Vintrp and plot the resulting electric potential.
Vintrp = reshape(Vintrp,size(X));
figure

```
contourf(X,Y,Vintrp)
colormap(cool)
colorbar
```



Alternatively, you can specify the grid by using a matrix of query points.
querypoints = [X(:),Y(:)]';
Vintrp = interpolateElectricPotential(R,querypoints);

## Input Arguments

electrostaticresults - Solution of electrostatic problem
ElectrostaticResults object
Solution of an electrostatic problem, specified as an ElectrostaticResults object. Create electrostaticresults using the solve function.
Example: electrostaticresults = solve(emagmodel)

## $\mathrm{xq}-\mathrm{x}$-coordinate query points

real array
$x$-coordinate query points, specified as a real array. interpolateElectricPotential evaluates the electric potential at the coordinate points [ $x q$ (i) $y q(i)]$ for every i. Because of this, $x q$ and yq must have the same number of entries.
interpolateElectricPotential converts the query points to column vectors $x q(:)$ and yq(:). It returns electric potential values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use Vintrp $=$ reshape(Vintrp, size(xq)).
Example: $x q=\left[\begin{array}{llll}0.5 & 0.5 & 0.75 & 0.75\end{array}\right]$
Data Types: double

## yq - $\boldsymbol{y}$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateElectricPotential evaluates the electric potential at the coordinate points [xq(i) yq(i)] for every i. Because of this, xq and yq must have the same number of entries.
interpolateElectricPotential converts the query points to column vectors xq(:) and yq(:). It returns electric potential values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use Vintrp = reshape(Vintrp, size(yq)).
Example: yq $=\left[\begin{array}{llll}1 & 2 & 0 & 0.5\end{array}\right]$
Data Types: double
querypoints - Query points
2-by-N real matrix
Query points, specified as a real matrix with two rows for 2-D geometry. interpolateElectricPotential evaluates the electric potential at the coordinate points querypoints (: ,i) for every i, so each column of querypoints contains exactly one 2-D query point.

Example: querypoints $=[0.50 .50 .750 .75 ; 1200.5]$
Data Types: double

## Output Arguments

## Vintrp - Electric potential at query points <br> FEStruct

Electric potential at query points, returned as an FEStruct object with the properties representing the spatial components of the electric potential at the query points. For query points that are outside the geometry, Vintrp(i) $=$ NaN. Properties of an FEStruct object are read-only.

## See Also

ElectromagneticModel|ElectrostaticResults|interpolateElectricField| interpolateElectricFlux|solve

Introduced in R2021a

## interpolateMagneticField

Package: pde
Interpolate magnetic field in magnetostatic result at arbitrary spatial locations

## Syntax

Hintrp = interpolateMagneticField(magnetostaticresults,xq,yq)
Hintrp = interpolateMagneticField(magnetostaticresults,querypoints)

## Description

Hintrp = interpolateMagneticField(magnetostaticresults, $\mathrm{xq}, \mathrm{yq}$ ) returns the interpolated magnetic field values at the points specified in xq and yq .

Hintrp = interpolateMagneticField(magnetostaticresults,querypoints) returns the interpolated magnetic field values at the points specified in querypoints.

## Examples

## Interpolate Magnetic Field in 2-D Magnetostatic Analysis

Create an electromagnetic model for magnetostatic analysis.

```
emagmodel = createpde('electromagnetic','magnetostatic');
```

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

```
R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal
```



Specify the vacuum permeability in the SI system of units.
emagmodel. VacuumPermeability $=1.2566370614 \mathrm{E}-6$;
Specify the relative permeability of the material.
electromagneticProperties(emagmodel,'RelativePermeability',5000);
Apply the magnetic potential boundary conditions on the boundaries of the square.

```
electromagneticBC(emagmodel,'MagneticPotential',0,'Edge',[1 3]);
```

electromagneticBC(emagmodel,'MagneticPotential',0.01,'Edge',[2 4]);

Specify the current density for the entire geometry.

```
electromagneticSource(emagmodel,'CurrentDensity',0.5);
```

Generate the mesh.
generateMesh(emagmodel);
Solve the model and plot the magnetic field.

```
R = solve(emagmodel);
pdeplot(emagmodel,'FlowData',[R.MagneticField.Hx ...
 R.MagneticField.Hy])
axis equal
```



Interpolate the resulting magnetic field to a grid covering the central portion of the geometry, for x and $y$ from -0.5 to 0.5 .
$v=$ linspace(-0.5,0.5,51);
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(v);
Hintrp = interpolateMagneticField(R,X,Y)
Hintrp =
FEStruct with properties:
Hx: [2601x1 double]
Hy: [2601x1 double]

Reshape Hintrp.Hx and Hintrp.Hy and plot the resulting electric field.
HintrpX = reshape(Hintrp.Hx, size(X));
HintrpY = reshape(Hintrp.Hy, size(Y));
figure
quiver ( $\mathrm{X}, \mathrm{Y}$, HintrpX, HintrpY, 'Color', 'red')


Alternatively, you can specify the grid by using a matrix of query points.
querypoints = [X(:),Y(:)]';
Hintrp = interpolateMagneticField(R,querypoints);

## Input Arguments

magnetostaticresults - Solution of magnetostatic problem
MagnetostaticResults object
Solution of a magnetostatic problem, specified as a MagnetostaticResults object. Create magnetostaticresults using the solve function.

Example: magnetostaticresults = solve(emagmodel)

## $\mathrm{xq}-\mathrm{x}$-coordinate query points

real array
$x$-coordinate query points, specified as a real array. interpolateMagneticField evaluates the magnetic field at the coordinate points [ $x q(i) y q(i)]$ for every $i$. Because of this, $x q$ and $y q$ must have the same number of entries.
interpolateMagneticField converts the query points to column vectors $\mathrm{xq}(:)$ and $\mathrm{yq}(:)$. It returns magnetic field values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use HintrpX = reshape(Hintrp.Hx, size(xq)).

Example: $x q=\left[\begin{array}{llll}0.5 & 0.5 & 0.75 & 0.75\end{array}\right]$
Data Types: double

## yq - $\boldsymbol{y}$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateMagneticField evaluates the magnetic field at the coordinate points [ $x q(i), y q(i)$ ] for every $i$. Because of this, $x q$ and $y q$ must have the same number of entries.
interpolateMagneticField converts the query points to column vectors $\mathrm{xq}(:)$ and $\mathrm{yq}(:)$. It returns magnetic field values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use HintrpY = reshape(Hintrp.Hy, size(yq)).

Example: yq = [1 2 0 0.5]
Data Types: double

## querypoints - Query points

2-by-N real matrix
Query points, specified as a real matrix with two rows for 2-D geometry. interpolateMagneticField evaluates magnetic field at the coordinate points querypoints (: ,i) for every i, so each column of querypoints contains exactly one 2-D query point.
Example: querypoints $=[0.50 .50 .750 .75 ; 1200.5]$
Data Types: double

## Output Arguments

## Hintrp - Magnetic field at query points

FEStruct
Magnetic field at query points, returned as an FEStruct object with the properties representing the spatial components of the magnetic field at the query points. For query points that are outside the geometry, Hintrp.Hx(i) and Hintrp.Hy(i) are NaN. Properties of an FEStruct object are readonly.

## See Also <br> ElectromagneticModel|MagnetostaticResults | interpolateMagneticFlux| interpolateMagneticPotential|solve

## Introduced in R2021a

## interpolateMagneticFlux

Package: pde
Interpolate magnetic flux density in magnetostatic result at arbitrary spatial locations

## Syntax

Bintrp = interpolateMagneticFlux(magnetostaticresults,xq,yq)
Bintrp = interpolateMagneticFlux(magnetostaticresults,querypoints)

## Description

Bintrp = interpolateMagneticFlux(magnetostaticresults, xq,yq) returns the interpolated magnetic flux density at the points specified in $x q$ and $y q$.

Bintrp = interpolateMagneticFlux(magnetostaticresults,querypoints) returns the interpolated magnetic flux density at the points specified in querypoints.

## Examples

## Interpolate Magnetic Flux Density in 2-D Magnetostatic Analysis

Create an electromagnetic model for magnetostatic analysis.

```
emagmodel = createpde('electromagnetic','magnetostatic');
```

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

```
R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal
```



Specify the vacuum permeability in the SI system of units.
emagmodel.VacuumPermeability $=1.2566370614 \mathrm{E}-6$;
Specify the relative permeability of the material.
electromagneticProperties(emagmodel,'RelativePermeability', 5000);
Apply the magnetic potential boundary conditions on the boundaries of the square.

```
electromagneticBC(emagmodel,'MagneticPotential',0,'Edge',[1 3]);
```

electromagneticBC(emagmodel,'MagneticPotential',0.01,'Edge',[2 4]);

Specify the current density for the entire geometry.
electromagneticSource(emagmodel,'CurrentDensity', 0.5);
Generate the mesh.
generateMesh(emagmodel);
Solve the model and plot the magnetic flux density.
R = solve(emagmodel);
pdeplot(emagmodel,'FlowData', [R.MagneticFluxDensity.Bx ...
R.MagneticFluxDensity.By])
axis equal


Interpolate the resulting electric flux density to a grid covering the central portion of the geometry, for $x$ and $y$ from -0.5 to 0.5 .

```
v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);
Bintrp = interpolateMagneticFlux(R,X,Y)
Bintrp =
 FEStruct with properties:
 Bx: [2601x1 double]
 By: [2601x1 double]
```

Reshape Bintrp.Bx and Bintrp. By and plot the resulting magnetic flux density.

```
BintrpX = reshape(Bintrp.Bx,size(X));
BintrpY = reshape(Bintrp.By,size(Y));
figure
quiver(X,Y,BintrpX,BintrpY,'Color','red')
```



Alternatively, you can specify the grid by using a matrix of query points.
querypoints = [X(:), Y(:)]';
Bintrp $=$ interpolateMagneticFlux(R,querypoints);

## Input Arguments

magnetostaticresults - Solution of magnetostatic problem
MagnetostaticResults object
Solution of a magnetostatic problem, specified as a MagnetostaticResults object. Create magnetostaticresults using the solve function.

Example: magnetostaticresults = solve(emagmodel)

## xq - x-coordinate query points

real array
$x$-coordinate query points, specified as a real array. interpolateMagneticFlux evaluates the magnetic flux density at the coordinate points [xq(i) yq(i)] for every i. Because of this, xq and yq must have the same number of entries.
interpolateMagneticFlux converts the query points to column vectors $x q(:)$ and $y q(:)$. It returns magnetic flux density as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use BintrpX = reshape(Bintrp.Bx,size(xq)).

Example: $x q=\left[\begin{array}{llll}0.5 & 0.5 & 0.75 & 0.75\end{array}\right]$
Data Types: double

## yq - $\boldsymbol{y}$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateMagneticFlux evaluates the magnetic flux density at the coordinate points [xq(i) $y q(i)]$ for every i. Because of this, $x q$ and yq must have the same number of entries.
interpolateMagneticFlux converts the query points to column vectors $\mathrm{xq}(:)$ and $\mathrm{yq}(:)$. It returns magnetic flux density as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use BintrpY = reshape(Bintrp.By,size(yq)).

Example: yq = [1 2 0 0.5]

## Data Types: double

## querypoints - Query points

2-by-N real matrix
Query points, specified as a real matrix with two rows for 2-D geometry.
interpolateMagneticFlux evaluates the magnetic flux density at the coordinate points querypoints (: ,i) for every $i$, so each column of querypoints contains exactly one 2-D query point.
Example: querypoints $=[0.50 .50 .750 .75 ; 1200.5]$
Data Types: double

## Output Arguments

## Bintrp - Magnetic flux density at query points

FEStruct
Magnetic flux density at query points, returned as an FEStruct object with the properties representing the spatial components of the magnetic flux density at the query points. For query points that are outside the geometry, Bintrp.Bx(i) and Bintrp.By (i) are NaN. Properties of an FESt ruct object are read-only.

## See Also <br> ElectromagneticModel|MagnetostaticResults |interpolateMagneticField| interpolateMagneticPotential|solve

## Introduced in R2021a

## interpolateMagneticPotential

Package: pde
Interpolate magnetic potential in magnetostatic result at arbitrary spatial locations

## Syntax

Aintrp = interpolateMagneticPotential(magnetostaticresults,xq,yq)
Aintrp = interpolateMagneticPotential(magnetostaticresults,querypoints)

## Description

Aintrp = interpolateMagneticPotential(magnetostaticresults, $\mathrm{xq}, \mathrm{yq}$ ) returns the interpolated magnetic potential values at the points specified in $x q$ and $y q$.

Aintrp = interpolateMagneticPotential(magnetostaticresults,querypoints) returns the interpolated magnetic potential values at the points specified in querypoints.

## Examples

## Interpolate Magnetic Potential in 2-D Magnetostatic Analysis

Create an electromagnetic model for magnetostatic analysis.

```
emagmodel = createpde('electromagnetic','magnetostatic');
```

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

```
R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal
```



Specify the vacuum permeability in the SI system of units.
emagmodel. VacuumPermeability $=1.2566370614 \mathrm{E}-6$;
Specify the relative permeability of the material.
electromagneticProperties(emagmodel,'RelativePermeability',5000);
Apply the magnetic potential boundary conditions on the boundaries of the square.

```
electromagneticBC(emagmodel,'MagneticPotential',0,'Edge',[1 3]);
```

electromagneticBC(emagmodel,'MagneticPotential',0.01,'Edge',[2 4]);

Specify the current density for the entire geometry.

```
electromagneticSource(emagmodel,'CurrentDensity',0.5);
```

Generate the mesh.
generateMesh(emagmodel);
Solve the model and plot the magnetic potential.
R = solve(emagmodel);
pdeplot(emagmodel,'XYData',R.MagneticPotential, ...
'Contour', 'on')
axis equal


Interpolate the resulting magnetic potential to a grid covering the central portion of the geometry, for $x$ and $y$ from -0.5 to 0.5.

```
v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);
Aintrp = interpolateMagneticPotential(R,X,Y)
Aintrp = 2601×1
 0.0056
 0.0057
 0.0058
 0.0059
 0.0060
 0.0061
 0.0062
 0.0063
 0.0064
 0.0065
```

Reshape Aintrp and plot the resulting magnetic potential.

```
Aintrp = reshape(Aintrp,size(X));
figure
contourf(X,Y,Aintrp)
```

```
colormap(cool)
```

colorbar


Alternatively, you can specify the grid by using a matrix of query points.

```
querypoints = [X(:),Y(:)]';
```

Aintrp = interpolateMagneticPotential(R,querypoints);

## Input Arguments

## magnetostaticresults - Solution of magnetostatic problem

MagnetostaticResults object
Solution of a magnetostatic problem, specified as a MagnetostaticResults object. Create magnetostaticresults using the solve function.

Example: magnetostaticresults = solve(emagmodel)

## $\mathrm{xq}-\mathrm{x}$-coordinate query points

real array
$x$-coordinate query points, specified as a real array. interpolateMagneticPotential evaluates the magnetic potential at the coordinate points [ $\mathrm{xq}(\mathrm{i}) \mathrm{yq}(\mathrm{i})$ ] for every i. Because of this, xq and yq must have the same number of entries.
interpolateMagneticPotential converts query points to column vectors $\mathrm{xq}(:)$ and $\mathrm{yq}(:)$. It returns magnetic potential values as a column vector of the same size. To ensure that the dimensions
of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use Aintrp = reshape(Aintrp, size(xq)).

Example: $\mathrm{xq}=\left[\begin{array}{llll}0.5 & 0.5 & 0.75 & 0.75\end{array}\right]$
Data Types: double

## yq - $y$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateMagneticPotential evaluates the magnetic potential at the coordinate points $[x q(i), y q(i)]$ for every i. Because of this, $x q$ and yq must have the same number of entries.
interpolateMagneticPotential converts query points to column vectors $\mathrm{xq}(:)$ and $\mathrm{yq}(:)$. It returns magnetic potential values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use Aintrp $=$ reshape (Aintrp, size(xq)).
Example: yq $=\left[\begin{array}{llll}1 & 2 & 0 & 0.5\end{array}\right]$
Data Types: double
querypoints - Query points
2-by-N real matrix
Query points, specified as a real matrix with two rows for 2-D geometry. interpolateMagneticPotential evaluates the magnetic potential at the coordinate points querypoints (: ,i) for every $i$, so each column of querypoints contains exactly one 2-D query point.

Example: querypoints $=[0.50 .50 .750 .75 ; 1200.5]$
Data Types: double

## Output Arguments

## Aintrp - Magnetic potential at query points

FEStruct
Magnetic potential at query points, returned as an FEStruct object with the properties representing spatial components of the magnetic potential at the query points. For query points that are outside the geometry, Aintrp (i) = NaN. Properties of an FEStruct object are read-only.

## See Also

ElectromagneticModel|MagnetostaticResults|interpolateMagneticField| interpolateMagneticFlux|solve

## Introduced in R2021a

## interpolateSolution

Package: pde
Interpolate PDE solution to arbitrary points

## Syntax

```
uintrp = interpolateSolution(results,xq,yq)
uintrp = interpolateSolution(results,xq,yq,zq)
uintrp = interpolateSolution(results,querypoints)
uintrp = interpolateSolution(
```

$\qquad$

``` ,iU)
uintrp \(=\) interpolateSolution(
``` \(\qquad\)
``` ,iT)
```


## Description

uintrp = interpolateSolution(results, xq,yq) returns the interpolated values of the solution to the scalar stationary equation specified in results at the 2-D points specified in xq and yq.
uintrp $=$ interpolateSolution (results, $x q, y q, z q$ ) returns the interpolated values at the 3 D points specified in $x q, y q$, and $z q$.
uintrp = interpolateSolution(results,querypoints) returns the interpolated values at the points in querypoints.
uintrp = interpolateSolution( $\qquad$ ,iU), for any previous syntax, returns the interpolated values of the solution to the system of stationary equations for equation indices $i U$.
uintrp = interpolateSolution( $\qquad$ , $\mathrm{i} T$ ) returns the interpolated values of the solution to the time-dependent or eigenvalue equation or system of such equations at times or modal indices iT. For a system of time-dependent or eigenvalue equations, specify both time/modal indices iT and equation indices iU

## Examples

## Interpolate Scalar Stationary Results

Interpolate the solution to a scalar problem along a line and plot the result.
Create the solution to the problem $-\Delta u=1$ on the L-shaped membrane with zero Dirichlet boundary conditions.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0) ;
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
```

```
 'a',0,...
 'f',1);
generateMesh(model,'Hmax',0.05);
results = solvepde(model);
```

Interpolate the solution along the straight line from $(x, y)=(-1,-1)$ to $(1,1)$. Plot the interpolated solution.
xq = linspace(-1,1,101);
$y q=x q ;$
uintrp = interpolateSolution(results, $x q, y q)$;
plot(xq,uintrp)
xlabel('x')
ylabel('u(x)')


## Interpolate Solution of Poisson's Equation

Calculate the mean exit time of a Brownian particle from a region that contains absorbing (escape) boundaries and reflecting boundaries. Use the Poisson's equation with constant coefficients and 3-D rectangular block geometry to model this problem.

Create the solution for this problem.

```
model = createpde;
importGeometry(model,'Block.stl');
applyBoundaryCondition(model,'dirichlet','Face',[1,2,5],'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',2);
generateMesh(model);
results = solvepde(model);
```

Create a grid and interpolate the solution to the grid.

```
[X,Y,Z] = meshgrid(0:135,0:35,0:61);
uintrp = interpolateSolution(results,X,Y,Z);
uintrp = reshape(uintrp,size(X));
```

Create a contour slice plot for five fixed values of the y coordinate.

```
contourslice(X,Y,Z,uintrp,[],0:4:16,[])
```

colormap jet
xlabel('x')
ylabel('y')
zlabel('z')
xlim([0,100])
$y \lim ([0,20])$
$z \lim ([0,50])$
axis equal
view(-50,22)
colorbar


## Interpolate Scalar Stationary Results Using Query Matrix

Solve a scalar stationary problem and interpolate the solution to a dense grid.
Create the solution to the problem $-\Delta u=1$ on the L-shaped membrane with zero Dirichlet boundary conditions.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);
generateMesh(model,'Hmax',0.05);
results = solvepde(model);
```

Interpolate the solution on the grid from -1 to 1 in each direction.

```
v = linspace(-1,1,101);
[X,Y] = meshgrid(v);
querypoints = [X(:),Y(:)]';
uintrp = interpolateSolution(results,querypoints);
```

Plot the resulting interpolation on a mesh.

```
uintrp = reshape(uintrp,size(X));
mesh(X,Y,uintrp)
```

```
xlabel('x')
```

ylabel('y')


## Interpolate Stationary System

Create the solution to a two-component system and plot the two components along a planar slice through the geometry.

Create a PDE model for two components. Import the geometry of a torus.

```
model = createpde(2);
importGeometry(model,'Torus.stl');
pdegplot(model,'FaceLabels','on');
```



Set boundary conditions.
gfun = @(region, state) [0, region.z-40];
applyBoundaryCondition(model,'neumann','Face',1,'g',gfun);
ufun = @(region,state)[region.x-40,0];
applyBoundaryCondition(model,'dirichlet','Face',1,'u', ufun);
Set the problem coefficients.

```
specifyCoefficients(model,'m',0,...
 'd',0,...
 'с', [1;0;1;0;0;1;0;0;1;0;1;0;1;0;0;1;0;1;0;0;1],...
 'a',0,...
 'f',[1;1]);
```

Create a mesh and solve the problem.
generateMesh(model);
results = solvepde(model);
Interpolate the results on a plane that slices the torus for each of the two components.
$[X, Z]=$ meshgrid(0:100);
Y = 15*ones(size(X));
uintrp $=$ interpolateSolution(results, $X, Y, Z,[1,2])$;
Plot the two components.
sol1 = reshape(uintrp(:,1),size(X));
sol2 = reshape(uintrp(:,2),size(X));
figure
surf( $\mathrm{X}, \mathrm{Z}$, sol1)
title('Component 1')

figure
surf ( $X, Z$, sol2)
title('Component 2')

## Component 2



## Interpolate Scalar Eigenvalue Results

Solve a scalar eigenvalue problem and interpolate one eigenvector to a grid.
Find the eigenvalues and eigenvectors for the L-shaped membrane.

```
model = createpde(1);
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
specifyCoefficients(model,'m',0,...
 'd',1,...
 'c',1,...
 'a',0,...
 'f',0);
r = [0,100];
generateMesh(model,'Hmax',1/50);
results = solvepdeeig(model,r);
\begin{tabular}{lllll}
Basis \(=10\), & Time \(=\) & 3.05, & New conv eig= & 0 \\
Basis \(=11\), & Time \(=\) & 3.09, & New conv eig= & 0 \\
Basis \(=12\), & Time \(=\) & 3.11, & New conv eig \(=\) & 0 \\
Basis \(=13\), & Time \(=\) & 3.13, & New conv eig= & 0 \\
Basis \(=14\), & Time \(=\) & 3.16, & New conv eig= & 0 \\
Basis \(=15\), & Time \(=\) & 3.17, & New conv eig= & 0 \\
Basis \(=16\), & Time \(=\) & 3.19, & New conv eig \(=\) & 0
\end{tabular}
```



Interpolate the eigenvector corresponding to the fifth eigenvalue to a coarse grid and plot the result.
$[x q, y q]=$ meshgrid(-1:0.1:1);
uintrp $=$ interpolateSolution(results, $x q, y q, 5)$;
uintrp = reshape(uintrp,size(xq));
$\operatorname{surf}(x q, y q, u i n t r p)$


## Interpolate Time-Dependent System

Solve a system of time-dependent PDEs and interpolate the solution.
Import slab geometry for a 3-D problem with three solution components. Plot the geometry.
model = createpde(3);
importGeometry(model,'Plate10x10x1.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)


Set boundary conditions such that face 2 is fixed (zero deflection in any direction) and face 5 has a load of 1 e 3 in the positive $z$-direction. This load causes the slab to bend upward. Set the initial condition that the solution is zero, and its derivative with respect to time is also zero.

```
applyBoundaryCondition(model,'dirichlet','Face',2,'u',[0,0,0]);
applyBoundaryCondition(model,'neumann','Face',5,'g',[0,0,1e3]);
setInitialConditions(model,0,0);
```

Create PDE coefficients for the equations of linear elasticity. Set the material properties to be similar to those of steel. See "Linear Elasticity Equations" on page 3-125.

```
E = 200e9;
nu = 0.3;
specifyCoefficients(model,'m',1,...
 'd',0,...
 'c',elasticityC3D(E,nu),...
 'a',0,...
 'f',[0;0;0]);
```

Generate a mesh, setting Hmax to 1.
generateMesh(model,'Hmax',1);
Solve the problem for times 0 through 5e-3 in steps of 1e-4.

```
tlist = 0:1e-4:5e-3;
results = solvepde(model,tlist);
```

Interpolate the solution at fixed $x$ - and $z$-coordinates in the centers of their ranges, 5 and 0.5 respectively. Interpolate for $y$ from 0 through 10 in steps of 0.2 . Obtain just component 3 , the $z$ component of the solution.

```
yy = 0:0.2:10;
zz = 0.5*ones(size(yy));
xx = 10*zz;
component = 3;
uintrp = interpolateSolution(results,xx,yy,zz,component,1:length(tlist));
```

The solution is a 51-by-1-by-51 array. Use squeeze to remove the singleton dimension. Removing the singleton dimension transforms this array to a 51-by-51 matrix which simplifies indexing into it.

```
uintrp = squeeze(uintrp);
```

Plot the solution as a function of y and time.

```
[X,Y] = ndgrid(yy,tlist);
figure
surf(X,Y,uintrp)
xlabel('Y')
ylabel('Time')
title('Deflection at x = 5, z = 0.5')
zlim([0,14e-5])
```



## Input Arguments

## results - PDE solution

StationaryResults object (default)| TimeDependentResults object|EigenResults object
PDE solution, specified as a StationaryResults object, a TimeDependentResults object, or an EigenResults object. Create results using solvepde, solvepdeeig, or createPDEResults.
Example: results $=$ solvepde(model)
xq - x-coordinate query points
real array
$x$-coordinate query points, specified as a real array. interpolateSolution evaluates the solution at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i), zq(i)]. So $x q, y q$, and (if present) zq must have the same number of entries.
interpolateSolution converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$. The returned solution is a column vector of the same size. To ensure that the dimensions of the returned solution is consistent with the dimensions of the original query points, use reshape. For example, use uintrp $=$ reshape(gradxuintrp,size(xq)).

## Data Types: double

## $y q-y$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateSolution evaluates the solution at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i), zq(i)]. So $\mathrm{xq}, \mathrm{yq}$, and (if present) zq must have the same number of entries. Internally, interpolateSolution converts query points to the column vector yq(:).

## Data Types: double

## zq - z-coordinate query points

real array
$z$-coordinate query points, specified as a real array. interpolateSolution evaluates the solution at the 3-D coordinate points [xq(i),yq(i), zq(i)]. So xq, yq, and zq must have the same number of entries. Internally, interpolateSolution converts query points to the column vector zq(:).
Data Types: double
querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry, or three rows for 3-D geometry. interpolateSolution evaluates the solution at the coordinate points querypoints (: ,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints $=[0.5,0.5,0.75,0.75 ; 1,2,0,0.5]$
Data Types: double
iU - Equation indices
vector of positive integers

Equation indices, specified as a vector of positive integers. Each entry in iU specifies an equation index.

Example: $\mathrm{iU}=[1,5]$ specifies the indices for the first and fifth equations.
Data Types: double

## iT - Time or mode indices

vector of positive integers
Time or mode indices, specified as a vector of positive integers. Each entry in iT specifies a time index for time-dependent solutions, or a mode index for eigenvalue solutions.
Example: iT = 1:5:21 specifies the time or mode for every fifth solution up to 21 .
Data Types: double

## Output Arguments

## uintrp - Solution at query points

array
Solution at query points, returned as an array. For query points that are outside the geometry, uintrp = NaN. For details about dimensions of the solution, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

## See Also

PDEModel | StationaryResults | TimeDependentResults| evaluateGradient

## Topics

"Solution and Gradient Plots with pdeplot and pdeplot3D" on page 3-282
"3-D Solution and Gradient Plots with MATLAB® Functions" on page 3-297
"Dimensions of Solutions, Gradients, and Fluxes" on page 3-309

## Introduced in R2015b

## interpolateStrain

Package: pde
Interpolate strain at arbitrary spatial locations

## Syntax

```
intrpStrain = interpolateStrain(structuralresults,xq,yq)
intrpStrain = interpolateStrain(structuralresults,xq,yq,zq)
intrpStrain = interpolateStrain(structuralresults,querypoints)
```


## Description

intrpStrain = interpolateStrain(structuralresults, $\mathrm{xq}, \mathrm{yq}$ ) returns the interpolated strain values at the 2-D points specified in xq and yq . For transient and frequency-response structural models, interpolateStrain interpolates strain for all time- or frequency-steps, respectively.
intrpStrain = interpolateStrain(structuralresults, $x q, y q, z q$ ) uses the 3-D points specified in $x q, y q$, and $z q$.
intrpStrain = interpolateStrain(structuralresults,querypoints) uses the points specified in querypoints.

## Examples

## Interpolate Strain for Plane-Strain Problem

Create a structural analysis model for a plane-strain problem.

```
structuralmodel = createpde('structural','static-planestrain');
```

Include the square geometry in the model. Plot the geometry.

```
geometryFromEdges(structuralmodel,@squareg);
pdegplot(structuralmodel,'EdgeLabels','on')
axis equal
```



Specify the Young's modulus and Poisson's ratio.

```
structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);
```

Specify the $x$-component of the enforced displacement for edge 1.
structuralBC(structuralmodel,'XDisplacement',0.001, 'Edge',1);
Specify that edge 3 is a fixed boundary.
structuralBC(structuralmodel,'Constraint','fixed','Edge', 3);
Generate a mesh and solve the problem.
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);
Create a grid and interpolate the $x$ - and $y$-components of the normal strain to the grid.

```
v = linspace(-1,1,101);
[X,Y] = meshgrid(v);
intrpStrain = interpolateStrain(structuralresults,X,Y);
```

Reshape the $x$-component of the normal strain to the shape of the grid and plot it.

```
exx = reshape(intrpStrain.exx,size(X));
px = pcolor(X,Y,exx);
```

```
px.EdgeColor='none';
``` colorbar


Reshape the \(y\)-component of the normal strain to the shape of the grid and plot it.
eyy = reshape(intrpStrain.eyy,size(Y));
figure
py = pcolor (X,Y,eyy);
py.EdgeColor='none';
colorbar


\section*{Interpolate Strain for 3-D Static Structural Analysis Problem}

Solve a static structural model representing a bimetallic cable under tension, and interpolate strain on a cross-section of the cable.

Create a static structural model for solving a solid (3-D) problem.
structuralmodel = createpde('structural','static-solid');
Create the geometry and include it in the model. Plot the geometry.
gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels', 'on','CellLabels','on','FaceAlpha', 0.5)


Specify the Young's modulus and Poisson's ratio for each metal.
```

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
'PoissonsRatio',0.3);

```

Specify that faces 1 and 4 are fixed boundaries.
structuralBC(structuralmodel,'Face', [1,4],'Constraint','fixed');
Specify the surface traction for faces 2 and 5 .
structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'SurfaceTraction ', [0;0;100]);
Generate a mesh and solve the problem.
```

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)
structuralresults =
StaticStructuralResults with properties:
Displacement: [1x1 FEStruct]
Strain: [1x1 FEStruct]
Stress: [1x1 FEStruct]
VonMisesStress: [22306x1 double]
Mesh: [1x1 FEMesh]

```

Define the coordinates of a midspan cross-section of the cable.
\([\mathrm{X}, \mathrm{Y}]=\) meshgrid(linspace(-0.015,0.015,50));
\(Z=\) ones(size(X))*0.025;
Interpolate the strain and plot the result.
intrpStrain = interpolateStrain(structuralresults, \(X, Y, Z)\); surf( \(\mathrm{X}, \mathrm{Y}\), reshape(intrpStrain.ezz, size( X ) ))


Alternatively, you can specify the grid by using a matrix of query points.
```

querypoints = [X(:),Y(:),Z(:)]';
intrpStrain = interpolateStrain(structuralresults,querypoints);
surf(X,Y,reshape(intrpStrain.ezz,size(X)))

```


\section*{Interpolate Strain for 3-D Structural Dynamic Problem}

Interpolate the strain at the geometric center of a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create a geometry and include it in the model. Plot the geometry.
```

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

```


Specify the Young's modulus, Poisson's ratio, and mass density of the material.
```

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
'PoissonsRatio',0.3, ...
'MassDensity',7800);

```

Fix one end of the beam.
```

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

```

Apply a sinusoidal displacement along the \(y\)-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel, 'Hmax', 0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity', [0;0;0]);
Solve the model.
```

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

```

Interpolate the strain at the geometric center of the beam.
```

coordsMidSpan = [0;0;0.005];
intrpStrain = interpolateStrain(structuralresults,coordsMidSpan);

```

Plot the normal strain at the geometric center of the beam.
figure
plot(structuralresults.SolutionTimes,intrpStrain.exx)
title('X-Direction Normal Strain at Beam Center')


\section*{Input Arguments}

\section*{structuralresults - Solution of structural analysis problem}

StaticStructuralResults object|TransientStructuralResults object|
FrequencyStructuralResults object
Solution of the structural analysis problem, specified as a StaticStructuralResults, TransientStructuralResults, or FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)

\section*{xq - x-coordinate query points}
real array
\(x\)-coordinate query points, specified as a real array. interpolateStrain evaluates the strains at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i), yq(i), zq(i)].
Therefore, \(x q, y q\), and (if present) \(z q\) must have the same number of entries.
interpolateStrain converts query points to column vectors \(\mathrm{xq}(:), \mathrm{yq}(:)\), and (if present) \(\mathrm{zq}(:)\). The function returns strains as an FEStruct object with the properties containing vectors of the same size as these column vectors. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use the reshape function. For example, use intrpStrain = reshape(intrpStrain.exx,size(xq)).
Data Types: double

\section*{\(y q-y\)-coordinate query points}
real array
\(y\)-coordinate query points, specified as a real array. interpolateStrain evaluates the strains at the 2-D coordinate points [ \(\mathrm{xq}(\mathrm{i}), \mathrm{yq}(\mathrm{i})\) ] or at the 3-D coordinate points [xq(i), yq(i), zq(i)]. Therefore, \(\mathrm{xq}, \mathrm{yq}\), and (if present) zq must have the same number of entries. Internally, interpolateStrain converts the query points to the column vector yq(:).

\section*{Data Types: double}

\section*{zq - z-coordinate query points}
real array
\(z\)-coordinate query points, specified as a real array. interpolateStrain evaluates the strains at the 3-D coordinate points [ \(x q(i), y q(i), z q(i)]\). Therefore, \(x q, y q\), and \(z q\) must have the same number of entries. Internally, interpolateStrain converts the query points to the column vector zq(:).
Data Types: double
querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D geometry. interpolateStrain evaluates the strains at the coordinate points querypoints (: ,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints \(=[0.5,0.5,0.75,0.75 ; 1,2,0,0.5]\)
Data Types: double

\section*{Output Arguments}

\section*{intrpStrain - Strains at query points \\ FEStruct object}

Strains at the query points, returned as an FEStruct object with the properties representing spatial components of strain at the query points. For query points that are outside the geometry, intrpStrain returns NaN. Properties of an FEStruct object are read-only.

\section*{See Also}

StaticStructuralResults | StructuralModel|evaluatePrincipalStrain | evaluatePrincipalStress |evaluateReaction |interpolateDisplacement| interpolateStress|interpolateVonMisesStress

Introduced in R2017b

\section*{interpolateStress}

Package: pde
Interpolate stress at arbitrary spatial locations

\section*{Syntax}
```

intrpStress = interpolateStress(structuralresults,xq,yq)
intrpStress = interpolateStress(structuralresults,xq,yq,zq)
intrpStress = interpolateStress(structuralresults,querypoints)

```

\section*{Description}
intrpStress = interpolateStress(structuralresults, \(\mathrm{xq}, \mathrm{yq}\) ) returns the interpolated stress values at the 2-D points specified in xq and yq . For transient and frequency-response structural models, interpolateStress interpolates stress for all time- or frequency-steps, respectively.
intrpStress = interpolateStress(structuralresults, \(x q, y q, z q\) ) uses the 3-D points specified in \(x q, y q\), and \(z q\).
intrpStress = interpolateStress(structuralresults,querypoints) uses the points specified in querypoints.

\section*{Examples}

\section*{Interpolate Stress for Plane-Strain Problem}

Create a structural analysis model for a plane-strain problem.
```

structuralmodel = createpde('structural','static-planestrain');

```

Include the square geometry in the model. Plot the geometry.
```

geometryFromEdges(structuralmodel,@squareg);
pdegplot(structuralmodel,'EdgeLabels','on')
axis equal

```


Specify the Young's modulus and Poisson's ratio.
```

structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
'YoungsModulus',210E3);

```

Specify the \(x\)-component of the enforced displacement for edge 1.
structuralBC(structuralmodel,'XDisplacement', 0.001, 'Edge',1);
Specify that edge 3 is a fixed boundary.
structuralBC(structuralmodel,'Constraint','fixed','Edge', 3);
Generate a mesh and solve the problem.
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);
Create a grid and interpolate the \(x\) - and \(y\)-components of the normal stress to the grid.
```

v = linspace(-1,1,151);
[X,Y] = meshgrid(v);
intrpStress = interpolateStress(structuralresults,X,Y);

```

Reshape the \(x\)-component of the normal stress to the shape of the grid and plot it.
```

sxx = reshape(intrpStress.sxx,size(X));
px = pcolor(X,Y,sxx);

```
```

px.EdgeColor='none';
colorbar

```


Reshape the \(y\)-component of the normal stress to the shape of the grid and plot it.
syy = reshape(intrpStress.syy,size(Y));
figure
py = pcolor (X, Y, syy) ;
py.EdgeColor=' \({ }^{\prime}\) none';
colorbar


\section*{Interpolate Stress for 3-D Static Structural Analysis Problem}

Solve a static structural model representing a bimetallic cable under tension, and interpolate stress on a cross-section of the cable.

Create a static structural model for solving a solid (3-D) problem.
structuralmodel = createpde('structural','static-solid');
Create the geometry and include it in the model. Plot the geometry.
```

gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','CellLabels','on','FaceAlpha',0.5)

```


Specify the Young's modulus and Poisson's ratio for each metal.
```

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
'PoissonsRatio',0.3);

```

Specify that faces 1 and 4 are fixed boundaries.
structuralBC(structuralmodel, 'Face', [1,4], 'Constraint','fixed');
Specify the surface traction for faces 2 and 5 .
structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'SurfaceTraction ', [0;0;100]);
Generate a mesh and solve the problem.
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)
structuralresults =
StaticStructuralResults with properties:
```

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]
 Mesh: [1x1 FEMesh]
    ```

Define coordinates of a midspan cross-section of the cable.
\([\mathrm{X}, \mathrm{Y}]=\) meshgrid(linspace(-0.015,0.015,50));
\(Z=\) ones (size \((X)) * 0.025\);
Interpolate the stress and plot the result.
intrpStress = interpolateStress(structuralresults, \(X, Y, Z)\); surf( \(\mathrm{X}, \mathrm{Y}\), reshape(intrpStress.szz, size( X ) ))


Alternatively, you can specify the grid by using a matrix of query points.
```

querypoints = [X(:),Y(:),Z(:)]';
intrpStress = interpolateStress(structuralresults,querypoints);
surf(X,Y,reshape(intrpStress.szz,size(X)))

```


\section*{Interpolate Stress for 3-D Structural Dynamic Problem}

Interpolate the stress at the geometric center of a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create a geometry and include it in the model. Plot the geometry.
```

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

```


Specify the Young's modulus, Poisson's ratio, and mass density of the material.
```

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
'PoissonsRatio',0.3, ...
'MassDensity',7800);

```

Fix one end of the beam.
```

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

```

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel, 'Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel,'Hmax', 0.01);
Specify the zero initial displacement and velocity.
```

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

```

Solve the model.
```

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

```

Interpolate the stress at the geometric center of the beam.
```

coordsMidSpan = [0;0;0.005];
intrpStress = interpolateStress(structuralresults,coordsMidSpan);

```

Plot the normal stress at the geometric center of the beam.
figure
plot(structuralresults.SolutionTimes,intrpStress.sxx)
title('X-Direction Normal Stress at Beam Center')


\section*{Input Arguments}

\section*{structuralresults - Solution of structural analysis problem}

StaticStructuralResults object|TransientStructuralResults object|
FrequencyStructuralResults object
Solution of the structural analysis problem, specified as a StaticStructuralResults, TransientStructuralResults, or FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)
\(x q-x\)-coordinate query points
real array
\(x\)-coordinate query points, specified as a real array. interpolateStress evaluates the stresses at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i), zq(i)]. Therefore, \(x q, y q\), and (if present) zq must have the same number of entries.
interpolateStress converts the query points to column vectors \(\mathrm{xq}(:), \mathrm{yq}(:)\), and (if present) zq(:). It returns stresses as an FEStruct object with the properties containing vectors of the same size as these column vectors. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use the reshape function. For example, use intrpStress = reshape(intrpStress.sxx,size(xq)).

\section*{Data Types: double}

\section*{yq - \(\boldsymbol{y}\)-coordinate query points}
real array
\(y\)-coordinate query points, specified as a real array. interpolateStress evaluates the stresses at the 2-D coordinate points [ \(\mathrm{xq}(\mathrm{i}), \mathrm{yq}(\mathrm{i})\) ] or at the 3-D coordinate points [ \(\mathrm{xq}(\mathrm{i}), \mathrm{yq}(\mathrm{i}), \mathrm{zq}(\mathrm{i})\) ]. Therefore, \(x q, y q\), and (if present) \(z q\) must have the same number of entries. Internally, interpolateStress converts the query points to the column vector yq (:).

\section*{Data Types: double}

\section*{zq - z-coordinate query points}
real array
\(z\)-coordinate query points, specified as a real array. interpolateStress evaluates the stresses at the 3-D coordinate points [xq(i),yq(i),zq(i)]. Therefore, \(x q, y q\), and \(z q\) must have the same number of entries. Internally, interpolateStress converts the query points to the column vector zq(:).
Data Types: double
querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D geometry. interpolateStress evaluates stresses at the coordinate points querypoints (: ,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints \(=[0.5,0.5,0.75,0.75 ; 1,2,0,0.5]\)
Data Types: double

\section*{Output Arguments}

\section*{intrpStress - Stresses at query points}

FEStruct object
Stresses at the query points, returned as an FEStruct object with the properties representing spatial components of stress at the query points. For query points that are outside the geometry, intrpStress returns NaN. Properties of an FEStruct object are read-only.

\section*{See Also}

StaticStructuralResults | StructuralModel|evaluatePrincipalStrain | evaluatePrincipalStress |evaluateReaction |interpolateDisplacement| interpolateStrain|interpolateVonMisesStress

Introduced in R2017b

\section*{interpolateTemperature}

Package: pde
Interpolate temperature in a thermal result at arbitrary spatial locations

\section*{Syntax}
```

Tintrp = interpolateTemperature(thermalresults,xq,yq)
Tintrp = interpolateTemperature(thermalresults,xq,yq,zq)
Tintrp = interpolateTemperature(thermalresults,querypoints)
Tintrp = interpolateTemperature(

```
\(\qquad\)
``` ,iT)
```


## Description

Tintrp = interpolateTemperature(thermalresults, $x q, y q$ ) returns the interpolated temperature values at the 2-D points specified in xq and yq . This syntax is valid for both the steadystate and transient thermal models.

Tintrp = interpolateTemperature(thermalresults, $\mathrm{xq}, \mathrm{yq}, \mathrm{zq}$ ) returns the interpolated temperature values at the 3-D points specified in $x q, y q$, and $z q$. This syntax is valid for both the steady-state and transient thermal models.

Tintrp = interpolateTemperature(thermalresults,querypoints) returns the interpolated temperature values at the points in querypoints. This syntax is valid for both the steady-state and transient thermal models.

Tintrp = interpolateTemperature( $\qquad$ , iT) returns the interpolated temperature values for the transient thermal model at times iT.

## Examples

## Interpolate Temperatures in 2-D Steady-State Thermal Model

Create a thermal model for steady-state analysis.

```
thermalmodel = createpde('thermal');
```

Create the geometry and include it in the model.

```
R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1, 'R1', ('R1')');
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels','on')
xlim([-1.5,1.5])
axis equal
```



Assuming that this is an iron plate, assign a thermal conductivity of $79.5 \mathrm{~W} /(\mathrm{m} * \mathrm{~K})$. Because this is a steady-state model, you do not need to assign mass density or specific heat values.

```
thermalProperties(thermalmodel,'ThermalConductivity',79.5,'Face',1);
```

Apply a constant temperature of 300 K to the bottom of the plate (edge 3 ). Also, assume that the top of the plate (edge 1 ) is insulated, and apply convection on the two sides of the plate (edges 2 and 4 ).

```
thermalBC(thermalmodel,'Edge',3,'Temperature',300);
thermalBC(thermalmodel,'Edge',1,'HeatFlux',0);
thermalBC(thermalmodel,'Edge',[2,4],...
 'ConvectionCoefficient',25,...
 'AmbientTemperature',50);
```

Mesh the geometry and solve the problem.

```
generateMesh(thermalmodel);
results = solve(thermalmodel)
results =
 SteadyStateThermalResults with properties:
 Temperature: [1541x1 double]
 XGradients: [1541x1 double]
 YGradients: [1541x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

The solver finds the values of temperatures and temperature gradients at the nodal locations. To access these values, use results. Temperature, results. XGradients, and so on. For example, plot the temperatures at nodal locations.
figure;
pdeplot(thermalmodel,'XYData', results.Temperature,...
'Contour','on', 'ColorMap', 'hot');


Interpolate the resulting temperatures to a grid covering the central portion of the geometry, for x and $y$ from -0.5 to 0.5 .
$v=$ linspace(-0.5, 0.5,11);
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(v);
Tintrp = interpolateTemperature(results, X, Y);
Reshape the Tintrp vector and plot the resulting temperatures.

```
Tintrp = reshape(Tintrp,size(X));
figure
contourf(X,Y,Tintrp)
colormap(hot)
colorbar
```



Alternatively, you can specify the grid by using a matrix of query points.
querypoints = [X(:),Y(:)]';
Tintrp = interpolateTemperature(results,querypoints);

## Interpolate Temperature for a 3-D Steady-State Thermal Model

Create a thermal model for steady-state analysis.
thermalmodel = createpde('thermal');
Create the following 3-D geometry and include it in the model.

```
importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)
title('Copper block, cm')
axis equal
```


## Copper block, cm



Assuming that this is a copper block, the thermal conductivity of the block is approximately $4 \mathrm{~W} /$ (cm*K).

```
thermalProperties(thermalmodel,'ThermalConductivity',4);
```

Apply a constant temperature of 373 K to the left side of the block (edge 1) and a constant temperature of 573 K at the right side of the block.
thermalBC(thermalmodel,' Face', 1, 'Temperature', 373);
thermalBC(thermalmodel', 'Face', 3, 'Temperature',573);
Apply a heat flux boundary condition to the bottom of the block.
thermalBC(thermalmodel,' Face',4,'HeatFlux',-20);
Mesh the geometry and solve the problem.
generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)
thermalresults =
SteadyStateThermalResults with properties:

$$
\begin{aligned}
& \text { Temperature: } \\
& \text { XGradients: }[12691 \times 1 \text { double] } \\
& \text { YGradients: }[12691 \times 1 \text { double] } \\
& \text { ZGradients: }[12691 \times 1 \text { double] }
\end{aligned}
$$

The solver finds the values of temperatures and temperature gradients at the nodal locations. To access these values, use results.Temperature, results.XGradients, and so on. For example, plot temperatures at nodal locations.
figure;
pdeplot3D(thermalmodel,' ColorMapData',thermalresults.Temperature)


Create a grid specified by $x, y$, and $z$ coordinates and interpolate temperatures to the grid.
$[X, Y, Z]=$ meshgrid(1:16:100,1:6:20,1:7:50);
Tintrp = interpolateTemperature(thermalresults, $\mathrm{X}, \mathrm{Y}, \mathrm{Z})$;
Create a contour slice plot for fixed values of the $y$ coordinate.

```
figure
Tintrp = reshape(Tintrp,size(X));
contourslice(X,Y,Z,Tintrp,[],1:6:20,[])
xlabel('x')
ylabel('y')
zlabel('z')
xlim([1,100])
ylim([1,20])
```

zlim([1,50])
axis equal
view(-50,22)
colorbar


Alternatively, you can specify the grid by using a matrix of query points.

```
querypoints = [X(:),Y(:),Z(:)]';
```

Tintrp = interpolateTemperature(thermalresults,querypoints);

Create a contour slice plot for four fixed values of the $z$ coordinate.

```
figure
Tintrp = reshape(Tintrp,size(X));
contourslice(X,Y,Z,Tintrp,[],[],1:7:50)
xlabel('x')
ylabel('y')
zlabel('z')
xlim([1,100])
ylim([1,20])
zlim([1,50])
axis equal
view(-50,22)
colorbar
```



## Temperatures for a Transient Thermal Model on a Square

Solve a 2-D transient heat transfer problem on a square domain and compute temperatures at the convective boundary.

Create a transient thermal model for this problem.
thermalmodel = createpde('thermal','transient');
Create the geometry and include it in the model.
g = @squareg;
geometryFromEdges(thermalmodel,g);
pdegplot (thermalmodel,'EdgeLabels','on')
$x \lim ([-1.2,1.2])$
$y \lim ([-1.2,1.2])$
axis equal


Assign the following thermal properties:

- Thermal conductivity is $100 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{C}\right)$
- Mass density is $7800 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
- Specific heat is $500 \mathrm{~J} /(\mathrm{kg} * \mathrm{C})$
thermalProperties(thermalmodel,'ThermalConductivity',100,... 'MassDensity',7800,...
'SpecificHeat',500);
Apply insulated boundary conditions on three edges and the free convection boundary condition on the right edge.

```
thermalBC(thermalmodel,'Edge',[1,3,4],'HeatFlux',0);
thermalBC(thermalmodel,'Edge',2,...
 'ConvectionCoefficient',5000,...
 'AmbientTemperature',25);
```

Set the initial conditions: uniform room temperature across domain and higher temperature on the left edge.

Generate a mesh and solve the problem using $0: 1000: 200000$ as a vector of times.

```
generateMesh(thermalmodel);
tlist = 0:1000:200000;
thermalresults = solve(thermalmodel,tlist)
thermalresults =
 TransientThermalResults with properties:
 Temperature: [1541\times201 double]
 SolutionTimes: [1x201 double]
 XGradients: [1541x201 double]
 YGradients: [1541x201 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Define a line at convection boundary and compute temperature gradients across that line.

```
X = -1:0.1:1;
Y = ones(size(X));
Tintrp = interpolateTemperature(thermalresults,X,Y,1:length(tlist));
```

Plot the interpolated temperature Tintrp along the x axis for the following values from the time interval tlist.
figure
$\mathrm{t}=$ [51:50:201];
for $i=t$
$\mathrm{p}(\mathrm{i})=\mathrm{plot}(\mathrm{X}, \operatorname{Tintrp}(:, \mathrm{i})$, DisplayName', strcat('t=', num2str(tlist(i))));
hold on
end
legend( $\mathrm{p}(\mathrm{t})$ )
xlabel('x')
ylabel('Tintrp')


## Input Arguments

## thermalresults - Solution of thermal problem

SteadyStateThermalResults object | TransientThermalResults object
Solution of thermal problem, specified as a SteadyStateThermalResults object or a TransientThermalResults object. Create thermalresults using solve.
Example: thermalresults = solve(thermalmodel)

## $\mathrm{xq}-\mathrm{x}$-coordinate query points

real array
$x$-coordinate query points, specified as a real array. interpolateTemperature evaluates temperatures at the 2-D coordinate points [ $\mathrm{xq}(\mathrm{i}), \mathrm{yq}(\mathrm{i})$ ] or at the 3-D coordinate points [ $x q(i), y q(i), z q(i)]$. So $x q, y q$, and (if present) $z q$ must have the same number of entries.
interpolateTemperature converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$. It returns temperatures in the form of a column vector of the same size. To ensure that the dimensions of the returned solution is consistent with the dimensions of the original query points, use reshape. For example, use Tintrp = reshape(Tintrp,size(xq)).

Data Types: double

## $y q-y$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateTemperature evaluates temperatures at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i), zq(i)]. So xq, yq, and (if present) zq must have the same number of entries. Internally, interpolateTemperature converts query points to the column vector yq (: ).
Data Types: double

## zq - z-coordinate query points

real array
$z$-coordinate query points, specified as a real array. interpolateTemperature evaluates temperatures at the 3-D coordinate points [xq(i),yq(i), zq(i)]. So xq, yq, and zq must have the same number of entries. Internally, interpolateTemperature converts query points to the column vector zq(:).

Data Types: double
querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry, or three rows for 3-D geometry. interpolateTemperature evaluates temperatures at the coordinate points
querypoints (: , i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints $=[0.5,0.5,0.75,0.75 ; 1,2,0,0.5]$
Data Types: double

## iT - Time indices

vector of positive integers
Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT = 1:5:21 specifies every fifth time-step up to 21 .
Data Types: double

## Output Arguments

Tintrp - Temperatures at query points
array
Temperatures at query points, returned as an array. For query points that are outside the geometry, Tintrp $=$ NaN.

## See Also

SteadyStateThermalResults | ThermalModel | TransientThermalResults |
evaluateHeatFlux | evaluateHeatRate \| evaluateTemperatureGradient

## Topics

"Dimensions of Solutions, Gradients, and Fluxes" on page 3-309

## Introduced in R2017a

## interpolateVelocity

Package: pde
Interpolate velocity at arbitrary spatial locations for all time or frequency steps for dynamic structural model

## Syntax

```
intrpVel = interpolateVelocity(structuralresults,xq,yq)
intrpVel = interpolateVelocity(structuralresults,xq,yq,zq)
intrpVel = interpolateVelocity(structuralresults,querypoints)
```


## Description

intrpVel = interpolateVelocity(structuralresults, $\mathrm{xq}, \mathrm{yq}$ ) returns the interpolated velocity values at the 2-D points specified in xq and yq for all time or frequency steps.
intrpVel = interpolateVelocity(structuralresults, $x q, y q, z q$ ) uses the 3-D points specified in $x q, y q$, and $z q$.
intrpVel = interpolateVelocity(structuralresults,querypoints) uses the points specified in querypoints.

## Examples

## Interpolate Velocity for 3-D Structural Dynamic Problem

Interpolate velocity at the geometric center of a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel,'Hmax',0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel, 'Displacement', [0;0;0], 'Velocity', [0;0;0]);
Solve the model.

```
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);
```

Interpolate velocity at the geometric center of the beam.

```
coordsMidSpan = [0;0;0.005];
intrpVel = interpolateVelocity(structuralresults,coordsMidSpan);
```

Plot the y-component of velocity of the geometric center of the beam.
figure
plot(structuralresults.SolutionTimes,intrpVel.vy)
title('Y-Velocity of the Geometric Center of the Beam')


## Input Arguments

## structuralresults - Solution of dynamic structural analysis problem

TransientStructuralResults object \| FrequencyStructuralResults object
Solution of the dynamic structural analysis problem, specified as a TransientStructuralResults or FrequencyStructuralResults object. Create structuralresults by using the solve function.

Example: structuralresults $=$ solve(structuralmodel,tlist)
$\mathrm{xq}-\mathrm{x}$-coordinate query points
real array
$x$-coordinate query points, specified as a real array. interpolateVelocity evaluates velocities at the 2-D coordinate points [ $\mathrm{xq}(\mathrm{i}), \mathrm{yq}(\mathrm{i})]$ or at the 3-D coordinate points $[\mathrm{xq}(\mathrm{i}), \mathrm{yq}(\mathrm{i}), \mathrm{zq}(\mathrm{i})]$. Therefore, $x q, y q$, and (if present) $z q$ must have the same number of entries.
interpolateVelocity converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) $\mathrm{zq}(:)$. It returns velocities as an FEStruct object with the properties containing vectors of the same size as these column vectors. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use the reshape function. For example, use intrpVel = reshape(intrpVel.ux,size(xq)).
Data Types: double

## $y q-y$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateVelocity evaluates velocities at the 2-D coordinate points [xq(i), yq(i)] or at the 3-D coordinate points [xq(i),yq(i), zq(i)]. Therefore, $x q, y q$, and (if present) $z q$ must have the same number of entries. Internally, interpolateVelocity converts query points to the column vector yq(:).
Data Types: double

## zq - z-coordinate query points

real array
$z$-coordinate query points, specified as a real array. interpolateVelocity evaluates velocities at the 3-D coordinate points [xq(i),yq(i), zq(i)]. Therefore, $x q, y q$, and $z q$ must have the same number of entries. Internally, interpolateVelocity converts query points to the column vector zq(:).
Data Types: double
querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D geometry. interpolateVelocity evaluates velocities at the coordinate points querypoints (: , i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints $=$ [0.5,0.5, $0.75,0.75 ; 1,2,0,0.5]$
Data Types: double

## Output Arguments

## intrpVel - Velocities at query points

FESt ruct object
Velocities at the query points, returned as an FEStruct object with the properties representing spatial components of velocity at the query points. For query points that are outside the geometry, int $r p V e l$ returns NaN. Properties of an FEStruct object are read-only.

## See Also

StructuralModel|TransientStructuralResults | evaluatePrincipalStrain | evaluatePrincipalStress | evaluateReaction | evaluateStrain | evaluateStress | evaluateVonMisesStress |interpolateAcceleration |interpolateDisplacement| interpolateStrain|interpolateStress|interpolateVonMisesStress

Introduced in R2018a

## interpolateVonMisesStress

Package: pde
Interpolate von Mises stress at arbitrary spatial locations

## Syntax

```
intrpVMStress = interpolateVonMisesStress(structuralresults,xq,yq)
intrpVMStress = interpolateVonMisesStress(structuralresults,xq,yq,zq)
intrpVMStress = interpolateVonMisesStress(structuralresults,querypoints)
```


## Description

intrpVMStress = interpolateVonMisesStress(structural results, $\mathrm{xq}, \mathrm{yq}$ ) returns the interpolated von Mises stress values at the 2-D points specified in $x q$ and $y q$. For transient and frequency-response structural models, interpolateVonMisesStress interpolates von Mises stress for all time- or frequency-steps, respectively.
intrpVMStress = interpolateVonMisesStress(structuralresults, $\mathrm{xq}, \mathrm{yq}, \mathrm{zq}$ ) uses the 3D points specified in $x q, y q$, and $z q$.
intrpVMStress = interpolateVonMisesStress(structuralresults,querypoints) uses the points specified in querypoints.

## Examples

## Interpolate von Mises Stress for Plane-Strain Problem

Create a structural analysis model for a plane-strain problem.

```
structuralmodel = createpde('structural','static-planestrain');
```

Include the square geometry in the model. Plot the geometry.

```
geometryFromEdges(structuralmodel,@squareg);
pdegplot(structuralmodel,'EdgeLabels','on')
axis equal
```



Specify the Young's modulus and Poisson's ratio.

```
structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);
```

Specify the $x$-component of the enforced displacement for edge 1.
structuralBC(structuralmodel,'XDisplacement', 0.001, 'Edge',1);
Specify that edge 3 is a fixed boundary.
structuralBC(structuralmodel,'Constraint','fixed','Edge', 3);
Generate a mesh and solve the problem.
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);
Create a grid and interpolate the von Mises stress to the grid.

```
v = linspace(-1,1,151);
[X,Y] = meshgrid(v);
intrpVMStress = interpolateVonMisesStress(structuralresults,X,Y);
```

Reshape the von Mises stress to the shape of the grid and plot it.

```
VMStress = reshape(intrpVMStress,size(X));
p = pcolor(X,Y,VMStress);
```

```
p.EdgeColor='none';
colorbar
```



## Interpolate Von Mises Stress for 3-D Static Structural Analysis Problem

Solve a static structural model representing a bimetallic cable under tension, and interpolate the von Mises stress on a cross-section of the cable.

Create a static structural model for solving a solid (3-D) problem.
structuralmodel = createpde('structural','static-solid');
Create the geometry and include it in the model. Plot the geometry.

```
gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','CellLabels','on','FaceAlpha',0.5)
```



Specify the Young's modulus and Poisson's ratio for each metal.

```
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);
```

Specify that faces 1 and 4 are fixed boundaries.

```
structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');
```

Specify the surface traction for faces 2 and 5 .
structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'SurfaceTraction ', [0;0;100]);
Generate a mesh and solve the problem.

```
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)
structuralresults =
 StaticStructuralResults with properties:
 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]
 Mesh: [1x1 FEMesh]
```

Define the coordinates of a midspan cross-section of the cable.
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(linspace(-0.015,0.015,50));
$Z=$ ones (size $(X)) * 0.025$;
Interpolate the von Mises stress and plot the result.
IntrpVMStress = interpolateVonMisesStress(structuralresults, X,Y,Z); surf( $X, Y$, reshape(IntrpVMStress, size(X)))


Alternatively, you can specify the grid by using a matrix of query points.
querypoints = [X(:),Y(:),Z(:)]';
IntrpVMStress = interpolateVonMisesStress(structuralresults,querypoints); surf( $\mathrm{X}, \mathrm{Y}$, reshape(IntrpVMStress, size(X)))


## Interpolate von Mises Stress for 3-D Structural Dynamic Problem

Interpolate the von Mises stress at the geometric center of a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel, 'Hmax', 0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity', [0;0;0]);
Solve the model.

```
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);
```

Interpolate the von Mises stress at the geometric center of the beam.

```
coordsMidSpan = [0;0;0.005];
intrpStress = interpolateStress(structuralresults,coordsMidSpan);
```

Plot the von Mises stress at the geometric center of the beam.
figure
plot(structuralresults.SolutionTimes,intrpStress.sxx)
title('von Mises Stress at Beam Center')


## Input Arguments

## structuralresults - Solution of structural analysis problem

StaticStructuralResults object | TransientStructuralResults object | FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults, TransientStructuralResults, or FrequencyStructuralResults object. Create structuralresults by using the solve function.

Example: structuralresults = solve(structuralmodel)

## xq - x-coordinate query points

real array
$x$-coordinate query points, specified as a real array. interpolateVonMisesStress evaluates the von Mises stress at the 2-D coordinate points [xq(i), yq(i)] or at the 3-D coordinate points
[ $x q(i), y q(i), z q(i)]$. Therefore, $x q, y q$, and (if present) $z q$ must have the same number of entries.
interpolateVonMisesStress converts query points to column vectors $\mathrm{xq}(:), \mathrm{yq}(:)$, and (if present) zq (: ). The function returns von Mises stress as a column vector of the same size as the query point column vectors. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use the reshape function. For example, use intrpVMStress = reshape(intrpVMStress,size(xq)).
Data Types: double

## $y q-y$-coordinate query points

real array
$y$-coordinate query points, specified as a real array. interpolateVonMisesStress evaluates the von Mises stress at the 2-D coordinate points [ xq (i) , $\mathrm{yq}(\mathrm{i})$ ] or at the 3-D coordinate points [ $x q(i), y q(i), z q(i)]$. Therefore, $x q, y q$, and (if present) $z q$ must have the same number of entries. Internally, interpolateVonMisesStress converts the query points to the column vector $\mathrm{yq}(:)$.

Data Types: double

## zq - z-coordinate query points

real array
$z$-coordinate query points, specified as a real array. interpolateVonMisesStress evaluates the von Mises stress at the 3-D coordinate points [xq(i),yq(i), zq(i)]. Therefore, $x q, y q$, and $z q$ must have the same number of entries. Internally, interpolateVonMisesStress converts the query points to the column vector $\mathrm{zq}(:)$.
Data Types: double
querypoints - Query points
real matrix
Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D geometry. interpolateVonMisesStress evaluates the von Mises stress at the coordinate points querypoints(: i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints $=[0.5,0.5,0.75,0.75 ; 1,2,0,0.5]$
Data Types: double

## Output Arguments

## intrpVMStress - von Mises stress at query points

column vector
von Mises stress at the query points, returned as a column vector.
For query points that are outside the geometry, intrpVMStress $=\mathrm{NaN}$.

## See Also

StaticStructuralResults | StructuralModel|evaluatePrincipalStrain | evaluatePrincipalStress|evaluateReaction |interpolateDisplacement| interpolateStrain|interpolateStress

Introduced in R2017b

## jigglemesh

Package: pde
(Not recommended) Jiggle internal points of triangular mesh

Note This page describes the legacy workflow. New features might not be compatible with the legacy workflow. For the corresponding step in the recommended workflow, see generateMesh.

## Syntax

p1 = jigglemesh(p,e,t)
p1 = jigglemesh(p,e,t,Name,Value)

## Description

$\mathrm{p} 1=\mathrm{jigglemesh}(\mathrm{p}, \mathrm{e}, \mathrm{t})$ jiggles the triangular mesh by adjusting the node point positions. Typically, the quality of the mesh increases after jiggling.
p1 = jigglemesh( $\mathrm{p}, \mathrm{e}, \mathrm{t}$, Name, Value) jiggles the mesh using one or more Name, Value arguments.

## Examples

## Jiggle Mesh

Create a triangular mesh of the square geometry by using initmesh. To avoid jiggling, call initimesh with the Jiggle value set to off.
[p,e,t] = initmesh('lshapeg','Jiggle','off');
Evaluate quality of the mesh elements using the pdetriq function.
$q=p d e t r i q(p, t) ;$
Plot the mesh.
pdeplot(p,e,t,'XYData',q,'ColorBar','on','XYStyle','flat')


Jiggle the mesh using the default parameter values. Plot the result.

```
p1 = jigglemesh(p,e,t);
q = pdetriq(pl,t);
pdeplot(p1,e,t,'XYData',q,'ColorBar','on','XYStyle','flat')
```



Now jiggle the original mesh again, this time using 50000 iterations.

```
p2 = jigglemesh(p,e,t,'Opt','off','Iter',5e4);
q = pdetriq(p2,t);
pdeplot(p2,e,t,'XYData',q,'ColorBar','on','XYStyle','flat')
```



## Input Arguments

## p-Mesh points

2-by-Np matrix
Mesh points, specified as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k of $p$ consists of the $x$-coordinate of point $k$ in $p(1, k)$ and the $y$-coordinate of point $k$ in $p(2, k)$. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

## e - Mesh edges

7-by-Ne matrix
Mesh edges, specified as a 7-by-Ne matrix, where Ne is the number of edges in the mesh. An edge is a pair of points in $p$ containing a boundary between subdomains, or containing an outer boundary. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

## t - Mesh elements

4-by-Nt matrix
Mesh elements, specified as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.
The $t(i, k)$, with i ranging from 1 through end - 1 , contain indices to the corner points of element k. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150. The last row, $t$ (end, k) , contains the subdomain number of the element.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: p1 = jigglemesh(p,e,t,'Iter',Inf)

## Opt - Optimization method

'mean' (default)|'minimum'|'off'
Optimization method, specified as the comma-separated pair consisting of 'Opt' and 'mean', 'minimum',or 'off'.

Jiggling a mesh moves each mesh point not located on an edge segment towards the center of mass of the polygon formed by the adjacent triangles. The optimization method controls how many times jigglemesh repeats this process:

- If Opt is 'off', jigglemesh repeats this process Iter times. The default value of Iter in this case is 1 .
- If Opt is 'mean', jigglemesh repeats this process until the mean triangle quality stops increasing significantly or until the maximum number of iterations is reached. The default value of Iter in this case is 20.
- If Opt is 'minimum', jigglemesh repeats this process until the minimum triangle quality stops increasing significantly or until the maximum number of iterations is reached. The default value of Iter in this case is 20.

Example: p1 = jigglemesh(p,e,t,'Opt','off','Iter',1000);
Data Types: char | string

## Iter - Maximum number of iterations

1 or 20 (default) | positive integer
Maximum number of iterations, specified as the comma-separated pair consisting of 'Iter' and a positive number. The default value depends on the $0 p t$ argument value. If $0 p t$ is set to 'mean' (default) or 'minimum', the default maximum number of iterations is 20 . If Opt is set to 'off', the default maximum number of iterations is 1 .

Example: p1 = jigglemesh(p,e,t,'Opt','off','Iter',1000);
Data Types: double

## Output Arguments

## p1 - Modified mesh points

2-by-Np matrix
Modified mesh points, returned as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k of p consists of the $x$-coordinate of point k in $\mathrm{p}(1, \mathrm{k})$ and the $y$-coordinate of point k in $p(2, k)$. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

## See Also

initmesh|pdetriq

## Topics

"Mesh Data as [p,e,t] Triples" on page 2-150

Introduced before R2006a

## meshQuality

Package: pde
Evaluate shape quality of mesh elements

## Syntax

Q = meshQuality(mesh)
Q = meshQuality(mesh,elemIDs)
Q = meshQuality(__, 'aspect-ratio')

## Description

Q = meshQuality (mesh) returns a row vector of numbers from 0 through 1 representing shape quality of all elements of the mesh. Here, 1 corresponds to the optimal shape of the element.

Q = meshQuality(mesh,elemIDs) returns the shape quality of the specified elements.
$Q=$ meshQuality (__ , 'aspect-ratio') determines the shape quality by using the ratio of minimal to maximal dimensions of an element. The quality values are numbers from 0 through 1 , where 1 corresponds to the optimal shape of the element. Specify 'aspect-ratio' after any of the previous syntaxes.

## Examples

## Element Quality of 3-D Mesh

Evaluate the shape quality of the elements of a 3-D mesh.
Create a PDE model.
model = createpde;
Include and plot the following geometry.

```
importGeometry(model,'PlateSquareHoleSolid.stl');
pdegplot(model)
```



Create and plot a coarse mesh.
mesh = generateMesh(model,'Hmax',35)
mesh =
FEMesh with properties:
Nodes: [3×487 double]
Elements: [10×213 double]
MaxElementSize: 35
MinElementSize: 17.5000
MeshGradation: 1.5000
GeometricOrder: 'quadratic'
pdemesh(model)


Evaluate the shape quality of all mesh elements. Display the first five values.

```
Q = meshQuality(mesh);
Q(1:5)
ans = 1\times5
 0.3079 0.2917 0.6189 0.6688 0.5571
```

Find the elements with the quality values less than 0.2 .

```
elemIDs = find(Q < 0.2);
```

Highlight these elements in blue on the mesh plot.

```
pdemesh(mesh,'FaceAlpha',0.5)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,elemIDs),'FaceColor','blue','EdgeColor','blue')
```



Plot the element quality in a histogram.
figure
hist(Q)
xlabel('Element Shape Quality','fontweight','b')
ylabel('Number of Elements','fontweight','b')


Find the worst quality value.
Qworst $=\min (Q)$
Qworst = 0.1691
Find the corresponding element IDs.

```
elemIDs = find(Q==Qworst)
elemIDs = 1\times2
 10 136
```


## Element Quality of 2-D Mesh

Evaluate the shape quality of the elements of a 2-D mesh.
Create a PDE model.
model = createpde;
Include and plot the following geometry.
importGeometry(model,'PlateSquareHolePlanar.stl'); pdegplot(model)


Create and plot a coarse mesh.
mesh = generateMesh(model,'Hmax',20)
mesh =
FEMesh with properties:
Nodes: [2×286 double]
Elements: [6x126 double]
MaxElementSize: 20 MinElementSize: 10 MeshGradation: 1.5000 GeometricOrder: 'quadratic'
pdemesh(model)


Find the IDs of the elements within a box enclosing the center of the plate.

```
elemIDs = findElements(mesh,'box',[25,75],[80,120]);
```

Evaluate the shape quality of these elements.
Q = meshQuality(mesh,elemIDs)
Q $=1 \times 12$
0.2980
0.8253
0.2994
0.6581
0.7838
0.6104
0.3992
0.6921
0.2948

Find the elements with the quality values less than 0.4.

```
elemIDs04 = elemIDs(Q < 0.4)
elemIDs04 = 1\times4
 9 19 69 83
```

Highlight these elements in green on the mesh plot. Zoom in to see the details.

```
pdemesh(mesh,'ElementLabels','on')
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,elemIDs04),'EdgeColor','green')
zoom(10)
```



## Element Quality Determined by Aspect Ratio

Determine the shape quality of mesh elements by using the ratios of minimal to maximal dimensions.
Create a PDE model and include the L-shaped geometry.
model = createpde(1);
geometryFromEdges(model, @lshapeg) ;
Generate the default mesh for the geometry.
mesh = generateMesh(model);
View the mesh.
pdeplot(model)


Evaluate the shape quality of mesh elements by using the minimal to maximal dimensions ratio. Display the first five values.

```
Q = meshQuality(mesh,'aspect-ratio');
Q(1:5)
ans = 1\times5
```

0.8339
0.7655
0.7755
0.8301
0.8969

Evaluate the shape quality of mesh elements by using the default setting. Display the first five values.
Q = meshQuality(mesh);
Q(1:5)
ans $=1 \times 5$
0.9837
0.9605
0.9654
0.9829
0.9913

## Input Arguments

## mesh - Mesh object

Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.

Example: model. Mesh

## elemIDs - Element IDs

positive integer | matrix of positive integers
Element IDs, specified as a positive integer or a matrix of positive integers.
Example: [10 688197113130136 164]

## Output Arguments

## Q - Shape quality of mesh elements

row vector of numbers from 0 through 1
Shape quality of mesh elements, returned as a row vector of numbers from 0 through 1 . The value 0 corresponds to a deflated element with zero area or volume. The value 1 corresponds to an element of optimal shape.
Example: [0.9150 0.77870 .94170 .27440 .98430 .9181$]$
Data Types: double

## References

[1] Knupp, Patrick M. "Matrix Norms \& the Condition Number: A General Framework to Improve Mesh Quality via Node-Movement." In Proceedings, 8th International Meshing Roundtable. Lake Tahoe, CA, October 1999: 13-22.

## See Also

FEMesh Properties | area | findElements | findNodes | volume
Topics
"Finite Element Method Basics" on page 1-11
Introduced in R2018a

## meshToPet

Package: pde
[ $p, e, t$ ] representation of FEMesh data

Note This page describes the legacy workflow. New features might not be compatible with the [ $p, e, t$ ] representation of FEMesh data.

## Syntax

[p,e,t] = meshToPet(mesh)

## Description

$[p, e, t]=$ meshToPet (mesh) extracts the legacy [p,e,t] mesh representation from a FEMesh object.

## Examples

## Convert 2-D Mesh to [p,e,t] Form

This example shows how to convert a mesh in object form to [p,e,t] form.
Create a 2-D PDE geometry and incorporate it into a model object. View the geometry.

```
model = createpde(1);
```

R1 = $[3,4,-1,1,1,-1,-.4,-.4, .4, .4]$ ';
C1 $=[1, .5,0, .2]^{\prime} ;$
\% Pad C1 with zeros to enable concatenation with R1
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];
ns = (char('R1','C1'))';
sf = 'R1-C1';
gd $=\operatorname{decsg}(g e o m, s f, n s)$;
geometryFromEdges(model,gd);
pdegplot(model,'EdgeLabels','on')
$x \lim ([-1.11 .1])$
axis equal


Create a mesh for the geometry. View the mesh.
generateMesh(model);
pdemesh(model)
axis equal


Convert the mesh to [ $p, e, t$ ] form.
$[p, e, t]=$ meshToPet(model.Mesh);
View the sizes of the $[p, e, t]$ matrices.
size(p)
ans $=1 \times 2$
2956
size(e)
ans $=1 \times 2$
7160
size(t)
ans $=1 \times 2$
7438

## Input Arguments

```
mesh - Mesh object
Mesh property of a PDEModel object | output of generateMesh
```

Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.
Example: model.Mesh

## Output Arguments

## p-Mesh points

2-by-Np matrix | 3-by-Np matrix
Mesh points, returned as a 2-by-Np matrix (2-D geometry) or a 3-by-Np matrix (3-D geometry). Np is the number of points (nodes) in the mesh. Column $k$ of $p$ consists of the $x$-coordinate of point $k$ in $\mathrm{p}(1, \mathrm{k})$, the $y$-coordinate of point k in $\mathrm{p}(2, \mathrm{k})$, and, for 3-D, the $z$-coordinate of point k in $\mathrm{p}(3, \mathrm{k})$. For details, see "Mesh Data" on page 2-153.

## e - Mesh edges

7-by-Ne matrix | mesh associativity object
Mesh edges, returned as a 7-by-Ne matrix (2-D), or a mesh associativity object (3-D). Ne is the number of edges in the mesh. An edge is a pair of points in $p$ containing a boundary between subdomains, or containing an outer boundary. For details, see "Mesh Data" on page 2-153.

## t - Mesh elements

4-by-Nt matrix | 7-by-Nt matrix | 5-by-Nt matrix | 11-by-Nt matrix
Mesh elements, returned as a 4-by-Nt matrix (2-D with linear elements), a 7-by-Nt matrix (2-D with quadratic elements), a 5 -by-Nt matrix (3-D with linear elements), or an 11-by-Nt matrix (3-D with quadratic elements). Nt is the number of triangles or tetrahedra in the mesh.

The $t(i, k)$, with $i$ ranging from 1 through end - 1 , contain indices to the corner points and possibly edge centers of element $k$. For details, see "Mesh Data" on page 2-153. The last row, $t(e n d, k)$, contains the subdomain number of the element.

## Tips

- Use meshToPet to obtain the p and t data for interpolation using pdeInterpolant.


## See Also

FEMesh \| generateMesh

## Topics

"Mesh Data" on page 2-153

## Introduced in R2015a

## multicuboid

Create geometry formed by several cubic cells

## Syntax

gm = multicuboid(W, D, H)
gm = multicuboid(W, D, H,Name, Value)

## Description

gm = multicuboid( $\mathrm{W}, \mathrm{D}, \mathrm{H}$ ) creates a geometry by combining several cubic cells.
When creating each cuboid, multicuboid uses the following coordinate system.

gm = multicuboid(W, D, H,Name, Value) creates a multi-cuboid geometry using one or more Name, Value pair arguments.

## Examples

## Nested Cuboids of Same Height

Create a geometry that consists of three nested cuboids of the same height and include this geometry in a PDE model.

Create the geometry by using the multicuboid function. The resulting geometry consists of three cells.

```
gm = multicuboid([2 3 5],[4 6 10],3)
gm =
 DiscreteGeometry with properties:
 NumCells: 3
 NumFaces: 18
 NumEdges: 36
 NumVertices: 24
 Vertices: [24\times3 double]
```

Create a PDE model.

```
model = createpde
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Plot the geometry.
pdegplot(model,'CellLabels','on','FaceAlpha', 0.5)


## Stacked Cuboids

Create a geometry that consists of four stacked cuboids and include this geometry in a PDE model.
Create the geometry by using the multicuboid function with the ZOffset argument. The resulting geometry consists of four cells stacked on top of each other.

```
gm = multicuboid(5,10,[1 2 3 4],'ZOffset',[00 1 3 6])
gm =
 DiscreteGeometry with properties:
 NumCells: 4
 NumFaces: 21
 NumEdges: 36
 NumVertices: 20
 Vertices: [20x3 double]
```

Create a PDE model.

```
model = createpde
model =
 PDEModel with properties:
```

```
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Plot the geometry.

```
pdegplot(model,'CellLabels','on','FaceAlpha',0.5)
```



## Single Cuboid

Create a geometry that consists of a single cuboid and include this geometry in a PDE model.
Use the multicuboid function to create a single cuboid. The resulting geometry consists of one cell.
gm = multicuboid(5,10,7)
gm $=$
DiscreteGeometry with properties:
NumCells: 1
NumFaces: 6
NumEdges: 12
NumVertices: 8
Vertices: [8x3 double]

Create a PDE model.

```
model = createpde
```

model =
PDEModel with properties:

```
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.
model. Geometry $=$ gm
model =
PDEModel with properties:
PDESystemSize: 1
IsTimeDependent: 0
Geometry: [1x1 DiscreteGeometry]
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.
pdegplot(model,'CellLabels','on')


## Hollow Cube

Create a hollow cube and include it as a geometry in a PDE model.
Create a hollow cube by using the multicuboid function with the Void argument. The resulting geometry consists of one cell.

```
gm = multicuboid([6 10],[6 10],10,'Void',[true,false])
gm =
 DiscreteGeometry with properties:
 NumCells: 1
 NumFaces: 10
 NumEdges: 24
 NumVertices: 16
 Vertices: [16x3 double]
```

Create a PDE model.

```
model = createpde
model =
 PDEModel with properties:
```

```
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Plot the geometry.

```
pdegplot(model,'CellLabels','on','FaceAlpha',0.5)
```



## Input Arguments

## W - Cell width

positive real number | vector of positive real numbers
Cell width, specified as a positive real number or a vector of positive real numbers. If $W$ is a vector, then $W$ (i) specifies the width of the ith cell.

Width W, depth $\mathbf{D}$, and height H can be scalars or vectors of the same length. For a combination of scalar and vector inputs, multicuboid replicates the scalar arguments into vectors of the same length.

Note All cells in the geometry either must have the same height, or must have both the same width and the same depth.

Example: gm = multicuboid([1 2 3],[2.5 4 5.5],5)

## D - Cell depth

positive real number | vector of positive real numbers
Cell depth, specified as a positive real number or a vector of positive real numbers. If D is a vector, then $D$ (i) specifies the depth of the ith cell.

Width W, depth D, and height H can be scalars or vectors of the same length. For a combination of scalar and vector inputs, multicuboid replicates the scalar arguments into vectors of the same length.

Note All cells in the geometry either must have the same height, or must have both the same width and the same depth.

Example: gm = multicuboid([llller 2 3 $]$, $\left.\left.\begin{array}{lll}2 & 4 & 5.5\end{array}\right], 5\right)$

## H - Cell height

positive real number | vector of positive real numbers
Cell height, specified as a positive real number or a vector of positive real numbers. If H is a vector, then $\mathrm{H}(\mathrm{i})$ specifies the height of the ith cell.

Width W , depth D , and height H can be scalars or vectors of the same length. For a combination of scalar and vector inputs, multicuboid replicates the scalar arguments into vectors of the same length.

Note All cells in the geometry either must have the same height, or must have both the same width and the same depth.

Example: gm = multicuboid(4,5,[112 3],'ZOffset',[0lll)

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

```
Example: gm = multicuboid([1 2],[1 2],[3 3],'Void',[true,false])
```


## ZOffset - Z offset for each cell

vector of 0 values (default) | vector of real numbers
Z offset for each cell, specified as a vector of real numbers. ZOffset (i) specifies the Z offset of the ith cell. This vector must have the same length as the width vector $W$, depth vector $D$, or height vector H .

Note The ZOffset argument is valid only if the width and depth are constant for all cells in the geometry.

Example: gm = multicuboid(20,30,[10 10],'ZOffset',[0 10])
Data Types: double

## Void - Empty cell indicator

vector of logical false values (default) | vector of logical true or false values
Empty cell indicator, specified as a vector of logical true or false values. This vector must have the same length as the width vector $W$, depth vector $D$, or the height vector $H$.

The value true corresponds to an empty cell. By default, multicuboid assumes that all cells are not empty.
Example: gm = multicuboid([1 2],[1 2],[3 3],'Void',[true,false])
Data Types: double

## Output Arguments

gm - Geometry object
DiscreteGeometry object
Geometry object, returned as a DiscreteGeometry object.

## Limitations

- multicuboid lets you create only geometries consisting of stacked or nested cuboids. For nested cuboids, the height must be the same for all cells in the geometry. For stacked cuboids, the width and depth must be the same for all cells in the geometry. Use the ZOffset argument to stack the cells on top of each other without overlapping them.
- multicuboid does not let you create nested cuboids of the same width and depth. The call multicuboid(w,d, $h 1, h 2, \ldots$.$] ) is not supported.$


## See Also

DiscreteGeometry | multicylinder | multisphere

## Introduced in R2017a

## multicylinder

Create geometry formed by several cylindrical cells

## Syntax

```
gm = multicylinder(R,H)
gm = multicylinder(R,H,Name,Value)
```


## Description

gm = multicylinder( $\mathrm{R}, \mathrm{H}$ ) creates a geometry by combining several cylindrical cells.
When creating each cylinder, multicylinder uses the following coordinate system.

gm = multicylinder(R,H,Name,Value) creates a multi-cylinder geometry using one or more Name, Value pair arguments.

## Examples

## Nested Cylinders of Same Height

Create a geometry that consists of three nested cylinders of the same height and include this geometry in a PDE model.

Create the geometry by using the multicylinder function. The resulting geometry consists of three cells.

```
gm = multicylinder([5 10 15],2)
gm =
 DiscreteGeometry with properties:
```

```
 NumCells: 3
 NumFaces: 9
 NumEdges: 6
NumVertices: 6
 Vertices: [6x3 double]
```

Create a PDE model.

```
model = createpde
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Plot the geometry.
pdegplot(model,'CellLabels','on','FaceAlpha',0.5)


## Stacked Cylinders

Create a geometry that consists of three stacked cylinders and include this geometry in a PDE model.
Create the geometry by using the multicylinder function with the ZOffset argument. The resulting geometry consists of four cells stacked on top of each other.

```
gm = multicylinder(10,[1 2 3 4],'ZOffset',[0 1 3 6])
gm =
 DiscreteGeometry with properties:
 NumCells: 4
 NumFaces: 9
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]
```

Create a PDE model.

```
model = createpde
model =
 PDEModel with properties:
```

```
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
```

model =
PDEModel with properties:
PDESystemSize: 1
IsTimeDependent: 0
Geometry: [1x1 DiscreteGeometry]
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

```
pdegplot(model,'CellLabels','on','FaceAlpha',0.5)
```



## Single Cylinder

Create a geometry that consists of a single cylinder and include this geometry in a PDE model.
Use the multicylinder function to create a single cylinder. The resulting geometry consists of one cell.

```
gm = multicylinder(5,10)
gm =
 DiscreteGeometry with properties:
```

            NumCells: 1
            NumFaces: 3
            NumEdges: 2
        NumVertices: 2
            Vertices: [2x3 double]
    Create a PDE model.

```
model = createpde
model =
 PDEModel with properties:
```

```
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
```

model =
PDEModel with properties:
PDESystemSize: 1
IsTimeDependent: 0
Geometry: [1x1 DiscreteGeometry]
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.
pdegplot(model,'CellLabels','on')


## Hollow Cylinder

Create a hollow cylinder and include it as a geometry in a PDE model.
Create a hollow cylinder by using the multicylinder function with the Void argument. The resulting geometry consists of one cell.

```
gm = multicylinder([9 10],10,'Void',[true,false])
gm =
 DiscreteGeometry with properties:
 NumCells: 1
 NumFaces: 4
 NumEdges: 4
 NumVertices: 4
 Vertices: [4x3 double]
```

Create a PDE model.

```
model = createpde
model =
 PDEModel with properties:
```

```
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
```

model =
PDEModel with properties:
PDESystemSize: 1
IsTimeDependent: 0
Geometry: [1x1 DiscreteGeometry]
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.
pdegplot(model,'CellLabels','on','FaceAlpha',0.5)


## Input Arguments

## R - Cell radius

positive real number | vector of positive real numbers
Cell radius, specified as a positive real number or a vector of positive real numbers. If $R$ is a vector, then $R(i)$ specifies the radius of the $i$ th cell.

Radius R and height H can be scalars or vectors of the same length. For a combination of scalar and vector inputs, multicylinder replicates the scalar arguments into vectors of the same length.

Note Either radius or height must be the same for all cells in the geometry.

Example: gm = multicylinder([lllll $\left.\left.\begin{array}{ll}1 & 2\end{array}\right], 1\right)$

## H - Cell height

positive real number | vector of positive real numbers
Cell height, specified as a positive real number or a vector of positive real numbers. If H is a vector, then $\mathrm{H}(\mathrm{i})$ specifies the height of the ith cell.

Radius R and height H can be scalars or vectors of the same length. For a combination of scalar and vector inputs, multicylinder replicates the scalar arguments into vectors of the same length.

Note Either radius or height must be the same for all cells in the geometry.

Example: gm = multicylinder(1,[1 2 3],'Zoffset',[0lll)

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: gm = multicylinder([1 2],1,'Void',[true,false])

## ZOffset - Z-offset for each cell

vector of 0 values (default) | vector of real numbers
Z-offset for each cell, specified as a vector of real numbers. ZOffset (i) specifies the Z-offset of the ith cell. This vector must have the same length as the radius vector R or height vector $H$.

Note The ZOffset argument is valid only if the radius is the same for all cells in the geometry.

Example: gm = multicylinder(20,[10 10],'ZOffset',[0 10])
Data Types: double

## Void - Empty cell indicator

vector of logical false values (default) | vector of logical true or false values
Empty cell indicator, specified as a vector of logical true or false values. This vector must have the same length as the radius vector $R$ or the height vector $H$.

The value true corresponds to an empty cell. By default, multicylinder assumes that all cells are not empty.

Example: gm = multicylinder([1 2],1,'Void',[true,false])
Data Types: double

## Output Arguments

## gm - Geometry object

DiscreteGeometry object
Geometry object, returned as a DiscreteGeometry object.

Tip A cylinder has one cell, three faces, and two edges. Also, since every edge has a start and an end vertex, a cylinder has vertices. Both edges are circles, their start and end vertices coincide. Thus, a cylinder has two vertices - one for each edge.

## Limitations

- multicylinder lets you create only geometries consisting of stacked or nested cylinders. For nested cylinders, the height must be the same for all cells in the geometry. For stacked cylinders,
the radius must be the same for all cells in the geometry. Use the ZOffset argument to stack the cells on top of each over without overlapping them.
- multicylinder does not let you create nested cylinders of the same radius. The call multicylinder( $r$, $[h 1, h 2, \ldots]$ ) is not supported.


## See Also

DiscreteGeometry | multicuboid \| multisphere

Introduced in R2017a

## multisphere

Create geometry formed by several spherical cells

## Syntax

gm = multisphere(R)
gm = multisphere(R,'Void',eci)

## Description

gm = multisphere(R) creates a geometry by combining several spherical cells.
When creating each sphere, multisphere uses the following coordinate system.

gm = multisphere(R,'Void', eci) creates a multi-sphere geometry with empty cells.

## Examples

## Nested Spheres

Create a geometry that consists of three nested spheres and include this geometry in a PDE model.
Create the geometry by using the multisphere function. The resulting geometry consists of three cells.

```
gm = multisphere([5 10 15])
gm =
 DiscreteGeometry with properties:
 NumCells: 3
```

```
 NumFaces: 3
 NumEdges: 0
NumVertices: 0
 Vertices: []
```

Create a PDE model.

```
model = createpde
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Plot the geometry.
pdegplot(model,'CellLabels','on','FaceAlpha',0.2)


## Single Sphere

Create a geometry that consists of a single sphere and include this geometry in a PDE model.
Use the multisphere function to create a single sphere. The resulting geometry consists of one cell.
gm = multisphere(5)
gm $=$
DiscreteGeometry with properties:
NumCells: 1
NumFaces: 1
NumEdges: 0
NumVertices: 0
Vertices: []

Create a PDE model.
model = createpde
model =
PDEModel with properties:

```
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.
model. Geometry $=$ gm
model =
PDEModel with properties:
PDESystemSize: 1
IsTimeDependent: 0
Geometry: [1x1 DiscreteGeometry]
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.
pdegplot(model,'CellLabels','on')


## Hollow Sphere

Create a hollow sphere and include it as a geometry in a PDE model.
Create a hollow sphere by using the multisphere function with the Void argument. The resulting geometry consists of one cell.

```
gm = multisphere([9 10],'Void',[true,false])
gm =
 DiscreteGeometry with properties:
 NumCells: 1
 NumFaces: 2
 NumEdges: 0
 NumVertices: 0
 Vertices: []
```

Create a PDE model.

```
model = createpde
model =
 PDEModel with properties:
```

```
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include the geometry in the model.

```
model.Geometry = gm
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```


## Input Arguments

## $\mathbf{R}$ - Cell radius

positive real number | vector of positive real numbers
Cell radius, specified as a positive real number or a vector of positive real numbers. If $R$ is a vector, then $R(i)$ specifies the radius of the $i$ th cell.

Example: gm = multisphere([1,2,3])

## eci - Empty cell indicator

vector of logical true or false values
Empty cell indicator, specified as a vector of logical true and false values. This vector must have the same length as the radius vector R .

The value true corresponds to an empty cell. By default, multisphere assumes that all cells are not empty.
Example: gm = multisphere([1,2,3],'Void',[false,true,false])

## Output Arguments

gm - Geometry object
DiscreteGeometry object
Geometry object, returned as a DiscreteGeometry object.

## See Also

DiscreteGeometry | multicuboid | multicylinder
Topics
"Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux" on page 3-223
Introduced in R2017a

## nearestEdge

Find edges nearest to specified point

## Syntax

EdgeID = nearestEdge(g,Coords)

## Description

EdgeID = nearestEdge(g,Coords) finds edges nearest to the point with the coordinates Coords.

## Examples

## Edges of 3-D Geometry Closest to Specified Points

Find edges of a block nearest to the specified points.
Create a block geometry.

```
gm = multicuboid(3,2,1)
gm =
 DiscreteGeometry with properties:
```

        NumCells: 1
        NumFaces: 6
        NumEdges: 12
        NumVertices: 8
            Vertices: [8x3 double]
    Plot the geometry with the edge labels. Add the points with the coordinates (000), (10.9 1), and (1.5 -10 ) to the plot.

```
pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.2)
hold on
scatter3([0 1 1.5],[0 0.9 -1],[0 1 0],'filled','MarkerFaceColor','g')
```



Find edges closest to the points with the coordinates (000), (10.9 1), and (1.5-10). If several edges are equally close (within the tolerance) to the point, nearestEdge returns the ID of one of the edges.

```
edgeIDs = nearestEdge(gm,[0 0 0; 1 0.9 1; 1.5 -1 0])
```

edgeIDs $=1 \times 3$
$\begin{array}{lll}1 & 7 & 1\end{array}$

## Edges of 2-D Geometry Closest to Specified Points

Find edges of the L-shaped membrane nearest to the specified points.
Create a model and include this geometry. The geometry of the L-shaped membrane is described in the file lshapeg.

```
model = createpde();
gm = geometryFromEdges(model,@lshapeg)
gm =
 AnalyticGeometry with properties:
```

        NumCells: 0
    NumFaces: 3
    Plot the geometry with the edge labels. Add the points with the coordinates (0) 0 , ( 0.10 .2 ), and ( -0.5 0.5 ) to the plot.

```
pdegplot(gm,'EdgeLabels','on')
hold on
scatter([0 0.1 -0.5],[0 0.2 0.5],'filled')
```



Find edges closest to the points with the coordinates (0 0), ( 0.10 .2 ), and ( -0.50 .5 ). If several edges are equally close (within the tolerance) to the point, nearestEdge returns the ID of one of the edges.

```
edgeIDs = nearestEdge(gm,[0 0; 0.1 0.2; -0.5 0.5])
edgeIDs = 1×3
 9 10}1
```


## Input Arguments

## g - Geometry

DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

## Coords - Edge ID

2 -element vector | 3 -element vector
Coordinates of the point, specified as a vector of 2 or 3 elements for a 2-D or 3-D geometry, respectively.

Data Types: double

## Output Arguments

EdgeID - IDs of edges nearest to specified point
positive number | vector of positive numbers
IDs of edges nearest to the specified point, returned as a positive number or a vector of positive numbers.

## See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | cellEdges | cellFaces | faceEdges | facesAttachedToEdges | nearestFace

Introduced in R2021a

## nearestFace

Find faces nearest to specified point

## Syntax

FaceID = nearestFace(g,Coords)

## Description

FaceID $=$ nearestFace( g , Coords) finds faces nearest to the point with the coordinates Coords.

## Examples

## Faces of 3-D Geometry Closest to Specified Points

Find faces of a block nearest to the specified points.
Create a block geometry.
gm = multicuboid(3,2,1)
gm =
DiscreteGeometry with properties:
NumCells: 1
NumFaces: 6
NumEdges: 12 NumVertices: 8

Vertices: [8x3 double]

Plot the geometry with the face labels. Add the points with the coordinates (000.1), (20.9 1), and (1.5-1 1) to the plot.
pdegplot(gm,'FaceLabels','on','FaceAlpha', 0.2)
hold on
scatter3([0 2 1.5],[0 0.9-1],[0.1 1 1],'filled','MarkerFaceColor','g')


Find faces closest to the points with the coordinates (000.1), (20.9 1), and (1.5-1 1). If several faces are equally close (within the tolerance) to the point, nearestFace returns the ID of one of the faces.

```
faceIDs = nearestFace(gm,[0 0 0; 2 0.9 1; 1.5 -1 1])
faceIDs = 1×3
 1 3 2
```


## Faces of 2-D Geometry Closest to Specified Points

Find faces of the L-shaped membrane nearest to the specified points.
Create a model and include this geometry. The geometry of the L-shaped membrane is described in the file lshapeg.

```
model = createpde();
gm = geometryFromEdges(model,@lshapeg)
gm =
 AnalyticGeometry with properties:
```

NumCells: 0
NumFaces: 3

NumEdges: 10
NumVertices: 8
Vertices: [8x2 double]

Plot the geometry with the face labels. Add the points with the coordinates (0) 0 ), (1.1-0.2), and ( -0.5 0.5 ) to the plot.

```
pdegplot(gm,'FaceLabels','on')
hold on
scatter([0 1.1 -0.5],[0 -0.2 0.5],'filled')
```



Find faces closest to the points with the coordinates (0 0), (1.1-0.2), and (-0.5 0.5). If several faces are equally close (within the tolerance) to the point, nearestFace returns the ID of one of the faces.

```
faceIDs = nearestFace(gm,[0 0; 1.1 -0.2; -0.5 0.5])
faceIDs = 1\times3
 2 3 1
```


## Input Arguments

## g - Geometry

DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

## Coords - Edge ID

2 -element vector | 3 -element vector
Coordinates of the point, specified as a vector of 2 or 3 elements for a 2-D or 3-D geometry, respectively.
Data Types: double

## Output Arguments

## FaceID - IDs of faces nearest to specified point

positive number | vector of positive numbers
IDs of faces nearest to the specified point, returned as a positive number or a vector of positive numbers.

## See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | cellEdges | cellFaces | faceEdges | facesAttachedToEdges|nearestEdge|nearestFace

Introduced in R2021a

## parabolic

(Not recommended) Solve parabolic PDE problem

Note parabolic is not recommended. Use solvepde instead.

## Syntax

$u=$ parabolic(u0,tlist,model, $c, a, f, d)$
$u=$ parabolic(u0, tlist, b, p,e,t,c,a,f,d)
u = parabolic(u0,tlist,Kc,Fc,B,ud,M)
u = parabolic $\qquad$ , rtol)
u = parabolic( $\qquad$ ,rtol,atol)
u = parabolic( $\qquad$ ,'Stats','off')

## Description

Parabolic equation solver
Solves PDE problems of the type

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

on a 2-D or 3-D region $\Omega$, or the system PDE problem

$$
\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

The variables $c, a, f$, and $d$ can depend on position, time, and the solution $u$ and its gradient.
$\mathrm{u}=$ parabolic(u0,tlist, model $, \mathrm{c}, \mathrm{a}, \mathrm{f}, \mathrm{d})$ produces the solution to the FEM formulation of the scalar PDE problem

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

on a 2-D or 3-D region $\Omega$, or the system PDE problem

$$
\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

with geometry, mesh, and boundary conditions specified in model, and with initial value u0. The variables $c, a, f$, and $d$ in the equation correspond to the function coefficients $\mathrm{c}, \mathrm{a}, \mathrm{f}$, and d respectively.
$\mathrm{u}=$ parabolic(u0,tlist, $\mathrm{b}, \mathrm{p}, \mathrm{e}, \mathrm{t}, \mathrm{c}, \mathrm{a}, \mathrm{f}, \mathrm{d})$ solves the problem using boundary conditions b and finite element mesh specified in $[\mathrm{p}, \mathrm{e}, \mathrm{t}]$.
$u=$ parabolic ( $u 0, \mathrm{tlist}, \mathrm{Kc}, \mathrm{Fc}, \mathrm{B}, \mathrm{ud}, \mathrm{M})$ solves the problem based on finite element matrices that encode the equation, mesh, and boundary conditions.
u = parabolic( $\qquad$ ,rtol) and u = parabolic( $\qquad$ , rtol, atol), for any of the previous input arguments, modify the solution process by passing to the ODE solver a relative tolerance rtol, and optionally an absolute tolerance atol.
u = parabolic( $\qquad$ , 'Stats', 'off'), for any of the previous input arguments, turns off the display of internal $\overline{\mathrm{ODE}}$ solver statistics during the solution process.

## Examples

## Parabolic Equation

Solve the parabolic equation

$$
\frac{\partial u}{\partial t}=\Delta u
$$

on the square domain specified by squareg.
Create a PDE model and import the geometry.
model = createpde;
geometryFromEdges(model,@squareg);
pdegplot(model,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal


Set Dirichlet boundary conditions $u=0$ on all edges.
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges, 'u',0);
Generate a relatively fine mesh.
generateMesh(model,'Hmax',0.02,'Geometric0rder','linear');
Set the initial condition to have $u(0)=1$ on the disk $x^{2}+y^{2} \leq 0.4^{2}$ and $u(0)=0$ elsewhere.

```
p = model.Mesh.Nodes;
u0 = zeros(size(p,2),1);
ix = find(sqrt(p(1,:).^2 + p(2,:).^2) <= 0.4);
u0(ix) = ones(size(ix));
```

Set solution times to be from 0 to 0.1 with step size 0.005 .

```
tlist = linspace(0,0.1,21);
```

Create the PDE coefficients.
c = 1;
a $=0$;
f = 0;
d = 1;
Solve the PDE.

```
u = parabolic(u0,tlist,model,c,a,f,d);
1 3 3 \text { successful steps}
0 failed attempts
268 function evaluations
1 partial derivatives
26 LU decompositions
267 solutions of linear systems
```

Plot the initial condition, the solution at the final time, and two intermediate solutions.

```
figure
subplot(2,2,1)
pdeplot(model,'XYData',u(:,1));
axis equal
title('t = 0')
subplot(2,2,2)
pdeplot(model,'XYData',u(:,5))
axis equal
title('t = 0.02')
subplot(2,2,3)
pdeplot(model,'XYData',u(:,11))
axis equal
title('t = 0.05')
subplot(2,2,4)
pdeplot(model,'XYData',u(:,end))
axis equal
title('t = 0.1')
```



## Parabolic Equation Using Legacy Syntax

Solve the parabolic equation

$$
\frac{\partial u}{\partial t}=\Delta u
$$

on the square domain specified by squareg, using a geometry function to specify the geometry, a boundary function to specify the boundary conditions, and using initmesh to create the finite element mesh.

Specify the geometry as @squareg and plot the geometry.

```
g = @squareg;
pdegplot(g,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal
```



Set Dirichlet boundary conditions $u=0$ on all edges. The squareb1 function specifies these boundary conditions.
b = @squareb1;
Generate a relatively fine mesh.
[p,e,t] = initmesh(g,'Hmax',0.02);
Set the initial condition to have $u(0)=1$ on the disk $x^{2}+y^{2} \leq 0.4^{2}$ and $u(0)=0$ elsewhere.
u0 $=$ zeros $(\operatorname{size}(p, 2), 1)$;
ix = find(sqrt(p(1,:).^2 + p(2,:).^2) <= 0.4);
u0(ix) = ones(size(ix));
Set solution times to be from 0 to 0.1 with step size 0.005 .
tlist = linspace(0,0.1,21);
Create the PDE coefficients.
c = 1;
a $=0$;
f = 0;
d = 1;
Solve the PDE.

```
u = parabolic(u0,tlist,b,p,e,t,c,a,f,d);
1 4 7 ~ s u c c e s s f u l ~ s t e p s
0 failed attempts
296 function evaluations
1 partial derivatives
28 LU decompositions
2 9 5 \text { solutions of linear systems}
```

Plot the initial condition, the solution at the final time, and two intermediate solutions.
figure
subplot (2,2,1)
pdeplot(p,e,t,'XYData',u(:,1));
axis equal
title('t = 0')
subplot (2,2,2)
pdeplot(p,e,t,'XYData',u(:,5))
axis equal
title('t = 0.02')
subplot (2,2,3)
pdeplot(p,e,t,'XYData',u(: , 11))
axis equal
title('t = 0.05')
subplot (2,2,4)
pdeplot(p,e,t,'XYData',u(:,end))
axis equal
title('t = 0.1')


## Parabolic Problem Using Matrix Coefficients

Create finite element matrices that encode a parabolic problem, and solve the problem.
The problem is the evolution of temperature in a conducting block. The block is a rectangular slab.

```
model = createpde(1);
importGeometry(model,'Block.stl');
handl = pdegplot(model,'FaceLabels','on');
view(-42,24)
handl(1).FaceAlpha = 0.5;
```



Faces 1, 4, and 6 of the slab are kept at 0 degrees. The other faces are insulated. Include the boundary condition on faces 1,4 , and 6 . You do not need to include the boundary condition on the other faces because the default condition is insulated.

```
applyBoundaryCondition(model,'dirichlet','Face',[1,4,6],'u',0);
```

The initial temperature distribution in the block has the form

$$
\begin{gathered}
u_{0}=10^{-3} x y z \\
\text { generateMesh(model); } \\
\mathrm{p}=\text { model.Mesh.Nodes; }
\end{gathered}
$$

```
x = p(1,:);
y = p(2,:);
z = p(3,:);
u0 = x.*y.*z*1e-3;
```

The parabolic equation in toolbox syntax is

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

Suppose the thermal conductivity of the block leads to a $c$ coefficient value of 1 . The values of the other coefficients in this problem are $d=1, a=0$, and $f=0$.
d = 1;
c = 1;
a $=0$;
f = 0;
Create the finite element matrices that encode the problem.

```
[Kc,Fc,B,ud] = assempde(model,c,a,f);
[~,M,~] = assema(model,0,d,f);
```

Solve the problem at time steps of 1 for times ranging from 0 to 40 .

```
tlist = linspace(0,40,41);
u = parabolic(u0,tlist,Kc,Fc,B,ud,M);
35 successful steps
0 ~ f a i l e d ~ a t t e m p t s
72 function evaluations
1 partial derivatives
11 LU decompositions
7 1 \text { solutions of linear systems}
```

Plot the solution on the outside of the block at times $0,10,25$, and 40 . Ensure that the coloring is the same for all plots.

```
umin = min(min(u));
umax = max(max(u));
subplot(2,2,1)
pdeplot3D(model,'ColorMapData',u(:,1))
colorbar off
view(125,22)
title 't = 0'
caxis([umin umax]);
subplot(2,2,2)
pdeplot3D(model,'ColorMapData',u(:,11))
colorbar off
view(125,22)
title 't = 10'
caxis([umin umax]);
subplot(2,2,3)
pdeplot3D(model,'ColorMapData',u(:,26))
colorbar off
view(125,22)
title 't = 25'
caxis([umin umax]);
```

```
subplot(2,2,4)
pdeplot3D(model,'ColorMapData',u(:,41))
colorbar off
view(125,22)
title 't = 40'
caxis([umin umax]);
```

$$
t=0
$$


$t=40$


## Input Arguments

## u0 - Initial condition

vector $\mid$ character vector $\mid$ character array $\mid$ string scalar $\mid$ string vector
Initial condition, specified as a scalar, vector of nodal values, character vector, character array, string scalar, or string vector. The initial condition is the value of the solution $u$ at the initial time, specified as a column vector of values at the nodes. The nodes are either $p$ in the $[p, e, t]$ data structure, or are model.Mesh.Nodes.

- If the initial condition is a constant scalar v , specify u 0 as v .
- If there are Np nodes in the mesh, and $N$ equations in the system of PDEs, specify u0 as a column vector of $N p^{*} N$ elements, where the first $N p$ elements correspond to the first component of the solution $u$, the second $N p$ elements correspond to the second component of the solution $u$, etc.
- Give a text expression of a function, such as ' $x . \wedge 2+5 * \cos (x . * y)$ '. If you have a system of $N>1$ equations, give a text array such as

```
char('x.^2 + 5*}\operatorname{cos}(x.*y)',..
 'tanh(x.*y)./(1+z.^2)'j
```

Example: $x .{ }^{\wedge} 2+5^{*} \cos \left(y .{ }^{*} x\right)$
Data Types: double | char|string
Complex Number Support: Yes

## tlist - Solution times

real vector
Solution times, specified as a real vector. The solver returns the solution to the PDE at the solution times.

Example: 0:0.2:4
Data Types: double

```
model - PDE model
```

PDEModel object
PDE model, specified as a PDEModel object.
Example: model = createpde

## c - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. c represents the $c$ coefficient in the scalar PDE

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs

$$
\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

Example: ' $\cosh (x+y . \wedge 2)^{\prime}$
Data Types: double|char|string|function_handle
Complex Number Support: Yes

## a - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. a represents the $a$ coefficient in the scalar PDE

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs

$$
\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

Example: 2*eye(3)

Data Types: double|char|string|function_handle
Complex Number Support: Yes

## f - PDE coefficient

scalar | matrix | character vector \| character array \| string scalar \| string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. f represents the $f$ coefficient in the scalar PDE

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs

$$
\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double|char|string|function_handle
Complex Number Support: Yes

## d - PDE coefficient

scalar $\mid$ matrix $\mid$ character vector $\mid$ character array $\mid$ string scalar $\mid$ string vector $\mid$ coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. d represents the $d$ coefficient in the scalar PDE

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs

$$
\mathbf{d} \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}
$$

Example: 2*eye(3)
Data Types: double|char|string|function_handle
Complex Number Support: Yes

## b - Boundary conditions

boundary matrix | boundary file
Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double|char|string|function_handle

## p - Mesh points

matrix
Mesh points, specified as a 2 -by-Np matrix of points, where $N p$ is the number of points in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

## e - Mesh edges

matrix
Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double
t - Mesh triangles
matrix
Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [ $p, e, t$ ] Triples" on page 2-150.

Typically, you use the p, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

## Kc - Stiffness matrix

sparse matrix | full matrix
Stiffness matrix, specified as a sparse matrix or as a full matrix. See "Elliptic Equations" on page 593. Typically, Kc is the output of assempde.

## Fc - Load vector

vector
Load vector, specified as a vector. See "Elliptic Equations" on page 5-93. Typically, Fc is the output of assempde.

## B - Dirichlet nullspace

sparse matrix
Dirichlet nullspace, returned as a sparse matrix. See "Algorithms" on page 5-93. Typically, B is the output of assempde.

## ud - Dirichlet vector

vector
Dirichlet vector, returned as a vector. See "Algorithms" on page 5-93. Typically, ud is the output of assempde.

## M - Mass matrix

sparse matrix | full matrix
Mass matrix. specified as a sparse matrix or a full matrix. See "Elliptic Equations" on page 5-93.
To obtain the input matrices for pdeeig, hyperbolic or parabolic, run both assema and assempde:
$[\mathrm{Kc}, \mathrm{Fc}, \mathrm{B}, \mathrm{ud}]=$ assempde(model, $\mathrm{C}, \mathrm{a}, \mathrm{f})$;
[~,M,~] = assema(model,0,d,f);

Note Create the M matrix using assema with d , not a , as the argument before f .

Data Types: double
Complex Number Support: Yes

```
rtol - Relative tolerance for ODE solver
1e-3 (default) | positive real
```

Relative tolerance for ODE solver, specified as a positive real.
Example: 2e-4
Data Types: double

## atol - Absolute tolerance for ODE solver <br> 1e-6 (default) | positive real

Absolute tolerance for ODE solver, specified as a positive real.
Example: 2e-7
Data Types: double

## Output Arguments

## u - PDE solution

matrix
PDE solution, returned as a matrix. The matrix is $\mathrm{Np}{ }^{*} N$-by-T, where Np is the number of nodes in the mesh, $N$ is the number of equations in the PDE ( $N=1$ for a scalar PDE), and $T$ is the number of solution times, meaning the length of tlist. The solution matrix has the following structure.

- The first Np elements of each column in u represent the solution of equation 1, then next Np elements represent the solution of equation 2 , etc. The solution $u$ is the value at the corresponding node in the mesh.
- Column i of $u$ represents the solution at time $t$ list(i).

To obtain the solution at an arbitrary point in the geometry, use pdeInterpolant.
To plot the solution, use pdeplot for 2-D geometry, or see "3-D Solution and Gradient Plots with MATLAB® Functions" on page 3-297.

## Algorithms

## Reducing Parabolic Equations to Elliptic Equations

parabolic internally calls assema, assemb, and assempde to create finite element matrices corresponding to the problem. It calls ode15s to solve the resulting system of ordinary differential equations.

Partial Differential Equation Toolbox solves equations of the form

$$
m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

When the $m$ coefficient is 0 , but $d$ is not, the documentation refers to the equation as parabolic, whether or not it is mathematically in parabolic form.

A parabolic problem is to solve the equation

$$
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f \text { in } \Omega
$$

with the initial condition
$u(\mathbf{x}, 0)=u_{0}(\mathbf{x})$ for $\mathbf{x} \epsilon \Omega$
where $\mathbf{x}$ represents a 2-D or 3-D point and there are boundary conditions of the same kind as for the elliptic equation on $\partial \Omega$.

The heat equation reads

$$
\rho C \frac{\partial u}{\partial t}-\nabla \cdot(k \nabla u)+h\left(u-u_{\infty}\right)=f
$$

in the presence of distributed heat loss to the surroundings. $\rho$ is the density, $C$ is the thermal capacity, $k$ is the thermal conductivity, $h$ is the film coefficient, $u_{\infty}$ is the ambient temperature, and $f$ is the heat source.

For time-independent coefficients, the steady-state solution of the equation is the solution to the standard elliptic equation
$-\nabla \cdot(c \nabla u)+a u=f$.
Assuming a mesh on $\Omega$ and $t \geq 0$, expand the solution to the PDE (as a function of $\mathbf{x}$ ) in the Finite Element Method basis:

$$
u(\mathbf{x}, t)=\sum_{i} U_{i}(t) \phi_{i}(\mathbf{x})
$$

Plugging the expansion into the PDE, multiplying with a test function $\phi_{j}$, integrating over $\Omega$, and applying Green's formula and the boundary conditions yield

$$
\begin{gathered}
\sum_{i} \int_{\Omega} d \phi_{j} \phi_{i} \frac{d U_{i}(t)}{d t} d \mathbf{x}+\sum_{i}\left(\int_{\Omega}\left(\nabla \phi_{j} \cdot\left(c \nabla \phi_{i}\right)+a \phi_{j} \phi_{i}\right) d \mathbf{x}+\int_{\partial \Omega} q \phi_{j} \phi_{i} d \mathbf{s}\right) U_{i}(t) \\
\quad=\int_{\Omega} f \phi_{j} d \mathbf{x}+\int_{\partial \Omega} g \phi_{j} d \mathbf{s} \quad \forall j
\end{gathered}
$$

In matrix notation, we have to solve the linear, large and sparse ODE system

$$
M \frac{d U}{d t}+K U=F
$$

This method is traditionally called method of lines semidiscretization.
Solving the ODE with the initial value
$U_{i}(0)=u_{0}\left(\mathbf{x}_{i}\right)$
yields the solution to the PDE at each node $\mathbf{x}_{i}$ and time $t$. Note that $K$ and $F$ are the stiffness matrix and the right-hand side of the elliptic problem
$-\nabla \cdot(c \nabla u)+a u=f$ in $\Omega$
with the original boundary conditions, while $M$ is just the mass matrix of the problem
$-\nabla \cdot(0 \nabla u)+d u=0$ in $\Omega$.
When the Dirichlet conditions are time dependent, $F$ contains contributions from time derivatives of $h$ and $\mathbf{r}$. These derivatives are evaluated by finite differences of the user-specified data.

The ODE system is ill conditioned. Explicit time integrators are forced by stability requirements to very short time steps while implicit solvers can be expensive since they solve an elliptic problem at every time step. The numerical integration of the ODE system is performed by the MATLAB ODE Suite functions, which are efficient for this class of problems. The time step is controlled to satisfy a tolerance on the error, and factorizations of coefficient matrices are performed only when necessary. When coefficients are time dependent, the necessity of reevaluating and refactorizing the matrices each time step may still make the solution time consuming, although parabolic reevaluates only that which varies with time. In certain cases a time-dependent Dirichlet matrix $\mathbf{h}(t)$ may cause the error control to fail, even if the problem is mathematically sound and the solution $u(t)$ is smooth. This can happen because the ODE integrator looks only at the reduced solution $v$ with $u=B v+u d$. As $\mathbf{h}$ changes, the pivoting scheme employed for numerical stability may change the elimination order from one step to the next. This means that $B, v$, and $u d$ all change discontinuously, although $u$ itself does not.

## See Also

solvepde

## Introduced before R2006a

## pdeadgsc

(Not recommended) Select triangles using relative tolerance criterion

Note pdeadgsc is not recommended.

## Syntax

bt = pdeadgsc(p,t,c,a,f,u,errf,tol)

## Description

bt $=$ pdeadgsc $(\mathrm{p}, \mathrm{t}, \mathrm{c}, \mathrm{a}, \mathrm{f}, \mathrm{u}, \mathrm{errf}, \mathrm{tol})$ returns indices of triangles to be refined in bt . Used from adaptmesh to select the triangles to be further refined. The geometry of the PDE problem is given by the mesh data $p$ and $t$. For more details, see "Mesh Data as [p,e,t] Triples" on page 2-150.
$\mathrm{c}, \mathrm{a}$, and f are PDE coefficients.
u is the current solution, given as a column vector.
errf is the error indicator, as calculated by pdejmps.
tol is a tolerance parameter.
Triangles are selected using the criterion errf>tol*scale, where scale is calculated as follows:
Let cmax, amax, fmax, and umax be the maximum of $c, a, f$, and $u$, respectively. Let $l$ be the side of the smallest axis-aligned square that contains the geometry.

Then scale $=\max \left(f m a x * l^{\wedge} 2, a m a x * u m a x * l \wedge 2, c m a x * u m a x\right)$. The scaling makes the tol parameter independent of the scaling of the equation and the geometry.

## See Also

generateMesh

Introduced before R2006a

## pdeadworst

(Not recommended) Select triangles relative to worst value

Note pdeadworst is not recommended.

## Syntax

bt = pdeadworst(p,t,c,a,f,u,errf,wlevel)

## Description

bt $=$ pdeadworst $(p, t, c, a, f, u, e r r f, w l e v e l)$ returns indices of triangles to be refined in $b t$. Used from adaptmesh to select the triangles to be further refined.

The geometry of the PDE problem is given by the mesh data $p$ and $t$. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.
$c, a$, and $f$ are PDE coefficients.
u is the current solution, given as a column vector.
errf is the error indicator, as calculated by pdejmps.
wlevel is the error level relative to the worst error. wlevel must be between 0 and 1 .
Triangles are selected using the criterion errf>wlevel*max (errf).

## See Also

generateMesh

Introduced before R2006a

## pdearcl

Interpolation between parametric representation and arc length

## Syntax

$\mathrm{pp}=\operatorname{pdearcl}(\mathrm{p}, \mathrm{xy}, \mathrm{s}, \mathrm{s} 0, \mathrm{~s} 1)$

## Description

$\mathrm{pp}=\operatorname{pdearcl}(\mathrm{p}, \mathrm{xy}, \mathrm{s}, \mathrm{s} 0, \mathrm{~s} 1)$ returns parameter values for a parametrized curve corresponding to a given set of arc length values.
$p$ is a monotone row vector of parameter values and $x y$ is a matrix with two rows giving the corresponding points on the curve.

The first point of the curve is given the arc length value s0 and the last point the value s1.
On return, pp contains parameter values corresponding to the arc length values specified in s .
The arc length values s, s0, and s1 can be an affine transformation of the arc length.
Introduced before R2006a

## pdecgrad

(Not recommended) Flux of PDE solution

Note pdecgrad is not recommended. Use evaluateCGradient instead.

## Syntax

[cgxu,cgyu] $=\operatorname{pdecgrad}(\mathrm{p}, \mathrm{t}, \mathrm{c}, \mathrm{u})$
[cgxu,cgyu] = pdecgrad(p,t,c,u,time)
[cgxu,cgyu] = pdecgrad(p,t,c,u,time,sdl)

## Description

[cgxu,cgyu] = pdecgrad $(p, t, c, u)$ returns the flux, $\mathbf{c} \otimes \nabla \mathbf{u}$, evaluated at the center of each triangle.

Row $i$ of cgxu contains

$$
\sum_{j=1}^{N} c_{i j 11} \frac{\partial u_{j}}{\partial x}+c_{i j 12} \frac{\partial u_{j}}{\partial y}
$$

Row $i$ of cgyu contains

$$
\sum_{j=1}^{N} c_{i j 21} \frac{\partial u_{j}}{\partial x}+c_{i j 22} \frac{\partial u_{j}}{\partial y}
$$

There is one column for each triangle in $t$ in both cgxu and cgyu.
The gradient computed by pdegrad is actually the same everywhere in the triangle interior because pdegrad uses only linear basis functions. The boundaries of triangles are a special case: here the derivatives might be discontinuous. However, the flux $\mathbf{c} \otimes \nabla \mathbf{u}$ can vary inside a triangle because the coefficient c can vary.

The geometry of the PDE problem is given by the mesh data $p$ and $t$. Details on the mesh data representation can be found in the entry on initmesh.

The coefficient c of the PDE problem can be given in a variety of ways.
The scalar optional argument time is used for parabolic and hyperbolic problems, if $c$ depends on $t$, the time.

The optional argument sdl restricts the computation to the subdomains in the list sdl .

## See Also

evaluateCGradient | evaluateGradient

Introduced before R2006a

## pdecirc

Package: pde
Draw circle in PDE Modeler app

## Syntax

```
pdecirc(xc,yc,R)
pdecirc(xc,yc,R,label)
```


## Description

pdecirc ( $x c, y c, R$ ) draws a circle with the center at ( $x c, y c$ ) and the radius $R$. The pdecirc command opens the PDE Modeler app with the specified circle already drawn in it. If the app is already open, pdecirc adds the specified circle to the app window without deleting any existing shapes.
pdecirc updates the state of the geometry description matrix inside the PDE Modeler app to include the circle. You can export the geometry description matrix from the PDE Modeler app to the MATLAB Workspace by selecting DrawExport Geometry Description, Set Formula, Labels.... For details on the format of the geometry description matrix, see decsg.
pdecirc ( $\mathrm{xc}, \mathrm{yc}, \mathrm{R}, \mathrm{l}$ abel) assigns a name to the circle. Otherwise, pdecirc uses a default name, such as C1, C2, and so on.

## Examples

## Draw Circle in PDE Modeler App

Open the PDE Modeler app window containing a circle with the center at $(0,0)$ and the radius 1 .
pdecirc(0,0,1)
Call the pdecirc command again to draw a circle with the center at $(0,0.25)$ and the radius 0.5 . The pdecirc command adds the second circle to the app window without deleting the first.
pdecirc(0,0.25,0.5)

4 PDE Modeler - [Untitled]														$\square$	回	$\Sigma$
File	Edit	Options	Draw		undary	PDE	M		Solve	Plot	Window					
$\square$	$\pm$	$\bigcirc$	$\nabla$	$\partial \Omega$	PDE	$\triangle$	$\Delta$	=	*	©	Generic Scalar	$\checkmark$	$\mathrm{X}: 0.0$	Y:	0.0	
Set formula: $\quad \mathrm{C} 1+\mathrm{C} 2$																



## Assign Name to Circle in PDE Modeler App

Open the PDE Modeler app window containing a circle with the center at $(0,0)$ and the radius 1. Assign the name circle1 to this circle.
pdecirc(0,0,1,'circle1')


## Input Arguments

## xc - x-coordinate of center

real number
$x$-coordinate of the center of the circle, specified as a real number.
Data Types: double

## yc - $\boldsymbol{y}$-coordinate of center

real number
$y$-coordinate of the center of the circle, specified as a real number.
Data Types: double
R - Radius
positive number
Radius of the circle, specified as a positive number.
Data Types: double

## label - Name

character vector | string scalar
Name of the circle, specified as a character vector or string scalar.
Data Types: char|string

## Tips

pdecirc opens the PDE Modeler app and draws a circle. If, instead, you want to draw circles in a MATLAB figure window, choose one of these approaches:

- Use the plot command, for example:

```
t = linspace(0,2*pi);
plot(cos(t),sin(t))
```

- Use the rectangle function with the Curvature name-value pair set to [111].
- Use the Image Processing Toolbox ${ }^{\mathrm{TM}}$ viscircles function.

```
See Also
PDE Modeler | pdeellip | pdepoly | pderect
Introduced before R2006a
```


## pdecont

Shorthand command for contour plot

Note This page describes the legacy workflow. New features might not be compatible with the legacy workflow.

## Syntax

```
pdecont(p,t,u)
pdecont(p,t,u,n)
pdecont(p,t,u,v)
h = pdecont(p,t,u)
h = pdecont(p,t,u,n)
h = pdecont(p,t,u,v)
```


## Description

pdecont ( $\mathrm{p}, \mathrm{t}, \mathrm{u}$ ) draws 10 level curves of the PDE node or triangle data $\mathrm{u} . \mathrm{h}=\operatorname{pdecont}(\mathrm{p}, \mathrm{t}, \mathrm{u})$ additionally returns handles to the drawn axes objects.

If u is a column vector, node data is assumed. If u is a row vector, triangle data is assumed.
The geometry of the PDE problem is given by the mesh data $p$ and $t$. For details on the mesh data representation, see "Mesh Data" on page 2-153.
pdecont ( $\mathrm{p}, \mathrm{t}, \mathrm{u}, \mathrm{n}$ ) plots using n levels.
pdecont ( $\mathrm{p}, \mathrm{t}, \mathrm{u}, \mathrm{v}$ ) plots using the levels specified by v .
This command is just shorthand for the call

```
pdeplot(p,[],t,'XYData',u,'XYStyle','off','Contour',...
'on','Levels',n,'ColorBar','off');
```

If you want to have more control over your contour plot, use pdeplot instead of pdecont.

## Examples

## Contour Plot of the Solution

Plot the contours of the solution to the equation $-\Delta u=1$ over the geometry defined by the L-shaped membrane. Use Dirichlet boundary conditions $u=0$ on $\partial \Omega$.

```
[p,e,t] = initmesh('lshapeg');
[p,e,t] = refinemesh('lshapeg',p,e,t);
```

$\mathrm{u}=$ assempde('lshapeb', $\mathrm{p}, \mathrm{e}, \mathrm{t}, 1,0,1)$;
pdecont( $\mathrm{p}, \mathrm{t}, \mathrm{u}$ )


## See Also

pdemesh | pdeplot | pdesurf
Introduced before R2006a

## pdeeig

(Not recommended) Solve eigenvalue PDE problem

Note pdeeig is not recommended. Use solvepdeeig instead.

## Syntax

$[v, l]=$ pdeeig(model, $c, a, d, r)$
$[v, l]=\operatorname{pdeeig}(b, p, e, t, c, a, d, r)$
$[v, l]=\operatorname{pdeeig}(K c, B, M, r)$

## Description

$[v, l]=$ pdeeig(model, $c, a, d, r)$ produces the solution to the FEM formulation of the scalar PDE eigenvalue problem
$-\nabla \cdot(c \nabla u)+a u=\lambda d u$ on $\Omega$
or the system PDE eigenvalue problem
$-\nabla \cdot(\mathbf{c} \otimes \nabla u)+\mathbf{a} u=\lambda d u$ on $\Omega$
with geometry, boundary conditions, and mesh specified in model, a PDEModel object.
The eigenvalue PDE problem is a homogeneous problem, i.e., only boundary conditions where $g=0$ and $r=0$ can be used. The nonhomogeneous part is removed automatically.
$[v, l]=\operatorname{pdeeig}(b, p, e, t, c, a, d, r)$ solves for boundary conditions described in $b$, and the finite element mesh in $[p, e, t]$.
$[v, l]=$ pdeeig $(\mathrm{Kc}, \mathrm{B}, \mathrm{M}, \mathrm{r})$ produces the solution to the generalized sparse matrix eigenvalue problem

Kc $u_{i}=\lambda B^{\prime} M B u_{i}$
$u=B u_{i}$
with $\operatorname{Real}(\lambda)$ in the interval $r$.

## Examples

## Eigenvalues and Eigenvectors of L-Shaped Membrane

Compute the eigenvalues that are less than 100, and compute the corresponding eigenmodes for $-\nabla u=\lambda u$ on the geometry of the L-shaped membrane.
model = createpde; geometryFromEdges(model,@lshapeg); applyBoundaryCondition(model,'edge', 1:model.Geometry.NumEdges, 'u', 0); generateMesh(model, 'GeometricOrder','linear', 'Hmax', 0.02);

```
c = 1;
a = 0;
d = 1;
r = [-Inf 100];
[v,l] = pdeeig(model,c,a,d,r);
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Basis= 10, & Time= & 0.81 , & New & con & eig= \\
\hline & Basis= 11, & Time= & 0.84 , & New & con & eig= \\
\hline & Basis= 12, & Time= & 0.86 , & New & con & eig= \\
\hline & Basis= 13, & Time= & 0.86 , & New & con & eig= \\
\hline & Basis= 14, & Time= & 0.88 , & New & con & eig= \\
\hline & Basis= 15, & Time= & 0.89 , & New & con & eig= \\
\hline & Basis= 16, & Time= & 0.89 , & Ne & con & eig= \\
\hline & Basis= 17, & Time= & 0.89, & New & con & eig= \\
\hline & Basis= 18, & Time= & 0.91 , & New & con & eig= \\
\hline & Basis= 19, & Time= & 0.91 , & New & con & eig= \\
\hline & Basis= 20, & Time= & 1.06, & New & con & eig= \\
\hline & Basis= 21, & Time= & 1.06, & New & con & eig= \\
\hline & Basis= 22, & Time= & 1.06, & New & con & eig= \\
\hline & Basis= 23, & Time= & 1.08, & New & con & eig= \\
\hline & Basis= 24, & Time= & 1.08, & New & con & eig= \\
\hline & Basis= 25, & Time= & 1.08, & New & con & eig= \\
\hline & Basis= 26, & Time= & 1.31, & New & con & eig= \\
\hline & Basis= 27, & Time= & 1.31, & New & con & eig= \\
\hline & Basis= 28, & Time= & 1.31, & New & con & eig= \\
\hline & Basis= 29, & Time= & 1.41, & New & con & eig= \\
\hline & Basis= 30, & Time= & 1.41, & New & con & eig= \\
\hline & Basis= 31, & Time= & 1.42, & New & con & eig= \\
\hline & Basis= 32, & Time= & 1.42, & New & con & eig= \\
\hline & Basis= 33, & Time= & 1.42, & New & con & eig= \\
\hline & Basis= 34, & Time= & 1.44, & New & con & eig= \\
\hline & Basis= 35, & Time= & 1.44, & New & con & eig= \\
\hline & Basis= 36, & Time= & 1.45, & New & con & eig= \\
\hline & Basis= 37, & Time= & 1.45, & New & con & eig= \\
\hline & Basis= 38, & Time= & 1.45, & New & con & eig= \\
\hline & Basis= 39, & Time= & 1.47, & New & con & eig= \\
\hline & Basis= 40, & Time= & 1.47, & New & con & eig= \\
\hline & Basis= 41, & Time= & 1.47, & New & con & eig= \\
\hline & Basis= 42, & Time= & 1.48, & New & con & eig= \\
\hline & Basis= 43, & Time= & 1.48, & New & con & eig= \\
\hline & Basis= 44, & Time= & 1.73, & New & con & eig= \\
\hline & Basis= 45, & Time= & 1.73, & New & con & eig= \\
\hline & Basis= 46, & Time= & 1.73, & New & con & eig= \\
\hline & Basis= 47, & Time= & 1.83, & New & con & eig= \\
\hline & Basis= 48, & Time= & 1.88, & New & con & eig= \\
\hline & Basis= 49, & Time= & 1.88, & Ne & con & eig= \\
\hline & Basis= 50, & Time= & 1.92, & New & con & eig= \\
\hline & Basis= 51, & Time= & 1.92, & New & con & eig= \\
\hline & Basis= 52, & Time= & 2.13, & New & con & eig= \\
\hline & Basis= 53, & Time= & 2.13, & New & con & eig= \\
\hline & Basis= 54, & Time= & 2.13, & New & con & eig= \\
\hline & Basis= 55, & Time= & 2.14, & New & con & eig= \\
\hline & Basis= 56, & Time= & 2.14, & New & con & eig= \\
\hline & Basis= 57, & Time= & 2.39, & New & con & eig= \\
\hline & Basis= 58, & Time= & 2.39, & New & con & eig= \\
\hline End of sweep: & Basis= 58, & Time= & 2.39, & New & con & eig= \\
\hline & Basis= 38, & Time= & 2.45, & New & con & eig= \\
\hline & Basis= 39, & Time= & 2.59, & Ne & con & eig= \\
\hline
\end{tabular}
```

End of sweep: Basis=40, Time= 2.64, New conv eig= 0
l(1) \% first eigenvalue
ans $=9.6506$
Display the first eigenmode, and compare it to the built-in membrane plot.

```
pdeplot(model,'XYData',v(:,1),'ZData',v(:,1))
```


figure
membrane (1,20,9,9) \% the MATLAB function


Compute the sixteenth eigenvalue, and plot the sixteenth eigenmode.
l(16)
\% sixteenth eigenvalue
ans $=92.5248$
figure
pdeplot(model,'XYData',v(:,16),'ZData',v(:,16)) \% sixteenth eigenmode


## Eigenvalues and Eigenvectors of the L-Shaped Membrane Using Legacy Syntax

Compute the eigenvalues that are less than 100, and compute the corresponding eigenmodes for $-\nabla u=\lambda u$ on the geometry of the L-shaped membrane, using the legacy syntax.

Use the geometry in lshapeg. For more information about this syntax, see "Parametrized Function for 2-D Geometry Creation" on page 2-10.
g = @lshapeg;
pdegplot(g,'EdgeLabels','on')
axis equal
$y \lim ([-1.1,1.1])$


Set zero Dirichlet boundary conditions using the l shapeb function.
b = @lshapeb;
Set coefficients $c=1, a=0$, and $d=1$. Collect eigenvalues up to 100 .
c = 1;
a = 0;
d $=1$;
r = [-Inf 100];
Generate a mesh and solve the eigenvalue problem.
[ $p, e, t]=$ initmesh(g,'Hmax',0.02);
$[v, l]=\operatorname{pdeeig}(b, p, e, t, c, a, d, r)$;

Basis $=10$,	Time $=$	1.00,	New conv eig=	0
Basis $=11$,	Time $=$	1.03,	New conv eig=	0
Basis $=12$,	Time $=$	1.03,	New conv eig $=$	0
Basis $=13$,	Time $=$	1.05,	New conv eig=	0
Basis $=14$,	Time $=$	1.05,	New conv eig=	0
Basis $=15$,	Time $=$	1.05,	New conv eig=	1
Basis $=16$,	Time $=$	1.06,	New conv eig=	1
Basis $=17$,	Time $=$	1.06,	New conv eig=	3
Basis $=18$,	Time $=$	1.06,	New conv eig=	4
Basis $=19$,	Time $=$	1.06,	New conv eig=	4
Basis $=20$,	Time $=$	1.28,	New conv eig=	4
Basis $=21$,	Time $=$	1.28,	New conv eig $=$	4



Find the first eigenvalue.
l(1)
ans $=9.6481$

## Eigenvalues and Eigenvectors Using Finite Element Matrices

Import a simple 3-D geometry and find eigenvalues and eigenvectors from the associated finite element matrices.

Create a model and import the BracketWithHole.stl geometry.

```
model = createpde();
importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')
```


## Bracket with Face Labels


figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

## Bracket with Face Labels, Rear View



Set coefficients $c=1, a=0$, and $d=1$. Collect eigenvalues that are less than 100 .
c = 1;
a = 0;
d = 1;
$r=[-I n f$ 100];
Generate a mesh for the model.
generateMesh(model);
Create the associated finite element matrices.
[Kc, ~, B, ~] = assempde(model, $\mathrm{c}, \mathrm{a}, 0$ );
[~,M,~] = assema(model,0,d,0);
Solve the eigenvalue problem.
$[\mathrm{v}, \mathrm{l}]=\operatorname{pdeeig}(\mathrm{Kc}, \mathrm{B}, \mathrm{M}, \mathrm{r})$;

Basis $=10$,	Time $=$	1.25,	New conv eig $=$	0
Basis $=11$,	Time $=$	1.30,	New conv eig $=$	0
Basis $=12$,	Time $=$	1.30,	New conv eig $=$	0
Basis $=13$,	Time $=$	1.55,	New conv eig $=$	1
Basis $=14$,	Time $=$	1.55,	New conv eig=	1
Basis $=15$,	Time $=$	1.55,	New conv eig=	1
Basis $=16$,	Time $=$	1.56,	New conv eig=	2
Basis $=17$,	Time $=$	1.56,	New conv eig $=$	3

```
End of sweep: Basis= 17, Time= 1.56, New conv eig= 3
 Basis= 13, Time= 1.80, New conv eig= 0
End of sweep: Basis= 13, Time= 1.80, New conv eig= 0
```

Look at the first two eigenvalues.

```
l([1,2])
ans = 2\times1
 0.0000
 42.8670
```

Plot the solution corresponding to eigenvalue 2.
pdeplot3D(model,'ColorMapData',v(:,2))


## Input Arguments

model - PDE model
PDEModel object
PDE model, specified as a PDEModel object.
Example: model = createpde

## c - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. c represents the $c$ coefficient in the scalar PDE

$$
-\nabla \cdot(c \nabla u)+a u=\lambda d u \text { on } \Omega
$$

or the system PDE eigenvalue problem

$$
-\nabla \cdot(\mathbf{c} \otimes \nabla u)+\mathbf{a} u=\lambda d u \text { on } \Omega
$$

Example: ' $\cosh (x+y . \wedge 2)^{\prime}$
Data Types: double|char|string|function_handle
Complex Number Support: Yes

## a - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. a represents the $a$ coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=\lambda d u$ on $\Omega$
or the system PDE eigenvalue problem
$-\nabla \cdot(\mathbf{c} \otimes \nabla u)+\mathbf{a} u=\lambda d u$ on $\Omega$
Example: 2*eye (3)
Data Types: double | char|string | function_handle
Complex Number Support: Yes

## d - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. $d$ represents the $d$ coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=\lambda d u$ on $\Omega$
or the system PDE eigenvalue problem
$-\nabla \cdot(\mathbf{c} \otimes \nabla u)+\mathbf{a} u=\lambda d u$ on $\Omega$

## Example: 2*eye(3)

Data Types: double |char|string|function_handle
Complex Number Support: Yes

## r-Eigenvalue range

two-element real vector
Eigenvalue range, specified as a two-element real vector. Real parts of eigenvalues $\lambda$ fall in the range $r(1) \leq \lambda \leq r(2) . r(1)$ can be - Inf. The algorithm returns all eigenvalues in this interval in the $l$ output, up to a maximum of 99 eigenvalues.

Example: [-Inf,100]
Data Types: double

## b - Boundary conditions

boundary matrix | boundary file
Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double|char|string|function_handle
p - Mesh points
matrix
Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [ $p, e, t$ ] Triples" on page 2-150.
Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

## e - Mesh edges

matrix
Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For a description of the ( $p, \mathrm{e}, \mathrm{t}$ ) matrices, see "Mesh Data as [ $\mathrm{p}, \mathrm{e}, \mathrm{t}]$ Triples" on page 2-150.

Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

## t - Mesh triangles

matrix
Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [ $p, e, t$ ] Triples" on page 2-150.

Typically, you use the p, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

## Kc - Stiffness matrix

sparse matrix | full matrix
Stiffness matrix, specified as a sparse matrix or as a full matrix. See "Elliptic Equations" on page 593 . Typically, Kc is the output of assempde.

## B - Dirichlet nullspace

sparse matrix
Dirichlet nullspace, returned as a sparse matrix. See "Algorithms" on page 5-93. Typically, B is the output of assempde.

## M - Mass matrix

sparse matrix | full matrix
Mass matrix. specified as a sparse matrix or a full matrix. See "Elliptic Equations" on page 5-93.
To obtain the input matrices for pdeeig, hyperbolic or parabolic, run both assema and assempde:
[Kc,Fc,B,ud] = assempde(model, c,a,f);
[~,M,~] = assema(model,0,d,f);

Note Create the M matrix using assema with d, not a, as the argument before f.

Data Types: double
Complex Number Support: Yes

## Output Arguments

v - Eigenvectors
matrix
Eigenvectors, returned as a matrix. Suppose

- Np is the number of mesh nodes
- $N$ is the number of equations
- $\quad e v$ is the number of eigenvalues returned in $l$

Then $v$ has size $N p^{*} N$-by-ev. Each column of $v$ corresponds to the eigenvectors of one eigenvalue. In each column, the first Np elements correspond to the eigenvector of equation 1 evaluated at the mesh nodes, the next Np elements correspond to equation 2, etc.

Note Eigenvectors are determined only up to multiple by a scalar, including a negative scalar.

## l - Eigenvalues

vector
Eigenvalues, returned as a vector. The real parts of $l$ are in the interval $r$. The real parts of $l$ are monotone increasing.

## Limitations

In the standard case $c$ and $d$ are positive in the entire region. All eigenvalues are positive, and 0 is a good choice for a lower bound of the interval. The cases where either $c$ or $d$ is zero are discussed next.

- If $d=0$ in a subregion, the mass matrix $M$ becomes singular. This does not cause any trouble, provided that $c>0$ everywhere. The pencil ( $K, M$ ) has a set of infinite eigenvalues.
- If $c=0$ in a subregion, the stiffness matrix K becomes singular, and the pencil $(K, M)$ has many zero eigenvalues. With an interval containing zero, pdeeig goes on for a very long time to find all the zero eigenvalues. Choose a positive lower bound away from zero but below the smallest nonzero eigenvalue.
- If there is a region where both $c=0$ and $d=0$, we get a singular pencil. The whole eigenvalue problem is undetermined, and any value is equally plausible as an eigenvalue.

Some of the awkward cases are detected by pdeeig. If the shifted matrix is singular, another shift is attempted. If the matrix with the new shift is still singular a good guess is that the entire pencil ( $K, M$ ) is singular.

If you try any problem not belonging to the standard case, you must use your knowledge of the original physical problem to interpret the results from the computation.

## Tips

- The equation coefficients cannot depend on the solution u or its gradient.


## Algorithms

## Eigenvalue Equations

Partial Differential Equation Toolbox software handles the following basic eigenvalue problem:
$-\nabla \cdot(c \nabla u)+a u=\lambda d u$
where $\lambda$ is an unknown complex number. In solid mechanics, this is a problem associated with wave phenomena describing, e.g., the natural modes of a vibrating membrane. In quantum mechanics $\lambda$ is the energy level of a bound state in the potential well $a(\mathbf{x})$, where $\mathbf{x}$ represents a 2-D or 3-D point.

The numerical solution is found by discretizing the equation and solving the resulting algebraic eigenvalue problem. Let us first consider the discretization. Expand $u$ in the FEM basis, multiply with a basis element, and integrate on the domain $\Omega$. This yields the generalized eigenvalue equation
$K U=\lambda M U$
where the mass matrix corresponds to the right side, i.e.,

$$
M_{i, j}=\int_{\Omega} d(\mathbf{x}) \phi_{j}(\mathbf{x}) \phi_{i}(\mathbf{x}) d \mathbf{x}
$$

The matrices $K$ and $M$ are produced by calling assema for the equations
$-\nabla \cdot(c \nabla u)+a u=0$ and $-\nabla \cdot(0 \nabla u)+d u=0$
In the most common case, when the function $d(\mathbf{x})$ is positive, the mass matrix $M$ is positive definite symmetric. Likewise, when $c(\mathbf{x})$ is positive and we have Dirichlet boundary conditions, the stiffness matrix $K$ is also positive definite.

The generalized eigenvalue problem, $K U=\lambda M U$, is now solved by the Arnoldi algorithm applied to a shifted and inverted matrix with restarts until all eigenvalues in the user-specified interval have been found.

Let us describe how this is done in more detail. You may want to look at the examples "Eigenvalues and Eigenmodes of L-Shaped Membrane" on page 3-258 or "Eigenvalues and Eigenmodes of Square" on page 3-270, where actual runs are reported.

First a shift $\mu$ is determined close to where we want to find the eigenvalues. When both $K$ and $M$ are positive definite, it is natural to take $\mu=0$, and get the smallest eigenvalues; in other cases take any point in the interval $[l b, u b]$ where eigenvalues are sought. Subtract $\mu M$ from the eigenvalue equation and get $(K-\mu M) U=(\lambda-\mu) M U$. Then multiply with the inverse of this shifted matrix and get

$$
\frac{1}{\lambda-\mu} U=(K-\mu M)^{-1} M U
$$

This is a standard eigenvalue problem $A U=\theta U$, with the matrix $A=(K-\mu M)^{-1} M$ and eigenvalues

$$
\theta_{i}=\frac{1}{\lambda_{i}-\mu}
$$

where $i=1, \ldots, n$. The largest eigenvalues $\theta_{i}$ of the transformed matrix $A$ now correspond to the eigenvalues $\lambda_{i}=\mu+1 / \theta_{i}$ of the original pencil ( $K, M$ ) closest to the shift $\mu$.

The Arnoldi algorithm computes an orthonormal basis $V$ where the shifted and inverted operator $A$ is represented by a Hessenberg matrix $H$,
$A V_{j}=V_{j} H_{j, j}+E_{j}$.
(The subscripts mean that $V_{j}$ and $E_{j}$ have $j$ columns and $H_{j, j}$ has $j$ rows and columns. When no subscripts are used we deal with vectors and matrices of size $n$.)

Some of the eigenvalues of this Hessenberg matrix $H_{j, j}$ eventually give good approximations to the eigenvalues of the original pencil ( $K, M$ ) when the basis grows in dimension $j$, and less and less of the eigenvector is hidden in the residual matrix $E_{j}$.

The basis $V$ is built one column $v_{j}$ at a time. The first vector $v_{1}$ is chosen at random, as $n$ normally distributed random numbers. In step $j$, the first $j$ vectors are already computed and form the $n \times j$ matrix $V_{j}$. The next vector $v_{j+1}$ is computed by first letting $A$ operate on the newest vector $v_{j}$, and then making the result orthogonal to all the previous vectors.

This is formulated as $h_{j+1} v_{j+1}=A v_{j}-V_{j} h_{j}$, where the column vector $h_{j}$ consists of the GramSchmidt coefficients, and $h_{j+1, j}$ is the normalization factor that gives $v_{j+1}$ unit length. Put the corresponding relations from previous steps in front of this and get

$$
A V_{j}=V_{j} H_{j, j}+v_{j+1} h_{j+1, j} e_{j}^{T}
$$

where $H_{j, j}$ is a $j \times j$ Hessenberg matrix with the vectors $h_{j}$ as columns. The second term on the righthand side has nonzeros only in the last column; the earlier normalization factors show up in the subdiagonal of $H_{j, j}$.

The eigensolution of the small Hessenberg matrix $H$ gives approximations to some of the eigenvalues and eigenvectors of the large matrix operator $A_{j, j}$ in the following way. Compute eigenvalues $\theta_{i}$ and eigenvectors $s_{i}$ of $H_{j, j}$,

$$
H_{j, j} s_{i}=s_{i} \theta_{i}, i=1, \ldots, j
$$

Then $y_{i}=V_{j} s_{i}$ is an approximate eigenvector of $A$, and its residual is

$$
r_{i}=A y_{i}-y_{i} \theta_{i}=A V_{j} s_{i}-V_{j} s_{i} \theta_{i}=\left(A V_{j}-V_{j} H_{j, j}\right) s_{i}=v_{j+1} h_{j+1, j} s_{i, j}
$$

This residual has to be small in norm for $\theta_{i}$ to be a good eigenvalue approximation. The norm of the residual is

$$
\left\|r_{i}\right\|=\left|h_{j+1, j} s_{j, i}\right|
$$

the product of the last subdiagonal element of the Hessenberg matrix and the last element of its eigenvector. It seldom happens that $h_{j+1, j}$ gets particularly small, but after sufficiently many steps $j$ there are always some eigenvectors $s_{i}$ with small last elements. The long vector $V_{j+1}$ is of unit norm.

It is not necessary to actually compute the eigenvector approximation $y_{i}$ to get the norm of the residual; we only need to examine the short vectors $s_{i}$, and flag those with tiny last components as converged. In a typical case $n$ may be 2000, while $j$ seldom exceeds 50 , so all computations that involve only matrices and vectors of size $j$ are much cheaper than those involving vectors of length $n$.

This eigenvalue computation and test for convergence is done every few steps $j$, until all approximations to eigenvalues inside the interval $[\mathrm{lb}, \mathrm{ub}]$ are flagged as converged. When $n$ is much larger than $j$, this is done very often, for smaller $n$ more seldom. When all eigenvalues inside the interval have converged, or when $j$ has reached a prescribed maximum, the converged eigenvectors, or more appropriately Schur vectors, are computed and put in the front of the basis $V$.

After this, the Arnoldi algorithm is restarted with a random vector, if all approximations inside the interval are flagged as converged, or else with the best unconverged approximate eigenvector $y_{i}$. In each step $j$ of this second Arnoldi run, the vector is made orthogonal to all vectors in $V$ including the converged Schur vectors from the previous runs. This way, the algorithm is applied to a projected matrix, and picks up a second copy of any double eigenvalue there may be in the interval. If anything in the interval converges during this second run, a third is attempted and so on, until no more approximate eigenvalues $\theta_{i}$ show up inside. Then the algorithm signals convergence. If there are still unconverged approximate eigenvalues after a prescribed maximum number of steps, the algorithm signals nonconvergence and reports all solutions it has found.

This is a heuristic strategy that has worked well on both symmetric, nonsymmetric, and even defective eigenvalue problems. There is a tiny theoretical chance of missing an eigenvalue, if all the random starting vectors happen to be orthogonal to its eigenvector. Normally, the algorithm restarts $p$ times, if the maximum multiplicity of an eigenvalue is $p$. At each restart a new random starting direction is introduced.

The shifted and inverted matrix $A=(K-\mu M)^{-1} M$ is needed only to operate on a vector $v_{j}$ in the Arnoldi algorithm. This is done by computing an LU factorization,
$P(K-\mu M) Q=L U$
using the sparse MATLAB command lu ( $P$ and $Q$ are permutations that make the triangular factors $L$ and $U$ sparse and the factorization numerically stable). This factorization needs to be done only once, in the beginning, then $x=A v_{j}$ is computed as,
$x=Q U^{-1} L^{-1} P M v_{j}$
with one sparse matrix vector multiplication, a permutation, sparse forward- and back-substitutions, and a final renumbering.

## See Also

solvepdeeig
Introduced before R2006a

## pdeellip

Package: pde
Draw ellipse in PDE Modeler app

## Syntax

pdeellip(xc,yc,a,b,phi)
pdeellip(xc,yc,a,b,phi,label)

## Description

pdeellip (xc, yc, a, b, phi) draws an ellipse with the center at ( $\mathrm{xc}, \mathrm{yc}$ ), the semiaxes $a$ and $b$, and the rotation phi (in radians). The pdeellip command opens the PDE Modeler app with the specified ellipse drawn in it. If the app is already open, pdeellip adds the specified ellipse to the app window without deleting any existing shapes.
pdeellip updates the state of the geometry description matrix inside the PDE Modeler app to include the ellipse. You can export the geometry description matrix from the PDE Modeler app to the MATLAB Workspace by selecting DrawExport Geometry Description, Set Formula, Labels.... For details on the format of the geometry description matrix, see decsg.
pdeellip(xc,yc,a,b,phi,label) assigns a name to the ellipse. Otherwise, pdeellip uses a default name, such as E1, E2, and so on.

## Examples

## Draw Ellipse in PDE Modeler App

Open the PDE Modeler app window containing an ellipse with the center at ( 0,0 ) and the semiaxes 1 and 0.3 . Rotate the ellipse by $\pi / 4$ counterclockwise.
pdeellip(0,0,1,0.3,pi/4)
Call the pdeellip command again to draw an ellipse with the same center and semiaxes, but rotate it by $\Pi / 2$ counterclockwise. The pdeellip command adds the second ellipse to the app window without deleting the first.

```
pdeellip(0,0,1,0.3,pi/2)
```




## Assign Name to Ellipse in PDE Modeler App

Open the PDE Modeler app window containing an ellipse with the center at ( 0,0 ) and the semiaxes 1 and 0.3 . Rotate the ellipse by $п / 4$ counterclockwise. Assign the name ellipsel to this ellipse.
pdeellip(0,0,1,0.3,pi/4, 'ellipse1')



## Input Arguments

## xc - x-coordinate of center

real number
$x$-coordinate of the center of the ellipse, specified as a real number.
Data Types: double

## yc - $\boldsymbol{y}$-coordinate of center

real number
$y$-coordinate of the center of the ellipse, specified as a real number.
Data Types: double
a - Semiaxis
positive number
Semiaxis of the ellipse, specified as a positive number.
Data Types: double
b - Semiaxis
positive number
Semiaxis of the ellipse, specified as a positive number.
Data Types: double
phi - Rotation
real number
Rotation of the ellipse, specified as a real number. The rotation value is measured in radians.
Data Types: double

label - Name<br>character vector | string scalar

Name of the ellipse, specified as a character vector or string scalar.
Data Types: char|string

## See Also <br> PDE Modeler | pdecirc | pdepoly | pderect

Introduced before R2006a

## pdeent

Indices of triangles neighboring given set of triangles

Note This page describes the legacy workflow. New features might not be compatible with the legacy workflow. For the corresponding step in the recommended workflow, see generateMesh.

## Syntax

ntl $=$ pdeent $(\mathrm{t}, \mathrm{tl})$

## Description

Given triangle data $t$ and a list of triangle indices $t l, n t l$ contains indices of the triangles in $t l$ and their immediate neighbors, i.e., those whose intersection with tl is nonempty.

## See Also

generateMesh
Introduced before R2006a

## pdegplot

Plot PDE geometry

## Syntax

```
pdegplot(g)
pdegplot(g,Name,Value)
h = pdegplot(
```

$\qquad$

``` )
```


## Description

pdegplot ( g ) plots the geometry of a PDE problem, as described in g .
pdegplot ( g , Name, Value) plots with additional options specified by one or more Name, Value pair arguments.
h = pdegplot ( $\qquad$ ) returns handles to the graphics, using any of the previous syntaxes.

## Examples

## Plot 2-D Geometry with and Without Labels

Plot the geometry of a region defined by a few simple shapes.



View the vertex labels, edge labels, and the face label. Add space at the top of the plot to see the top edge clearly.
pdegplot(g,'VertexLabels','on','EdgeLabels','on','FaceLabels','on') ylim([-.8,.1])


## Plot 3-D Geometry

Import a 3-D geometry file. Plot the geometry and turn on face labels. To see the labels on all faces of the geometry, set the transparency to 0.5 .

```
model = createpde;
```

importGeometry(model, 'BracketWithHole.stl');
pdegplot(model,'FaceLabels', 'on', 'FaceAlpha', 0.5)


Plot Multi-Cellular 3-D Geometry
Import a 3-D geometry file. Plot the geometry and turn on cell labels.
model = createpde;
importGeometry(model,'DampingMounts.stl');
pdegplot(model,'CellLabels','on')


## Input Arguments

## g - Geometry description

PDEModel object | output of decsg | decomposed geometry matrix | name of geometry file | function handle to geometry file

Geometry description, specified by one of the following:

- PDEModel object
- Output of decsg
- Decomposed geometry matrix (see "Decomposed Geometry Data Structure" on page 2-8)
- Name of geometry file (see "Parametrized Function for 2-D Geometry Creation" on page 2-10)
- Function handle to geometry file (see "Parametrized Function for 2-D Geometry Creation" on page 2-10)

Data Types: double|char|string|function_handle

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

The argument SubdomainLabels is not recommended. Use FaceLabels for both 2-D and 3-D geometries instead.

Example: pdegplot (g, 'FaceLabels', 'on')

## VertexLabels - Vertex labels for 2-D or 3-D geometry 'off' (default)|'on'

Vertex labels for 2-D or 3-D geometry, specified as 'off' or 'on '.
Example: 'VertexLabels','on'
Data Types: char | string

## EdgeLabels - Boundary edge labels for 2-D or 3-D geometry

 'off' (default)|'on'Boundary edge labels for 2-D or 3-D geometry, specified as 'off' or 'on'.
Example: 'EdgeLabels','on'
Data Types: char | string

## FaceLabels - Boundary face labels for 2-D or 3-D geometry

 'off' (default)|'on'Boundary face labels for 2-D or 3-D geometry, specified as 'off' or 'on'.
Example: 'FaceLabels','on'
Data Types: char | string

## CellLabels - Cell labels for 3-D geometry

'off' (default)|'on'
Cell labels for 3-D geometry, specified as 'off' or 'on'.
Example: 'CellLabels','on'
Data Types: char | string

## FaceAlpha - Surface transparency for 3-D geometry

1 (default) | real number from 0 through 1
Surface transparency for 3-D geometry, specified as the comma-separated pair consisting of ' FaceAlpha' and a real number from 0 through 1. The default value 1 indicates no transparency. The value 0 indicates complete transparency.

Example: 'FaceAlpha',0.5
Data Types: double

## Output Arguments

## h - Handles to graphics objects <br> vector

Handles to graphics objects, returned as a vector.

## Alternative Functionality

## App

If you create 2-D geometry in the PDE Modeler app, you can view the geometry from Boundary Mode. To see the edge labels, select Boundary > Show Edge Labels. To see the face labels, select PDE > Show Subdomain Labels.

## See Also

PDE Modeler | decsg | importGeometry | pdemesh | pdeplot | pdeplot3D

## Topics

"Create Geometry and Remove Face Boundaries" on page 2-6
"STL File Import" on page 2-31
"Solve Problems Using PDEModel Objects" on page 2-2
Introduced before R2006a

## pdegrad

(Not recommended) Gradient of PDE solution

Note pdegrad is not recommended. Use evaluateGradient instead.

## Syntax

[ux, uy] = pdegrad $(\mathrm{p}, \mathrm{t}, \mathrm{u})$
[ux, uy] $=\operatorname{pdegrad}(p, t, u, s d l)$

## Description

[ux, uy] = pdegrad $(p, t, u)$ returns the gradient of $u$ evaluated at the center of each triangle.
Row $i$ from 1 to $N$ of ux contains

$$
\frac{\partial u_{i}}{\partial x}
$$

Row $i$ from 1 to $N$ of uy contains

$$
\frac{\partial u_{i}}{\partial y}
$$

There is one column for each triangle in $t$ in both ux and uy.
Although pdegrad returns the value of the gradient at the center of a triangle, the gradient is actually the same everywhere in the triangle interior. This is because pdegrad uses only linear basis functions. The boundaries of triangles are a special case: here the derivatives might be discontinuous.

The geometry of the PDE problem is given by the mesh data p and t . For details on the mesh data representation, see initmesh.

The optional argument $s d l$ restricts the computation to the subdomains in the list $s d l$.

## See Also

evaluateGradient

Introduced before R2006a

## pdeInterpolant

Interpolant for nodal data to selected locations

Note pdeInterpolant and [p,e,t] representation of FEMesh data are not recommended. Use interpolateSolution and evaluateGradient to interpolate a PDE solution and its gradient to arbitrary points without switching to a [p,e,t] representation.

## Description

An interpolant allows you to evaluate a PDE solution at any point within the geometry.
Partial Differential Equation Toolbox solvers return solution values at the nodes, meaning the mesh points. To evaluate an interpolated solution at other points within the geometry, create a pdeInterpolant object, and then call the evaluate function.

## Creation

## Syntax

F = pdeInterpolant (p,t,u)

## Description

$F=$ pdeInterpolant $(p, t, u)$ returns an interpolant $F$ based on the data points $p$, elements $t$, and data values at the points, $u$.

Use meshToPet to obtain the p and t data for interpolation using pdeInterpolant.

## Input Arguments

## p - Data point locations

matrix with two or three rows
Data point locations, specified as a matrix with two or three rows. Each column of p is a 2-D or 3-D point. For details, see "Mesh Data" on page 2-153.

For 2-D problems, construct p using the initmesh function, or export from the Mesh menu of the PDE Modeler app. For 2-D or 3-D geometry using a PDEModel object, obtain p using the meshToPet function on model.Mesh. For example, $[p, e, t]=\operatorname{initmesh}(g)$ or $[p, e, t]=$ meshToPet(model.Mesh).

## t - Triangulation elements

matrix
Triangulation elements, specified as a matrix. For details, see "Mesh Data" on page 2-153.
For 2-D problems, construct $t$ using the initmesh function, or export from the Mesh menu of the PDE Modeler app. For 2-D or 3-D geometry using a PDEModel object, obtain $t$ using the meshToPet
function on model.Mesh. For example, $[p, e, t]=\operatorname{initmesh}(g)$ or $[p, e, t]=$ meshToPet (model.Mesh).
u - Data values to interpolate
vector | matrix
Data values to interpolate, specified as a vector or matrix. Typically, $u$ is the solution of a PDE problem returned by assempde, parabolic, hyperbolic, or another solver. For example, u = assempde (b, p,e,t, c, a , f). You can also export u from the Solve menu of the PDE Modeler app.

The dimensions of the matrix $u$ depend on the problem. If $n p$ is the number of columns of $p$, and $N$ is the number of equations in the PDE system, then $u$ has $N^{*} n p$ rows. The first np rows correspond to equation 1, the next np rows correspond to equation 2, etc. For parabolic or hyperbolic problems, u has one column for each solution time; otherwise, $u$ is a column vector.

## Object Functions

evaluate Interpolate data to selected locations

## Examples

## Create Interpolant

This example shows how to create a pdeInterpolant from the solution to a scalar PDE.
Solve the equation $-\Delta u=1$ on the unit disk with zero Dirichlet conditions.

```
g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
problem = allzerobc(g); % zero Dirichlet conditions
[p,e,t] = initmesh(g);
c = 1;
a = 0;
f = 1;
u = assempde(problem,p,e,t,c,a,f);
```

Construct an interpolant for the solution.

```
F = pdeInterpolant(p,t,u);
```

Evaluate the interpolant at the four corners of a square.

```
pOut = [0,1/2,1/2,0;
 0,0,1/2,1/2];
u0ut = evaluate(F,p0ut)
u0ut = 4\times1
 0.2485
 0.1854
 0.1230
 0.1852
```

The values u0ut (2) and u0ut (4) are nearly equal, as they should be for symmetric points in this symmetric problem.

## See Also

evaluate|tri2grid

## Topics

"Mesh Data" on page 2-153

Introduced in R2014b

## pdeintrp

(Not recommended) Interpolate from node data to triangle midpoint data

Note pdeintrp is not recommended. Use interpolateSolution and evaluateGradient instead.

## Syntax

$u t=p d e i n t r p(p, t, u n)$

## Description

ut $=$ pdeintrp( $p, t, u n$ ) gives linearly interpolated values at triangle midpoints from the values at node points.

The geometry of the PDE problem is given by the mesh data $p$ and $t$. For details on the mesh data representation, see initmesh.

Let $N$ be the dimension of the PDE system, $n_{p}$ the number of node points, and $n_{t}$ the number of triangles. The components of the node data are stored in un either as $N$ columns of length $n_{p}$ or as an ordinary solution vector. The first $n_{p}$ values of un describe the first component, the following $n_{p}$ values of un describe the second component, and so on. The components of triangle data are stored in ut as $N$ rows of length $n_{t}$.

## Caution

pdeprtni and pdeintrp are not inverse functions. The interpolation introduces some averaging.

```
See Also
evaluateGradient|interpolateSolution | solvepde
```

Introduced before R2006a

## pdejmps

(Not recommended) Error estimates for adaptation

Note pdejmps is not recommended.

## Syntax

errf $=$ pdejmps(p,t,c,a,f,u,alfa,beta,m)

## Description

errf $=\operatorname{pdejmps}(p, t, c, a, f, u, a l f a, b e t a, m)$ calculates the error indication function used for adaptation. The columns of errf correspond to triangles, and the rows correspond to the different equations in the PDE system.
p andt are mesh data. For details, see initmesh.
$c, a$, and $f$ are PDE coefficients. $c, a$, and $f$ must be expanded, so that columns correspond to triangles.

The formula for computing the error indicator $E(K)$ for each triangle $K$ is

$$
E(K)=\alpha\left\|h^{m}(f-a u)\right\|_{K}+\beta\left(\frac{1}{2} \sum_{\tau \in \partial K} h_{\tau}^{2 m}\left[\mathbf{n}_{\tau} \cdot\left(c \nabla u_{h}\right)\right]^{2}\right)^{1 / 2}
$$

where $n_{\tau}$ is the unit normal of edge $\tau$ and the braced term is the jump in flux across the element edge, where $\alpha$ and $\beta$ are weight indices and $m$ is an order parameter. The norm is an $L_{2}$ norm computed over the element $K$. The error indicator is stored in errf as column vectors, one for each triangle in t . For more details, see the "Algorithms" section on the adaptmesh page.

## Introduced before R2006a

## pdemesh

Plot PDE mesh

## Syntax

```
pdemesh(model)
pdemesh(mesh)
pdemesh(nodes,elements)
pdemesh(model,u)
pdemesh(___ ,Name,Value)
pdemesh(p,e,t)
pdemesh(p,e,t,u)
h = pdemesh(___)
```


## Description

pdemesh (model) plots the mesh contained in a 2-D or 3-D model object of type PDEModel.
pdemesh (mesh) plots the mesh defined as a Mesh property of a 2-D or 3-D model object of type PDEModel.
pdemesh(nodes, elements) plots the mesh defined by nodes and elements.
pdemesh (model, u) plots solution data u as a 3-D plot. This syntax is valid only for 2-D geometry.
pdemesh (__ , Name, Value) plots the mesh or solution data using any of the arguments in the previous syntaxes and one or more Name, Value pair arguments.
pdemesh ( $p, e, t$ ) plots the mesh specified by the mesh data $p, e, t$.
pdemesh ( $\mathrm{p}, \mathrm{e}, \mathrm{t}, \mathrm{u}$ ) plots PDE node or triangle data u using a mesh plot. The function plots the node data if $u$ is a column vector, and triangle data if $u$ is a row vector.

If you want to have more control over your mesh plot, use pdeplot or pdeplot3D instead of pdemesh.
$\mathrm{h}=$ pdemesh $($ $\qquad$ ) returns handles to the graphics, using any of the arguments of the previous syntaxes.

## Examples

## Mesh Plot for L-Shaped Membrane

Create a mesh plot and display the node and element labels of the mesh.
Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
mesh = generateMesh(model);
```

Plot the mesh.
pdemesh(model)


Alternatively, you can plot a mesh by using mesh as an input argument.
pdemesh(mesh)


Another approach is to use the nodes and elements of the mesh as input arguments for pdemesh.
pdemesh(mesh.Nodes,mesh.Elements)


Display node labels.
pdemesh(model,'NodeLabels','on')


Use $x$ lim and $y l i m$ to zoom in on particular nodes.
$x \lim ([-0.4,0.4])$
ylim([-0.4,0.4])


Display element labels.

```
pdemesh(model,'ElementLabels','on')
xlim([-0.4,0.4])
ylim([-0.4,0.4])
```



Apply boundary conditions, specify coefficients, and solve the PDE.
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges, 'u', 0) ; specifyCoefficients(model,'m', 0,...
'd', 0,...
'c',1,...
'a', 0,...
'f',1);
generateMesh(model);
results = solvepde(model)
results =
StationaryResults with properties:

```
 NodalSolution: [1177x1 double]
 XGradients: [1177x1 double]
 YGradients: [1177x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

$u=$ results.NodalSolution;

Plot the solution at nodal locations by using pdemesh.
pdemesh(model,u)


The pdemesh function ignores NodeLabels and ElementLabels when you plot solution data as a 3D plot.

## Transparency for 3-D Mesh

Create a PDE model, include the geometry and mesh it.
model = createpde;
importGeometry(model,'Plate10x10x1.stl'); generateMesh(model,'Hmax' , 5);

Plot the mesh setting the transparency to 0.5.
pdemesh(model,'FaceAlpha',0.5)


## Elements Associated with Particular Face

Find the elements associated with a geometric region.
Create a PDE model.
model = createpde;
Include the geometry of the built-in function lshapeg. Plot the geometry.

```
geometryFromEdges(model,@lshapeg);
```

pdegplot(model,'FaceLabels','on','EdgeLabels','on')


Generate a mesh.
mesh = generateMesh(model,'Hmax',0.5);
Find the elements associated with face 2.
Ef2 = findElements(mesh,'region','Face', 2);
Highlight these elements in green on the mesh plot.
figure
pdemesh(mesh,'ElementLabels','on')
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Ef2),'EdgeColor','green')


## [p,e,t] Mesh Plot

Plot the mesh for the geometry of the L-shaped membrane.
[p,e,t] = initmesh('lshapeg');
[p,e,t] = refinemesh('lshapeg', $p, e, t)$;
pdemesh ( $\mathrm{p}, \mathrm{e}, \mathrm{t}$ )


Now solve Poisson's equation $-\Delta u=1$ over the geometry defined by the L-shaped membrane. Use Dirichlet boundary conditions $u=0$ on $\delta \Omega$, and plot the result.

```
u = assempde('lshapeb',p,e,t,1,0,1);
pdemesh(p,e,t,u)
```



## Input Arguments

## model - Model object

PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or ElectromagneticModel object.
Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

## u - PDE solution

vector | matrix
PDE solution, specified as a vector or matrix.
Example: results = solvepde(model); u = results.NodalSolution; or u = assempde(model, c, a, f) ;

## mesh - Mesh object

Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.

Example: model. Mesh

## nodes - Nodal coordinates

2-by-NumNodes matrix | 3-by-NumNodes matrix
Nodal coordinates, specified as a 2-by-NumNodes matrix for a 2-D mesh and 3-by-NumNodes matrix for a 3-D mesh. NumNodes is the number of nodes.

## elements - Element connectivity matrix in terms of node IDs

## NodesPerElem-by-NumElements matrix

Element connectivity matrix in terms of node IDs, specified as an NodesPerElem-by-NumElements matrix. NodesPerElem is the number of nodes per element. Linear meshes contain only corner nodes, so there are three nodes per a 2-D element and four nodes per a 3-D element. Quadratic meshes contain corner nodes and nodes in the middle of each edge of an element. For quadratic meshes, there are six nodes per a 2-D element and 10 nodes per a 3-D element.


2-D quadratic element showing node numbering


## p-Mesh points

matrix
Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

## e - Mesh edges

matrix
Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)

## Data Types: double

## t - Mesh triangles <br> matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.
Example: pdemesh(model, 'NodeLabels','on')

## NodeLabels - Node labels

'off' (default) |'on'
Node labels, specified as the comma-separated pair consisting of 'NodeLabels' and 'off' or 'on'.
pdemesh ignores NodeLabels when you plot solution data as a 3-D plot.
Example: 'NodeLabels','on'
Data Types: char | string

## ElementLabels - Element labels

'off' (default)|'on'
Element labels, specified as the comma-separated pair consisting of 'ElementLabels' and 'off' or 'on'.
pdemesh ignores ElementLabels when you plot solution data as a 3-D plot.
Example: 'ElementLabels','on'
Data Types: char | string

## FaceAlpha - Surface transparency for 3-D geometry

1 (default) | real number from 0 through 1
Surface transparency for 3-D geometry, specified as the comma-separated pair consisting of 'FaceAlpha' and a real number from 0 through 1. The default value 1 indicates no transparency. The value 0 indicates complete transparency.

Example: 'FaceAlpha', 0.5
Data Types: double

## EdgeColor - Color of mesh edges

short color name | long color name | RGB triplet
Color of mesh edges, specified as a short or long color name or an RGB triplet. By default, for 2-D meshes the edges within one face are blue (RGB triplet [ $\left.\begin{array}{lll}0 & 0 & 1\end{array}\right]$ ) and the edges between faces are


The short names and long names are character vectors that specify one of eight predefined colors. The RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color; the intensities must be in the range [0 1]. The following table lists the predefined colors and their RGB triplet equivalents.

RGB Triplet	Short Name	Long Name
$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	y	yellow
$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	m	magenta
$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	c	cyan
$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	r	red
$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	g	green
$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	b	blue
$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	W	white
$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	k	black

Example: 'EdgeColor','green'
Data Types: double | char | string

## FaceColor - Color of mesh faces for 3-D meshes

[0 1 1] | short color name | long color name | RGB triplet
Color of mesh faces for 3-D meshes, specified as a short or long color name or an RGB triplet. The default face color is cyan (RGB triplet [0 $\left.\begin{array}{lll}0 & 1 & 1\end{array}\right]$ ). For details about available colors, see "'EdgeColor'" on page 5-0
Example: 'FaceColor','green'
Data Types: double |char|string

## Output Arguments

## h - Handles to graphics objects

## vector

Handles to graphics objects, returned as a vector.

## See Also

pdegplot | pdeplot | pdeplot3D

## Topics

"Mesh Data" on page 2-153

Introduced before R2006a

## PDEModel

PDE model object

## Description

A PDEModel object contains information about a PDE problem: the number of equations, geometry, mesh, and boundary conditions.

## Creation

Create a PDEModel object using createpde. Initially, the only nonempty property is PDESystemSize. It is 1 for scalar problems.

## Properties

## PDESystemSize - Number of equations

1 (default) | positive integer
Number of equations, $N$, returned as a positive integer. See "Equations You Can Solve Using PDE Toolbox" on page 1-3.
Example: 1
Data Types: double

## BoundaryConditions - PDE boundary conditions

vector of BoundaryCondition objects
PDE boundary conditions, returned as a vector of BoundaryCondition objects. You create boundary conditions using the applyBoundaryCondition function

Geometry - Geometry description
geometry object
Geometry description, returned as a geometry object.

- AnalyticGeometry object for 2-D geometry. You create this geometry using the geomet ryFromEdges function.
- DiscreteGeometry object for 3-D geometry. You create this geometry using the importGeometry function or the geomet ryFromMesh function.


## Mesh - Mesh for solution

FEMesh object
Mesh for solution, returned as an FEMesh object. You create the mesh using the generateMesh function.

IsTimeDependent - Indicator if model is time-dependent
0 (false) (default) | 1 (true)

Indicator if model is time-dependent, returned as 1 (true) or 0 (false). The property is true when the m or d coefficient is nonzero, and is false otherwise.

## EquationCoefficients - PDE coefficients

vector of CoefficientAssignment objects
PDE coefficients, returned as a vector of CoefficientAssignment objects. See specifyCoefficients.

InitialConditions - Initial conditions or initial solution
GeometricInitialConditions object| NodalInitialConditions object
Initial conditions or initial solution, returned as a GeometricInitialConditions or NodalInitialConditions object.

In case of GeometricInitialConditions, for time-dependent problems, you must give one or two initial conditions: one if the $m$ coefficient is zero, and two if the $m$ coefficient is nonzero. For nonlinear stationary problems, you can optionally give an initial solution that solvepde uses to start its iterations. See setInitialConditions.

In case of Nodal InitialConditions, you use the results of previous analysis to set the initial conditions or initial guess. The geometry and mesh of the previous analysis and current model must be the same.

## SolverOptions - Algorithm options for PDE solvers <br> PDESolverOptions object

Algorithm options for the PDE solvers, returned as a PDESolverOptions object. The properties of PDESolverOptions include absolute and relative tolerances for internal ODE solvers, maximum solver iterations, and so on.

## Object Functions

applyBoundaryCondition generateMesh geometryFromEdges geometryFromMesh importGeometry
setInitialConditions
specifyCoefficients
solvepde
solvepdeeig

Add boundary condition to PDEModel container
Create triangular or tetrahedral mesh
Create 2-D geometry from decomposed geometry matrix
Create 2-D or 3-D geometry from mesh
Import 2-D or 3-D geometry from STL data
Give initial conditions or initial solution
Specify coefficients in a PDE model
Solve PDE specified in a PDEModel
Solve PDE eigenvalue problem specified in a PDEModel

## Examples

## Create and Populate a PDE Model

Create and populate a PDEModel object.
Create a container for a scalar PDE ( $\mathrm{N}=1$ ).
model $=$ createpde()

```
model =
 PDEModel with properties:
 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Include a torus geometry, zero Dirichlet boundary conditions, coefficients for Poisson's equation, and the default mesh.

```
importGeometry(model,'Torus.stl');
applyBoundaryCondition(model,'dirichlet','face',1,'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
generateMesh(model);
```

Solve the PDE.

```
results = solvepde(model)
results =
 StationaryResults with properties:
 NodalSolution: [12913x1 double]
 XGradients: [12913x1 double]
 YGradients: [12913x1 double]
 ZGradients: [12913x1 double]
 Mesh: [1x1 FEMesh]
```


## See Also

applyBoundaryCondition | createpde | generateMesh | geomet ryFromEdges | geometryFromMesh | importGeometry| pdegplot | pdeplot | pdeplot3D | setInitialConditions|specifyCoefficients

## Topics

"Solve Problems Using PDEModel Objects" on page 2-2

## Introduced in R2015a

## pdenonlin

(Not recommended) Solve nonlinear elliptic PDE problem

Note pdenonlin is not recommended. Use solvepde instead.

## Syntax

$u=$ pdenonlin(model, $c, a, f)$
$u=$ pdenonlin(b, $p, e, t, c, a, f)$
u = pdenonlin( __, Name, Value)
[u,res] = pdenonlin( $\qquad$

## Description

$\mathrm{u}=$ pdenonlin(model, $\mathrm{c}, \mathrm{a}, \mathrm{f})$ solves the nonlinear PDE
$-\nabla \cdot(c \nabla u)+a u=f$
with geometry, boundary conditions, and finite element mesh in model, and coefficients c , a , and f . In this context, "nonlinear" means some coefficient in c , a , or f depends on the solution u or its gradient. If the PDE is a system of equations (model.PDESystemSize > 1), then pdenonlin solves the system of equations
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
$u=p d e n o n l i n(b, p, e, t, c, a, f)$ solves the PDE with boundary conditions $b$, and finite element mesh ( $\mathrm{p}, \mathrm{e}, \mathrm{t}$ ).
u = pdenonlin( __ ,Name, Value), for any previous arguments, modifies the solution process with Name, Value pairs.
[u,res] = pdenonlin( $\qquad$ ) also returns the norm of the Newton step residuals res.

## Examples

## Minimal Surface Problem

Solve a minimal surface problem. Because this problem has a nonlinear c coefficient, use pdenonlin to solve it.

Create a model and include circular geometry using the built-in circleg function.
model = createpde;
geometryFromEdges(model,@circleg);
Set the coefficients.
$a=0 ;$
$f=0 ;$
$c=$ '1./sqrt(1+ux. $\left.{ }^{\wedge} 2+u y . \wedge 2\right)^{\prime} ;$
Set a Dirichlet boundary condition with value $x^{2}$.

```
boundaryfun = @(region,state)region.x.^2;
applyBoundaryCondition(model,'edge',1:model.Geometry.NumEdges,...
 'u',boundaryfun,'Vectorized','on');
```

Generate a mesh and solve the problem.

```
generateMesh(model,'Geometric0rder','linear','Hmax',0.1);
u = pdenonlin(model,c,a,f);
pdeplot(model,'XYData',u,'ZData',u)
```



## Minimal Surface Problem Using [p,e,t] Mesh

Solve the minimal surface problem using the legacy approach for creating boundary conditions and geometry.

Create the geometry using the built-in circleg function. Plot the geometry to see the edge labels.
g = @circleg;
pdegplot(g,'EdgeLabels','on')
axis equal


Create Dirichlet boundary conditions with value $x^{2}$. Create the following file and save it on your MATLAB path.

```
function [qmatrix,gmatrix,hmatrix,rmatrix] = pdex2bound(p,e,u,time)
ne = size(e,2); % number of edges
qmatrix = zeros(1,ne);
gmatrix = qmatrix;
hmatrix = zeros(1,2*ne);
rmatrix = hmatrix;
for k = 1:ne
 x1 = p(1,e(1,k)); % x at first point in segment
 x2 = p(1,e(2,k)); % x at second point in segment
 xm = (x1 + x2)/2; % x at segment midpoint
 y1 = p(2,e(1,k)); % y at first point in segment
 y2 = p(2,e(2,k)); % y at second point in segment
 ym = (y1 + y2)/2; % y at segment midpoint
 switch e(5,k)
 case {1,2,3,4}
 hmatrix(k) = 1;
 hmatrix(k+ne) = 1;
 rmatrix(k) = x1^2;
 rmatrix(k+ne) = x2^2;
```

end
end
Set the coefficients and boundary conditions.
$\mathrm{a}=0$;
f = 0;
c = '1./sqrt(1+ux.^2+uy.^2)';
b = @pdex2bound;
Generate a mesh and solve the problem.
[p,e,t] = initmesh(g, 'Hmax', 0.1);
$u=$ pdenonlin(b, p,e,t,c,a,f);
pdeplot(p,e,t,'XYData', u, 'ZData', u)


## Nonlinear Problem with 3-D Geometry

Solve a nonlinear 3-D problem with nontrivial geometry.
Import the geometry from the BracketWithHole.stl file. Plot the geometry and face labels.
model = createpde();
importGeometry(model,'BracketWithHole.stl');
figure

```
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
view(30,30)
title('Bracket with Face Labels')
```


## Bracket with Face Labels


figure
pdegplot(model,' FaceLabels','on','FaceAlpha', 0.5)
view(-134,-32)
title('Bracket with Face Labels, Rear View')

## Bracket with Face Labels, Rear View



Set a Dirichlet boundary condition with value 1000 on the back face, which is face 4 . Set the large faces 1 and 7, and also the circular face 11, to have Neumann boundary conditions with value $\mathrm{g}=$ -10. Do not set boundary conditions on the other faces. Those faces default to Neumann boundary conditions with value $\mathrm{g}=0$.
applyBoundaryCondition(model,' Face', 4, 'u',1000);
applyBoundaryCondition(model,'Face', $1,7,11], \mathrm{g}^{\prime},-10$ ) ;
Set the c coefficient to $1, f$ to 0.1 , and a to the nonlinear value ' $0.1+0.001 * u .{ }^{\wedge} 2^{\prime}$.
$\mathrm{c}=1$;
f = 0.1;
$a=10.1+0.001 * u .{ }^{\wedge} 2^{\prime}$;
Generate the mesh and solve the PDE. Start from the initial guess u0 $=1000$, which matches the value you set on face 4 . Turn on the Report option to observe the convergence during the solution.

```
generateMesh(model);
u = pdenonlin(model,c,a,f,'U0',1000,'Report','on');
\begin{tabular}{clll}
Iteration & Residual & Step size & Jacobian: full \\
0 & \(7.2059 \mathrm{e}-01\) & & \\
1 & \(1.3755 \mathrm{e}-01\) & 1.0000000 & \\
2 & \(4.0799 \mathrm{e}-02\) & 1.0000000 & \\
3 & \(1.1344 \mathrm{e}-02\) & 1.0000000 & \\
4 & \(2.2737 \mathrm{e}-03\) & 1.0000000 & \\
5 & \(1.7764 \mathrm{e}-04\) & 1.0000000 & \\
6 & \(1.4190 \mathrm{e}-06\) & 1.0000000 &
\end{tabular}
```

Plot the solution on the geometry boundary.
pdeplot3D(model,'ColorMapData',u)


## Input Arguments

## model - PDE model

PDEModel object
PDE model, specified as a PDEModel object.
Example: model = createpde

## c - PDE coefficient

scalar | matrix | character vector | character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. c represents the $c$ coefficient in the scalar PDE

$$
-\nabla \cdot(c \nabla u)+a u=f
$$

or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
Example: ' $\cosh (x+y . \wedge 2)^{\prime}$

## Data Types: double|char|string|function_handle

Complex Number Support: Yes

## a - PDE coefficient

scalar | matrix | character vector $\mid$ character array | string scalar | string vector | coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. a represents the $a$ coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=f$
or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
Example: 2*eye (3)
Data Types: double | char|string|function_handle
Complex Number Support: Yes

## f - PDE coefficient

scalar $\mid$ matrix $\mid$ character vector $\mid$ character array $\mid$ string scalar $\mid$ string vector $\mid$ coefficient function
PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string vector, or coefficient function. f represents the $f$ coefficient in the scalar PDE
$-\nabla \cdot(c \nabla u)+a u=f$
or in the system of PDEs
$-\nabla \cdot(\mathbf{c} \otimes \nabla \mathbf{u})+\mathbf{a u}=\mathbf{f}$
Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double|char|string|function_handle
Complex Number Support: Yes
b - Boundary conditions
boundary matrix | boundary file
Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double|char|string|function_handle
p-Mesh points
matrix
Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)

## Data Types: double

## e - Mesh edges

matrix
Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double
t - Mesh triangles
matrix
Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [ $p, e, t$ ] Triples" on page 2-150.

Typically, you use the p, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: $[\mathrm{p}, \mathrm{e}, \mathrm{t}]=$ initmesh(gd)
Data Types: double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'Jacobian','full'

## Jacobian - Approximation of Jacobian

'full' (3-D default) | 'fixed' (2-D default) | 'lumped'
Approximation of Jacobian, specified as 'full', 'fixed', or 'lumped'.

- ' full ' means numerical evaluation of the full Jacobian based on the sparse version of the numjac function. 3-D geometry uses only ' full', any other specification yields an error.
- 'fixed ' specifies a fixed-point iteration matrix where the Jacobian is approximated by the stiffness matrix. This is the 2-D geometry default.
- ' lumped ' specifies a "lumped" approximation as described in "Nonlinear Equations" on page 5748. This approximation is based on the numerical differentiation of the coefficients.

Example: $u=$ pdenonlin(model, c, a,f,'Jacobian','full')
Data Types: char \| string

## U0 - Initial solution guess

0 (default) | scalar | vector of characters | vector of numbers
Initial solution guess, specified as a scalar, a vector of characters, or a vector of numbers. A scalar specifies a constant initial condition for either a scalar or PDE system.

For systems of $N$ equations, and a mesh with $N p$ nodes, give a column vector with $N * N p$ components. The nodes are either model. Mesh. Nodes, or the p data from initmesh or meshToPet. See "Mesh Data as [p,e,t] Triples" on page 2-150.

The first $N_{p}$ elements contain the values of component 1 , where the value of element $k$ corresponds to node $p(k)$. The next $N_{p}$ points contain the values of component 2, etc. It can be convenient to first represent the initial conditions u 0 as an $\mathrm{N}_{\mathrm{p}}$-by- N matrix, where the first column contains entries for component 1, the second column contains entries for component 2, etc. The final representation of the initial conditions is $\mathrm{u} 0(:)$.

Example: $u=$ pdenonlin(model, $\left.c, a, f, ' U 0 ', ' x . \wedge 2-y .{ }^{\wedge} \mathbf{2}^{\prime}\right)$
Data Types: double|char|string
Complex Number Support: Yes

## Tol - Residual size at termination

1e-4 (default) | positive scalar
Residual size at termination, specified as a positive scalar. pdenonlin iterates until the residual size is less than 'Tol'.
Example: $u=$ pdenonlin(model, $c, a, f, ' T o l ', 1 e-6)$
Data Types: double
MaxIter - Maximum number of Gauss-Newton iterations
25 (default) | positive integer
Maximum number of Gauss-Newton iterations, specified as a positive integer.
Example: $u=$ pdenonlin(model, c, a,f,'MaxIter', 12)
Data Types: double

## MinStep - Minimum damping of search direction

1/2^16 (default) | positive scalar
Minimum damping of search direction, specified as a positive scalar.
Example: $u=$ pdenonlin(model, c, a, f,' MinStep', le-3)
Data Types: double

## Report - Print convergence information

'off' (default)|'on'
Print convergence information, specified as 'off' or 'on'.
Example: $u=$ pdenonlin(model, c,a,f,'Report','on')
Data Types: char \| string

## Norm - Residual norm

Inf (default) \| p value for Lp norm | 'energy'
Residual norm, specified as the $p$ value for $L^{p}$ norm, or as 'energy '. $p$ can be any positive real value, Inf, or $-\operatorname{Inf}$. The $p$ norm of a vector $v$ is $\operatorname{sum}\left(\operatorname{abs}(v)^{\wedge} p\right)^{\wedge}(1 / p)$. See norm.

Example: u = pdenonlin(model, c, a,f,'Norm', 2)

Data Types: double |char|string

## Output Arguments

## u - PDE solution

## vector

PDE solution, returned as a vector.

- If the PDE is scalar, meaning only one equation, then u is a column vector representing the solution $u$ at each node in the mesh. $u(i)$ is the solution at the ith column of model. Mesh.Nodes or the ith column of $p$.
- If the PDE is a system of $N>1$ equations, then $u$ is a column vector with $N^{*} N p$ elements, where Np is the number of nodes in the mesh. The first Np elements of $u$ represent the solution of equation 1 , then next $N p$ elements represent the solution of equation 2 , etc.

To obtain the solution at an arbitrary point in the geometry, use pdeInterpolant.
To plot the solution, use pdeplot for 2-D geometry, or see "3-D Solution and Gradient Plots with MATLAB® Functions" on page 3-297.

## res - Norm of Newton step residuals

scalar
Norm of Newton step residuals, returned as a scalar. For information about the algorithm, see "Nonlinear Equations" on page 5-748.

## Tips

- If the Newton iteration does not converge, pdenonlin displays the error message Too many iterations or Stepsize too small.
- If the initial guess produces matrices containing NaN or Inf elements, pdenonlin displays the error message Unsuitable initial guess U0 (default: U0 = 0).
- If you have very small coefficients, or very small geometric dimensions, pdenonlin can fail to converge, or can converge to an incorrect solution. If so, you can sometimes obtain better results by scaling the coefficients or geometry dimensions to be of order one.


## Algorithms

## Nonlinear Equations

The basic idea is to use Gauss-Newton iterations to solve the nonlinear equations. Say you are trying to solve the equation
$r(u)=-\nabla \cdot(c(u) \nabla u)+a(u) u-f(u)=0$.
In the FEM setting you solve the weak form of $r(u)=0$. Set as usual

$$
u(\mathbf{x})=\sum U_{j} \phi_{j}
$$

where $\mathbf{x}$ represents a 2-D or 3-D point. Then multiply the equation by an arbitrary test function $\phi_{i}$, integrate on the domain $\Omega$, and use Green's formula and the boundary conditions to obtain

$$
\begin{aligned}
0=\rho(U) & =\sum_{j}\left(\int_{\Omega}\left(\left(c(x, U) \nabla \phi_{j}(\mathbf{x})\right) \cdot \nabla \phi_{j}(\mathbf{x})+a(\mathbf{x}, U) \phi_{j}(\mathbf{x}) \phi_{i}(\mathbf{x})\right) d \mathbf{x}\right. \\
& \left.+\int_{\partial \Omega} q(\mathbf{x}, U) \phi_{j}(\mathbf{x}) \phi_{i}(\mathbf{x}) d \mathbf{s}\right) U_{j} \\
& -\int_{\Omega} f(\mathbf{x}, U) \phi_{i}(\mathbf{x}) d \mathbf{x}-\int_{\partial \Omega} g(\mathbf{x}, U) \phi_{i}(\mathbf{x}) d s
\end{aligned}
$$

which has to hold for all indices $i$.
The residual vector $\rho(U)$ can be easily computed as
$\rho(U)=(K+M+Q) U-(F+G)$
where the matrices $K, M, Q$ and the vectors $F$ and $G$ are produced by assembling the problem
$-\nabla \cdot(c(U) \nabla u)+a(U) u=f(U)$.
Assume that you have a guess $U^{(n)}$ of the solution. If $U^{(n)}$ is close enough to the exact solution, an improved approximation $U^{(n+1)}$ is obtained by solving the linearized problem

$$
\frac{\partial \rho\left(U^{(n)}\right)}{\partial U}\left(U^{(n+1)}-U^{(n)}\right)=-\alpha \rho\left(U^{(n)}\right)
$$

where $\alpha$ is a positive number. (It is not necessary that $\rho(U)=0$ have a solution even if $\rho(u)=0$ has.) In this case, the Gauss-Newton iteration tends to be the minimizer of the residual, i.e., the solution of $\min _{U}\|\rho(U)\|$.

It is well known that for sufficiently small $\alpha$

$$
\left\|\rho\left(U^{(n+1)}\right)\right\|<\left\|\rho\left(U^{(n)}\right)\right\|
$$

and

$$
p_{n}=\left(\frac{\partial \rho\left(U^{(n)}\right)}{\partial U}\right)^{-1} \rho\left(U^{(n)}\right)
$$

is called a descent direction for $\|\rho(U)\|$, where $\|\cdot\|$ is the $L_{2}$-norm. The iteration is

$$
U^{(n+1)}=U^{(n)}+\alpha p_{n}
$$

where $\alpha \leq 1$ is chosen as large as possible such that the step has a reasonable descent.
The Gauss-Newton method is local, and convergence is assured only when $U^{(0)}$ is close enough to the solution. In general, the first guess may be outside the region of convergence. To improve convergence from bad initial guesses, a damping strategy is implemented for choosing $\alpha$, the ArmijoGoldstein line search. It chooses the largest damping coefficient $\alpha$ out of the sequence $1,1 / 2,1 / 4, \ldots$ such that the following inequality holds:

$$
\left\|\rho\left(U^{(n)}\right)\right\|-\left\|\rho\left(U^{(n)}\right)+\alpha p_{n}\right\| \geq \frac{\alpha}{2}\left\|\rho\left(U^{(n)}\right)\right\|
$$

which guarantees a reduction of the residual norm by at least $1-\alpha / 2$. Each step of the line-search algorithm requires an evaluation of the residual $\rho\left(U^{(n)}+\alpha p_{n}\right)$.

An important point of this strategy is that when $U^{(n)}$ approaches the solution, then $\alpha \rightarrow 1$ and thus the convergence rate increases. If there is a solution to $\rho(U)=0$, the scheme ultimately recovers the quadratic convergence rate of the standard Newton iteration.

Closely related to the preceding problem is the choice of the initial guess $U^{(0)}$. By default, the solver sets $U^{(0)}$ and then assembles the FEM matrices $K$ and $F$ and computes
$U^{(1)}=K^{-1} F$
The damped Gauss-Newton iteration is then started with $U^{(1)}$, which should be a better guess than $U^{(0)}$. If the boundary conditions do not depend on the solution $u$, then $U^{(1)}$ satisfies them even if $U^{(0)}$ does not. Furthermore, if the equation is linear, then $U^{(1)}$ is the exact FEM solution and the solver does not enter the Gauss-Newton loop.

There are situations where $U^{(0)}=0$ makes no sense or convergence is impossible.
In some situations you may already have a good approximation and the nonlinear solver can be started with it, avoiding the slow convergence regime. This idea is used in the adaptive mesh generator. It computes a solution $\tilde{U}$ on a mesh, evaluates the error, and may refine certain triangles. The interpolant of $\tilde{U}$ is a very good starting guess for the solution on the refined mesh.

In general the exact Jacobian

$$
J_{n}=\frac{\partial \rho\left(U^{(n)}\right)}{\partial U}
$$

is not available. Approximation of $J_{n}$ by finite differences in the following way is expensive but feasible. The ith column of $J_{n}$ can be approximated by

$$
\frac{\rho\left(U^{(n)}+\varepsilon \phi_{i}\right)-\rho\left(U^{(n)}\right)}{\varepsilon}
$$

which implies the assembling of the FEM matrices for the triangles containing grid point i. A very simple approximation to $J_{n}$, which gives a fixed point iteration, is also possible as follows. Essentially, for a given $U^{(n)}$, compute the FEM matrices $K$ and $F$ and set
$U^{(n+1)}=K^{-1} F$.
This is equivalent to approximating the Jacobian with the stiffness matrix. Indeed, since $\rho\left(U^{(n)}\right)=$ $K U^{(n)}-F$, putting $J_{n}=K$ yields

$$
U^{(n+1)}=U^{(n)}-J_{n}^{-1} \rho\left(U^{(n)}\right)=U^{(n)}-K^{-1}\left(K U^{(n)}-F\right)=K^{-1} F
$$

In many cases the convergence rate is slow, but the cost of each iteration is cheap.
The Partial Differential Equation Toolbox nonlinear solver also provides for a compromise between the two extremes. To compute the derivative of the mapping $U \rightarrow K U$, proceed as follows. The $a$ term has been omitted for clarity, but appears again in the final result.

$$
\begin{gathered}
\frac{\partial(K U)_{i}}{\partial U_{j}}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \sum_{T}\left(\int_{\Omega} c\left(U+\varepsilon \phi_{j}\right) \nabla \phi_{l} \nabla \phi_{i} d \mathbf{x}\left(U_{l}+\varepsilon \delta_{l, j}\right)\right. \\
\left.-\int_{\Omega} c(U) \nabla \phi_{l} \nabla \phi_{i} d \mathbf{x} U_{l}\right) \\
=\int_{\Omega} c(U) \nabla \phi_{j} \nabla \phi_{i} d \mathbf{x}+\sum_{T_{\Omega}} \int_{j} \phi_{j} \frac{\partial c}{\partial u} \nabla \phi_{l} \nabla \phi_{i} d \mathbf{x} U_{l}
\end{gathered}
$$

The first integral term is nothing more than $K_{i, j}$.
The second term is "lumped," i.e., replaced by a diagonal matrix that contains the row sums. Since $\Sigma_{j} \phi_{j}=1$, the second term is approximated by

$$
\delta_{i, j} \sum_{T} \int_{\Omega} \frac{\partial C}{\partial u} \nabla \phi_{l} \nabla \phi_{i} d \mathbf{x} U_{l}
$$

which is the ith component of $K^{\left(c^{\prime}\right)} U$, where $K^{\left(c^{\prime}\right)}$ is the stiffness matrix associated with the coefficient $\partial c / \partial u$ rather than $c$. The same reasoning can be applied to the derivative of the mapping $U \rightarrow M U$. The derivative of the mapping $U \rightarrow-F$ is exactly

$$
-\int_{\Omega} \frac{\partial f}{\partial u} \phi_{i} \phi_{j} d \mathbf{x}
$$

which is the mass matrix associated with the coefficient $\partial f / \partial u$. Thus the Jacobian of the residual $\rho(U)$ is approximated by

$$
J=K^{(c)}+M^{\left(a-f^{\prime}\right)}+\operatorname{diag}\left(\left(K^{\left(c^{\prime}\right)}+M^{\left(a^{\prime}\right)}\right) U\right)
$$

where the differentiation is with respect to $u, K$ and $M$ designate stiffness and mass matrices, and their indices designate the coefficients with respect to which they are assembled. At each GaussNewton iteration, the nonlinear solver assembles the matrices corresponding to the equations

$$
\begin{aligned}
& -\nabla \cdot(c \nabla u)+\left(a-f^{\prime}\right) u=0 \\
& -\nabla \cdot\left(c^{\prime} \nabla u\right)+a^{\prime} u=0
\end{aligned}
$$

and then produces the approximate Jacobian. The differentiations of the coefficients are done numerically.
In the general setting of elliptic systems, the boundary conditions are appended to the stiffness matrix to form the full linear system:

$$
\tilde{K} \tilde{U}=\left[\begin{array}{ll}
K & H^{\prime} \\
H & 0
\end{array}\right]\left[\begin{array}{l}
U \\
\mu
\end{array}\right]=\left[\begin{array}{l}
F \\
R
\end{array}\right]=\tilde{F}
$$

where the coefficients of $\tilde{K}$ and $\tilde{F}$ may depend on the solution $\tilde{U}$. The "lumped" approach approximates the derivative mapping of the residual by

$$
\left[\begin{array}{cc}
J & H^{\prime} \\
H & 0
\end{array}\right]
$$

The nonlinearities of the boundary conditions and the dependencies of the coefficients on the derivatives of $\tilde{U}$ are not properly linearized by this scheme. When such nonlinearities are strong, the
scheme reduces to the fix-point iteration and may converge slowly or not at all. When the boundary conditions are linear, they do not affect the convergence properties of the iteration schemes. In the Neumann case they are invisible ( $H$ is an empty matrix) and in the Dirichlet case they merely state that the residual is zero on the corresponding boundary points.

## See Also

solvepde
Introduced before R2006a

## pdeplot

Plot solution or mesh for 2-D problem

## Syntax

```
pdeplot(model,'XYData',results.NodalSolution)
pdeplot(model,'XYData',results.Temperature,'ColorMap','hot')
pdeplot(
model,'XYData',results.VonMisesStress,'Deformation',results.Displacement)
pdeplot(model,'XYData',results.ModeShapes.ux)
pdeplot(model,'XYData',results.ElectricPotential)
pdeplot(model)
pdeplot(mesh)
pdeplot(nodes,elements)
pdeplot(p,e,t)
pdeplot(__,Name,Value)
h = pdeplot(
```

$\qquad$

``` )
```


## Description

pdeplot(model,'XYData', results.NodalSolution) plots the solution of a model at nodal locations as a colored surface plot using the default ' jet' colormap.
pdeplot(model,'XYData', results.Temperature,'ColorMap','hot') plots the temperature at nodal locations for a 2-D thermal analysis model. This syntax creates a colored surface plot using the 'hot' colormap.
pdeplot(
model,'XYData', results.VonMisesStress,'Deformation', results.Displacement) plots the von Mises stress and shows the deformed shape for a 2-D structural analysis model.
pdeplot(model,'XYData', results.ModeShapes.ux) plots the x-component of the modal displacement for a 2-D structural modal analysis model.
pdeplot(model,'XYData', results.ElectricPotential) plots the electric potential at nodal locations for a 2-D electrostatic analysis model.
pdeplot (model) plots the mesh specified in model.
pdeplot (mesh) plots the mesh defined as a Mesh property of a 2-D model object of type PDEModel.
pdeplot (nodes, elements) plots the mesh defined by its nodes and elements.
pdeplot ( $\mathrm{p}, \mathrm{e}, \mathrm{t}$ ) plots the mesh described by p,e, and t .
pdeplot( $\qquad$ ,Name, Value) plots the mesh, the data at the nodal locations, or both the mesh and the data, depending on the Name, Value pair arguments. Use any arguments from the previous syntaxes.

Specify at least one of the FlowData (vector field plot), XYData (colored surface plot), or ZData (3-D height plot) name-value pairs. Otherwise, pdeplot plots the mesh with no data. You can combine any number of plot types.

- For a thermal model, you can plot temperature or gradient of temperature.
- For a structural model, you can plot displacement, stress, strain, and von Mises stress. In addition, you can show the deformed shape and specify the scaling factor for the deformation plot.
h = pdeplot( $\qquad$ ) returns a handle to a plot, using any of the previous syntaxes.


## Examples

## 2-D Mesh Plot

Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry and plot it.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
mesh = generateMesh(model);
pdeplot(model)
```



Alternatively, you can plot a mesh by using mesh as an input argument.

```
pdeplot(mesh)
```



Another approach is to use the nodes and elements of the mesh as input arguments for pdeplot.
pdeplot(mesh.Nodes,mesh.Elements)


Display the node labels. Use $x$ lim and $y l i m$ to zoom in on particular nodes.

```
pdeplot(model,'NodeLabels','on')
```

$x \lim ([-0.2,0.2])$
$y \lim ([-0.2,0.2])$


Display the element labels.
pdeplot(model,'ElementLabels','on')
$x \lim ([-0.2,0.2])$
$y \lim ([-0.2,0.2])$


## Solution Plots

Create colored 2-D and 3-D plots of a solution to a PDE model.
Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry.
model = createpde;
geometryFromEdges(model,@lshapeg);
generateMesh(model);
Set the zero Dirichlet boundary conditions on all edges.
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,' 'u',0);
Specify the coefficients and solve the PDE.
specifyCoefficients(model,'m',0, ...
'd', 0, ...
'c', 1, ...
'a',0, ...
'f',1);
results = solvepde(model)
results =
StationaryResults with properties:

```
NodalSolution: [1177x1 double]
 XGradients: [1177x1 double]
 YGradients: [1177x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Access the solution at the nodal locations.
u = results.NodalSolution;
Plot the 2-D solution.
pdeplot(model,'XYData',u)


Plot the 3-D solution.
pdeplot(model,'XYData',u,'ZData',u)


## Solution Quiver Plot

Plot the gradient of a PDE solution as a quiver plot.
Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry
model = createpde;
geometryFromEdges(model,@lshapeg) ;
generateMesh(model);
Set the zero Dirichlet boundary conditions on all edges.
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges, 'u',0);
Specify coefficients and solve the PDE.

```
specifyCoefficients(model,'m',0, ...
 'd',0, ...
 'c',1, ...
 'a',0, ...
 'f',1);
results = solvepde(model)
results =
 StationaryResults with properties:
```

```
NodalSolution: [1177x1 double]
 XGradients: [1177x1 double]
 YGradients: [1177x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Access the gradient of the solution at the nodal locations.
ux = results.XGradients;
uy = results. YGradients;
Plot the gradient as a quiver plot.
pdeplot(model,'FlowData',[ux,uy])


## Composite Plot

Plot the solution of a 2-D PDE in 3-D with the ' jet ' coloring and a mesh, and include a quiver plot. Get handles to the axes objects.

Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry.

```
model = createpde;
geometryFromEdges(model,@lshapeg);
generateMesh(model);
```

Set zero Dirichlet boundary conditions on all edges.

```
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
```

Specify coefficients and solve the PDE.

```
specifyCoefficients(model,'m',0, ...
 'd',0, ...
 'c',1, ...
 'a',0, ...
 'f',1);
results = solvepde(model)
results =
 StationaryResults with properties:
 NodalSolution: [1177x1 double]
 XGradients: [1177x1 double]
 YGradients: [1177x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Access the solution and its gradient at the nodal locations.

```
u = results.NodalSolution;
ux = results.XGradients;
uy = results.YGradients;
```

Plot the solution in 3-D with the ' jet ' coloring and a mesh, and include the gradient as a quiver plot.
h = pdeplot(model,'XYData', u,'ZData', u, ...
'FaceAlpha',0.5, ...
'FlowData',[ux,uy], ...
'ColorMap','jet', ...
'Mesh','on')


## Solution to Transient Thermal Model

Solve a 2-D transient thermal problem.
Create a transient thermal model for this problem.

```
thermalmodel = createpde('thermal','transient');
```

Create the geometry and include it in the model.

```
SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);
```

```
geometryFromEdges(thermalmodel,dl);
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5 4.5])
ylim([-0.5 3.5])
axis equal
```



For the square region, assign these thermal properties:

- Thermal conductivity is $10 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$
- Mass density is $2 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat is $0.1 \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$
thermalProperties(thermalmodel,'ThermalConductivity',10, ... 'MassDensity',2, ...
'SpecificHeat',0.1, ...
'Face',1);
For the diamond region, assign these thermal properties:
- Thermal conductivity is $2 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$
- Mass density is $1 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat is $0.1 \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$
thermalProperties(thermalmodel,'ThermalConductivity',2, ... 'MassDensity',1, ...

```
'SpecificHeat',0.1, ...
'Face',2);
```

Assume that the diamond-shaped region is a heat source with a density of $4 \mathrm{~W} / \mathrm{m}^{2}$.
internalHeatSource(thermalmodel,4,'Face',2);
Apply a constant temperature of $0{ }^{\circ} \mathrm{C}$ to the sides of the square plate.

```
thermalBC(thermalmodel,'Temperature',0,'Edge',[\begin{array}{lll}{1}&{7}&{8}\end{array}]);
```

Set the initial temperature to $0^{\circ} \mathrm{C}$.

```
thermalIC(thermalmodel,0);
```

Generate the mesh.
generateMesh(thermalmodel);
The dynamics for this problem are very fast. The temperature reaches a steady state in about 0.1 seconds. To capture the interesting part of the dynamics, set the solution time to logspace( $-2,-1,10$ ). This command returns 10 logarithmically spaced solution times between 0.01 and 0.1.

```
tlist = logspace(-2,-1,10);
```

Solve the equation.

```
thermalresults = solve(thermalmodel,tlist)
thermalresults =
 TransientThermalResults with properties:
 Temperature: [1481x10 double]
 SolutionTimes: [1x10 double]
 XGradients: [1481x10 double]
 YGradients: [1481x10 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Plot the solution with isothermal lines by using a contour plot.

```
T = thermalresults.Temperature;
pdeplot(thermalmodel,'XYData',T(:,10),'Contour','on','ColorMap','hot')
```



## Plot Deformed Shape for Static Plane-Strain Problem

Create a structural analysis model for a static plane-strain problem.
structuralmodel = createpde('structural','static-planestrain');
Create the geometry and include it in the model. Plot the geometry.
geometryFromEdges(structuralmodel,@squareg); pdegplot(structuralmodel,'EdgeLabels','on') axis equal


Specify the Young's modulus and Poisson's ratio.

```
structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);
```

Specify the $x$-component of the enforced displacement for edge 1.
structuralBC(structuralmodel,'XDisplacement',0.001,'Edge',1);
Specify that edge 3 is a fixed boundary.

```
structuralBC(structuralmodel,'Constraint','fixed','Edge',3);
```

Generate a mesh and solve the problem.
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);
Plot the deformed shape using the default scale factor. By default, pdeplot internally determines the scale factor based on the dimensions of the geometry and the magnitude of deformation.

```
pdeplot(structuralmodel,'XYData',structuralresults.VonMisesStress, ...
 'Deformation',structuralresults.Displacement, ...
 'ColorMap','jet')
```



Plot the deformed shape with the scale factor 500.
pdeplot(structuralmodel,'XYData',structuralresults.VonMisesStress, ... 'Deformation',structuralresults.Displacement, ... 'DeformationScaleFactor',500,...
'ColorMap','jet')


Plot the deformed shape without scaling.
pdeplot(structuralmodel,'XYData',structuralresults.VonMisesStress, ... 'ColorMap','jet')


## Solution to Modal Analysis Structural Model

Find the fundamental (lowest) mode of a 2-D cantilevered beam, assuming prevalence of the planestress condition.

Specify the following geometric and structural properties of the beam, along with a unit plane-stress thickness.

```
length = 5;
height = 0.1;
E = 3E7;
nu = 0.3;
rho = 0.3/386;
```

Create a model plane-stress model, assign a geometry, and generate a mesh.

```
structuralmodel = createpde('structural','modal-planestress');
```

gdm = [3;4;0;length;length;0;0;0;height;height];
g = decsg(gdm,'S1',('S1')');
geometryFromEdges(structuralmodel,g);

Define a maximum element size (five elements through the beam thickness).

```
hmax = height/5;
msh=generateMesh(structuralmodel,'Hmax', hmax);
```

Specify the structural properties and boundary constraints.

```
structuralProperties(structuralmodel,'YoungsModulus',E, ...
 'MassDensity',rho, ...
 'PoissonsRatio',nu);
structuralBC(structuralmodel,'Edge',4,'Constraint','fixed');
```

Compute the analytical fundamental frequency ( Hz ) using the beam theory.

```
I = height^3/12;
analyticalOmega1 = 3.516*sqrt(E*I/(length^4*(rho*height)))/(2*pi)
analyticalOmega1 = 126.9498
```

Specify a frequency range that includes an analytically computed frequency and solve the model.

```
modalresults = solve(structuralmodel,'FrequencyRange',[0,1e6])
modalresults =
 ModalStructuralResults with properties:
 NaturalFrequencies: [32x1 double]
 ModeShapes: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]
```

The solver finds natural frequencies and modal displacement values at nodal locations. To access these values, use modalresults.NaturalFrequencies and modalresults.ModeShapes.

```
modalresults.NaturalFrequencies/(2*pi)
ans = 32\times1
105 x
 0.0013
 0.0079
 0.0222
 0.0433
 0.0711
 0.0983
 0.1055
 0.1462
 0.1930
 0.2455
modalresults.ModeShapes
ans =
 FEStruct with properties:
 ux: [6511x32 double]
 uy: [6511\times32 double]
 Magnitude: [6511x32 double]
```

Plot the $y$-component of the solution for the fundamental frequency.

```
pdeplot(structuralmodel,'XYData',modalresults.ModeShapes.uy(:,1))
title(['First Mode with Frequency ', ...
 num2str(modalresults.NaturalFrequencies(1)/(2*pi)),' Hz'])
axis equal
```

First Mode with Frequency 126.9416 Hz


## Solution to Electrostatic Analysis Model

Solve an electromagnetic problem and find the electric potential and field distribution for a 2-D geometry representing a plate with a hole.

Create an electromagnetic model for electrostatic analysis.

```
emagmodel = createpde('electromagnetic','electrostatic');
```

Import and plot the geometry representing a plate with a hole.
importGeometry(emagmodel,'PlateHolePlanar.stl'); pdegplot(emagmodel,'EdgeLabels','on')


Specify the vacuum permittivity in the SI system of units.
emagmodel.VacuumPermittivity = 8.8541878128E-12;
Specify the relative permittivity of the material.
electromagneticProperties(emagmodel,'RelativePermittivity',1);
Apply the voltage boundary conditions on the edges framing the rectangle and the circle.
electromagneticBC(emagmodel,'Voltage',0,'Edge',1:4);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',5);
Specify the charge density for the entire geometry.
electromagneticSource(emagmodel,'ChargeDensity',5E-9);
Generate the mesh.
generateMesh(emagmodel);
Solve the model.
R = solve(emagmodel)
$\mathrm{R}=$
ElectrostaticResults with properties:

```
 ElectricPotential: [1218x1 double]
 ElectricField: [1x1 FEStruct]
ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]
```

Plot the electric potential and field.

```
pdeplot(emagmodel,'XYData',R.ElectricPotential, ...
 'FlowData',[R.ElectricField.Ex ...
 R.ElectricField.Ey])
axis equal
```



## [ $p, e, t]$ Mesh and Solution Plots

Plot the p,e,t mesh. Display the solution using 2-D and 3-D colored plots.
Create the geometry, mesh, boundary conditions, PDE coefficients, and solution.

```
[p,e,t] = initmesh('lshapeg');
u = assempde('lshapeb',p,e,t,1,0,1);
```

Plot the mesh.

```
pdeplot(p,e,t)
```



Plot the solution as a 2-D colored plot.
pdeplot( $\mathrm{p}, \mathrm{e}, \mathrm{t}$, 'XYData', u)


Plot the solution as a 3-D colored plot.
pdeplot(p,e,t,'XYData',u,'ZData',u)


## Input Arguments

## model - Model object

PDEModel object | ThermalModel object | StructuralModel object| ElectromagneticModel object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or ElectromagneticModel object.

Example: model = createpde(1)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','magnetostatic')
mesh - Mesh object
Mesh property of a PDEModel object | output of generateMesh
Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.

Example: model. Mesh

## nodes - Nodal coordinates

2-by-NumNodes matrix

Nodal coordinates, specified as a 2-by-NumNodes matrix. NumNodes is the number of nodes.

## elements - Element connectivity matrix in terms of node IDs

3-by-NumElements matrix | 6-by-NumElements matrix
Element connectivity matrix in terms of the node IDs, specified as a 3-by-NumElements or 6 -byNumElements matrix. Linear meshes contain only corner nodes. For linear meshes, the connectivity matrix has three nodes per 2-D element. Quadratic meshes contain corner nodes and nodes in the middle of each edge of an element. For quadratic meshes, the connectivity matrix has six nodes per 2D element.


2-D linear element


2-D quadratic element

## p-Mesh points

matrix
Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [p,e,t] Triples" on page 2-150.

Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

## e-Mesh edges

matrix
Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For a description of the ( $\mathrm{p}, \mathrm{e}, \mathrm{t}$ ) matrices, see "Mesh Data as [ $\mathrm{p}, \mathrm{e}, \mathrm{t}]$ Triples" on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

## t - Mesh triangles

matrix
Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the mesh. For a description of the ( $p, e, t$ ) matrices, see "Mesh Data as [ $p, e, t$ ] Triples" on page 2-150.

Typically, you use the $p$, e, and $t$ data exported from the PDE Modeler app, or generated by initmesh or refinemesh.

Example: $[\mathrm{p}, \mathrm{e}, \mathrm{t}]=$ initmesh(gd)
Data Types: double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: pdeplot(model, 'XYData', u, 'ZData' , u)
When you use a PDEModel object, pdeplot(model, 'XYData', u,'ZData', u) sets surface plot coloring to the solution $u$, and sets the heights for a 3-D plot to $u$. Here $u$ is a NodalSolution property of the PDE results returned by solvepde or solvepdeeig.

When you use a $[p, e, t]$ representation, pdeplot ( $p, e, t$, 'XYData', $u$, 'ZData', $u$ ) sets surface plot coloring to the solution $u$ and sets the heights for a 3-D plot to the solution $u$. Here $u$ is a solution returned by a legacy solver, such as assempde.

Tip Specify at least one of the FlowData (vector field plot), XYData (colored surface plot), or ZData (3-D height plot) name-value pairs. Otherwise, pdeplot plots the mesh with no data.

## Data Plots

## XYData - Colored surface plot data

vector
Colored surface plot data, specified as the comma-separated pair consisting of 'XYData' and a vector. If you use a $[p, e, t]$ representation, specify data for points in a vector of length size ( $p, 2$ ), or specify data for triangles in a vector of length size( $t, 2$ ).

- Typically, you set XYData to the solution $u$. The pdeplot function uses XYData for coloring both 2-D and 3-D plots.
- pdeplot uses the colormap specified in the ColorMap name-value pair, using the style specified in the XYStyle name-value pair.
- When the Contour name-value pair is 'on', pdeplot also plots level curves of XYData.
- pdeplot plots the real part of complex data.

To plot the kth component of a solution to a PDE system, extract the relevant part of the solution. For example, when using a PDEModel object, specify:

```
results = solvepde(model);
u = results.NodalSolution; % each column of u has one component of u
pdeplot(model,'XYData',u(:,k)) % data for column k
```

When using a [p,e,t] representation, specify:

```
np = size(p,2); % number of node points
uk = reshape(u,np,[]); % each uk column has one component of u
pdeplot(p,e,t,'XYData',uk(:,k)) % data for column k
```


## Example: 'XYData',u

Data Types: double
XYStyle - Coloring choice
'interp' (default)|'off'|'flat'
Coloring choice, specified as the comma-separated pair consisting of 'XYStyle' and 'interp', 'off', or 'flat'.

- 'off' - No shading, only mesh is displayed.
- 'flat' - Each triangle in the mesh has a uniform color.
- 'interp' - Plot coloring is smoothly interpolated.

The coloring choice relates to the XYData name-value pair.
Example: 'XYStyle','flat'
Data Types: char|string

## ZData - Data for 3-D plot heights

matrix
Data for the 3-D plot heights, specified as the comma-separated pair consisting of 'ZData ' and a matrix. If you use a $[p, e, t$ ] representation, provide data for points in a vector of length size ( $p, 2$ ) or data for triangles in a vector of length size( $t, 2$ ).

- Typically, you set ZData to u, the solution. The XYData name-value pair sets the coloring of the 3D plot.
- The ZStyle name-value pair specifies whether the plot is continuous or discontinuous.
- pdeplot plots the real part of complex data.

To plot the kth component of a solution to a PDE system, extract the relevant part of the solution. For example, when using a PDEModel object, specify:

```
results = solvepde(model);
u = results.NodalSolution; % each column of u has one component of u
pdeplot(model,'XYData',u(:,k),'ZData',u(:,k)) % data for column k
When using a [\(p, e, t\)] representation, specify:
```

```
np = size(p,2); % number of node points
```

np = size(p,2); % number of node points
uk = reshape(u,np,[]); % each uk column has one component of u
uk = reshape(u,np,[]); % each uk column has one component of u
pdeplot(p,e,t,'XYData',uk(:,k),'ZData',uk(:,k)) % data for column k
pdeplot(p,e,t,'XYData',uk(:,k),'ZData',uk(:,k)) % data for column k
Example: 'ZData',u

```
Example: 'ZData',u
```

Data Types: double

## ZStyle - 3-D plot style

'continuous' (default)|'off'|'discontinuous'
3-D plot style, specified as the comma-separated pair consisting of 'ZStyle' and one of these values:

- 'off' - No 3-D plot.
- 'discontinuous ' - Each triangle in the mesh has a uniform height in a 3-D plot.
- 'continuous' - 3-D surface plot is continuous.

If you use ZStyle without specifying the ZData name-value pair, then pdeplot ignores ZStyle.
Example: 'ZStyle', 'discontinuous'
Data Types: char|string

## FlowData - Data for quiver plot

matrix
Data for the quiver plot on page 5-784, specified as the comma-separated pair consisting of ' FlowData' and an M-by-2 matrix, where M is the number of mesh nodes. FlowData contains the $x$ and $y$ values of the field at the mesh points.

When you use a PDEModel object, set FlowData as follows:

```
results = solvepde(model);
gradx = results.XGradients;
grady = results.YGradients;
pdeplot(model,'FlowData',[gradx grady])
```

When you use a $[p, e, t]$ representation, set FlowData as follows:
[gradx,grady] $=$ pdegrad $(\mathrm{p}, \mathrm{t}, \mathrm{u})$; \% Calculate gradient
pdeplot(p,e,t,'FlowData',[gradx; grady])
When you use ZData to represent a 2-D PDE solution as a 3-D plot and you also include a quiver plot, the quiver plot appears in the $z=0$ plane.
pdeplot plots the real part of complex data.
Example: 'FlowData', [ux uy]
Data Types: double

## FlowStyle - Indicator to show quiver plot

'arrow' (default)|'off'
Indicator to show the quiver plot, specified as the comma-separated pair consisting of ' FlowStyle' and 'arrow' or 'off'. Here, 'arrow' displays the quiver plot on page 5-784 specified by the FlowData name-value pair.
Example: 'FlowStyle', 'off'
Data Types: char \| string

## XYGrid - Indicator to convert mesh data to $x-y$ grid

'off' (default)|'on'
Indicator to convert the mesh data to $x-y$ grid before plotting, specified as the comma-separated pair consisting of 'XYGrid' and 'off' or 'on'.

Note This conversion can change the geometry and lessen the quality of the plot.

By default, the grid has about sqrt(size(t,2)) elements in each direction.

Example: 'XYGrid','on'
Data Types: char | string

## GridParam - Customized $\boldsymbol{x} \boldsymbol{- y}$ grid

[tn;a2;a3] from an earlier call to tri2grid
Customized $x-y$ grid, specified as the comma-separated pair consisting of 'GridParam' and a matrix [tn;a2;a3]. For example:
[ $\sim, t n, a 2, a 3]=\operatorname{tri2grid}(p, t, u, x, y)$;
pdeplot(p,e,t,'XYGrid','on','GridParam',[tn;a2;a3],'XYData',u)
For details on the grid data and its $x$ and $y$ arguments, see tri2grid. The tri2grid function does not work with PDEModel objects.

Example: 'GridParam' , [tn;a2;a3]
Data Types: double

## Mesh Plots

## NodeLabels - Node labels

'off' (default)|'on'
Node labels, specified as the comma-separated pair consisting of 'NodeLabels' and 'off' or 'on'. pdeplot ignores NodeLabels when you use it with ZData.
Example: 'NodeLabels', 'on'
Data Types: char|string

## ElementLabels - Element labels

'off' (default)|'on'
Element labels, specified as the comma-separated pair consisting of 'ElementLabels' and 'off' or 'on'.
pdeplot ignores ElementLabels when you use it with ZData.
Example: 'ElementLabels','on'
Data Types: char|string

## Structural Analysis Plots

## Deformation - Data for plotting deformed shape

Displacement property of StaticStructuralResults object
Data for plotting the deformed shape for a structural analysis model, specified as the commaseparated pair consisting of 'Deformation' and the Displacement property of the StaticStructuralResults object.

In an undeformed shape, center nodes in quadratic meshes are always added at half-distance between corners. When you plot a deformed shape, the center nodes might move away from the edge centers.

Example: 'Deformation', structuralresults.Displacement

## DeformationScaleFactor - Scaling factor for plotting deformed shape real number

Scaling factor for plotting the deformed shape, specified as the comma-separated pair consisting of ' DeformationScaleFactor' and a real number. Use this argument with the Deformation namevalue pair. The default value is defined internally, based on the dimensions of the geometry and the magnitude of the deformation.

## Example: 'DeformationScaleFactor',100

Data Types: double

## Annotations and Appearance

## ColorBar - Indicator to include color bar

## 'on ' (default)| 'off'

Indicator to include a color bar, specified as the comma-separated pair consisting of 'ColorBar' and 'on' or 'off'. Specify 'on' to display a bar giving the numeric values of colors in the plot. For details, see colorbar. The pdeplot function uses the colormap specified in the ColorMap namevalue pair.

Example: 'ColorBar','off'
Data Types: char | string

## ColorMap - Colormap

' cool' (default) | ColorMap value or matrix of such values
Colormap, specified as the comma-separated pair consisting of 'ColorMap' and a value representing a built-in colormap, or a colormap matrix. For details, see colormap.

ColorMap must be used with the XYData name-value pair.
Example: 'ColorMap', 'jet'
Data Types: double | char|string

## Mesh - Indicator to show mesh

'off' (default)|'on'
Indicator to show the mesh, specified as the comma-separated pair consisting of 'Mesh' and 'on' or 'off'. Specify 'on' to show the mesh in the plot.

Example: 'Mesh', 'on'
Data Types: char | string

## Title - Title of plot

character vector
Title of plot, specified as the comma-separated pair consisting of 'Title' and a character vector.

## Example: 'Title','Solution Plot'

Data Types: char|string

## FaceAlpha - Surface transparency for 3-D geometry

1 (default) | real number from 0 through 1

Surface transparency for 3-D geometry, specified as the comma-separated pair consisting of
'FaceAlpha' and a real number from 0 through 1. The default value 1 indicates no transparency.
The value 0 indicates complete transparency.
Example: 'FaceAlpha', 0.5
Data Types: double

## Contour - Indicator to plot level curves

'off' (default)|'on'
Indicator to plot level curves, specified as the comma-separated pair consisting of 'Contour' and 'off' or 'on'. Specify ' on' to plot level curves for the XYData data. Specify the levels with the Levels name-value pair.
Example: 'Contour', 'on'
Data Types: char | string

## Levels - Levels for contour plot

10 (default) | positive integer | vector of level values
Levels for contour plot, specified as the comma-separated pair consisting of 'Levels' and a positive integer or a vector of level values.

- Positive integer - Plot Levels as equally spaced contours.
- Vector - Plot contours at the values in Levels.

To obtain a contour plot, set the Contour name-value pair to ' on '.
Example: 'Levels',16
Data Types: double

## Output Arguments

## h - Handles to graphics objects <br> vector

Handles to graphics objects, returned as a vector.

## More About

## Quiver Plot

A quiver plot is a plot of a vector field. It is also called a flow plot.
Arrows show the direction of the field, with the lengths of the arrows showing the relative sizes of the field strength. For details on quiver plots, see quiver.

## See Also

PDEModel | pdegplot | pdemesh | pdeplot3D

## Topics

"Solution and Gradient Plots with pdeplot and pdeplot3D" on page 3-282
"Deflection of Piezoelectric Actuator" on page 3-11
"Mesh Data" on page 2-153
"Solve Problems Using PDEModel Objects" on page 2-2
Introduced before R2006a

## pdeplot3D

Plot solution or surface mesh for 3-D problem

## Syntax

```
pdeplot3D(model,'ColorMapData',results.NodalSolution)
pdeplot3D(model,'ColorMapData', results.Temperature)
pdeplot3D(
model,'ColorMapData',results.VonMisesStress,'Deformation',results.Displacemen
t)
pdeplot3D(model)
pdeplot3D(mesh)
pdeplot3D(nodes,elements)
pdeplot3D(__,Name,Value)
h = pdeplot3D(
```

$\qquad$

## Description

pdeplot3D(model,'ColorMapData', results.NodalSolution) plots the solution at nodal locations as colors on the surface of the 3-D geometry specified in model.
pdeplot3D(model,'ColorMapData', results.Temperature) plots the temperature at nodal locations for a 3-D thermal analysis model.
pdeplot3D(
model,'ColorMapData', results.VonMisesStress,'Deformation', results.Displacemen t) plots the von Mises stress and shows the deformed shape for a 3-D structural analysis model.
pdeplot3D (model) plots the surface mesh specified in model.
pdeplot3D(mesh) plots the mesh defined as a Mesh property of a 3-D model object of type PDEModel.
pdeplot3D(nodes,elements) plots the mesh defined by nodes and elements.
pdeplot3D( $\qquad$ ,Name, Value) plots the surface mesh, the data at nodal locations, or both the mesh and data, depending on the Name, Value pair arguments. Use any arguments from the previous syntaxes.
$\mathrm{h}=\mathrm{pdeplot} 3 \mathrm{D}(\ldots \quad$ ) returns a handle to a plot, using any of the previous syntaxes.

## Examples

## Solution Plot on Surface

Plot a PDE solution on the geometry surface. First, create a PDE model and import a 3-D geometry file. Specify boundary conditions and coefficients. Mesh the geometry and solve the problem.

```
model = createpde;
importGeometry(model,'Block.stl');
applyBoundaryCondition(model,'dirichlet','Face',[1:4],'u',0);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',2);
generateMesh(model);
results = solvepde(model)
results =
 StationaryResults with properties:
 NodalSolution: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]
 Mesh: [1x1 FEMesh]
```

Access the solution at the nodal locations.
u = results.NodalSolution;
Plot the solution u on the geometry surface.

```
pdeplot3D(model,'ColorMapData',u)
```



## Solution to Steady-State Thermal Model

Solve a 3-D steady-state thermal problem.
Create a thermal model for this problem.
thermalmodel = createpde('thermal');
Import and plot the block geometry.
importGeometry(thermalmodel,'Block.stl'); pdegplot(thermalmodel,' FaceLabel', 'on', 'FaceAlpha', 0.5) axis equal


Assign material properties.
thermalProperties(thermalmodel,'ThermalConductivity', 80);
Apply a constant temperature of $100^{\circ} \mathrm{C}$ to the left side of the block (face 1 ) and a constant temperature of $300^{\circ} \mathrm{C}$ to the right side of the block (face 3). All other faces are insulated by default.
thermalBC(thermalmodel,' Face',1,'Temperature',100);
thermalBC(thermalmodel,' Face',3,'Temperature',300);
Mesh the geometry and solve the problem.
generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)

```
thermalresults =
 SteadyStateThermalResults with properties:
 Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]
 Mesh: [1x1 FEMesh]
```

The solver finds the temperatures and temperature gradients at the nodal locations. To access these values, use thermal results. Temperature, thermalresults.XGradients, and so on. For example, plot temperatures at the nodal locations.
pdeplot3D(thermalmodel, 'ColorMapData', thermalresults.Temperature)


## Heat Flux for 3-D Steady-State Thermal Model

For a 3-D steady-state thermal model, evaluate heat flux at the nodal locations and at the points specified by $x, y$, and $z$ coordinates.

Create a thermal model for steady-state analysis.
thermalmodel = createpde('thermal');

Create the following 3-D geometry and include it in the model.

```
importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)
title('Copper block, cm')
axis equal
```


## Copper block, cm



Assuming that this is a copper block, the thermal conductivity of the block is approximately $4 \mathrm{~W} /(\mathrm{cmK})$.

```
thermalProperties(thermalmodel,'ThermalConductivity',4);
```

Apply a constant temperature of 373 K to the left side of the block (face 1 ) and a constant temperature of 573 K to the right side of the block (face 3 ).

```
thermalBC(thermalmodel,'Face',1,'Temperature',373);
thermalBC(thermalmodel,'Face',3,'Temperature',573);
```

Apply a heat flux boundary condition to the bottom of the block.

```
thermalBC(thermalmodel,'Face',4,'HeatFlux',-20);
```

Mesh the geometry and solve the problem.
generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)
thermalresults =
SteadyStateThermalResults with properties:

```
Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]
 Mesh: [1x1 FEMesh]
```

Evaluate heat flux at the nodal locations.

```
[qx,qy,qz] = evaluateHeatFlux(thermalresults);
figure
pdeplot3D(thermalmodel,'FlowData',[qx qy qz])
```



Create a grid specified by $\mathrm{x}, \mathrm{y}$, and z coordinates, and evaluate heat flux to the grid.
$[X, Y, Z]=$ meshgrid(1:26:100,1:6:20,1:11:50);
[qx,qy,qz] = evaluateHeatFlux(thermalresults, $X, Y, Z)$;
Reshape the $q x, q y$, and $q z$ vectors, and plot the resulting heat flux.
$q x=r e s h a p e(q x, \operatorname{size}(X))$;
qy $=$ reshape(qy,size(Y));
qz = reshape(qz,size(Z));
figure
quiver3( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{qx}, \mathrm{qy}, \mathrm{qz}$ )


Alternatively, you can specify the grid by using a matrix of query points.
querypoints $=[X(:) Y(:) Z(:)] ' ;$
[qx,qy,qz] = evaluateHeatFlux(thermalresults,querypoints);
$q x=r e s h a p e(q x, s i z e(X)) ;$
qy = reshape(qy,size(Y));
qz = reshape(qz,size(Z));
figure
quiver3(X,Y,Z,qx,qy,qz)


## Deformed Shape for Cantilever Beam Problem

Create a structural analysis model for a 3-D problem.
structuralmodel = createpde('structural','static-solid');
Import the geometry and plot it.
importGeometry(structuralmodel,'SquareBeam.STL');
pdegplot(structuralmodel,'FaceLabels','on', 'FaceAlpha', 0.5)


Specify the Young's modulus and Poisson's ratio.

```
structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);
```

Specify that face 6 is a fixed boundary.
structuralBC(structuralmodel,'Face',6,'Constraint','fixed');
Specify the surface traction for face 5 .
structuralBoundaryLoad(structuralmodel, 'Face',5,'SurfaceTraction',[0;0;-2]);
Generate a mesh and solve the problem.
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);
Plot the deformed shape with the von Mises stress using the default scale factor. By default, pdeplot3D internally determines the scale factor based on the dimensions of the geometry and the magnitude of deformation.

## figure

pdeplot3D(structuralmodel,'ColorMapData',structuralresults.VonMisesStress, ... 'Deformation',structuralresults.Displacement)


Plot the same results with the scale factor 500 .
figure
pdeplot3D(structuralmodel,'ColorMapData', structuralresults.VonMisesStress, ... 'Deformation',structuralresults.Displacement, ... 'DeformationScaleFactor',500)


Plot the same results without scaling.
figure
pdeplot3D(structuralmodel,'ColorMapData', structuralresults.VonMisesStress)


## von Mises Stress for 3-D Structural Dynamic Problem

Evaluate the von Mises stress in a beam under a harmonic excitation.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the $y$-direction on the end opposite the fixed end of the beam.
structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);
Generate a mesh.
generateMesh(structuralmodel, 'Hmax', 0.01);
Specify the zero initial displacement and velocity.
structuralIC(structuralmodel, 'Displacement', [0;0;0], 'Velocity', [0;0;0]);
Solve the model.

```
tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);
```

Evaluate the von Mises stress in the beam.

```
vmStress = evaluateVonMisesStress(structuralresults);
```

Plot the von Mises stress for the last time-step.
figure
pdeplot3D(structuralmodel, 'ColorMapData', vmStress(: , end)) title('von Mises Stress in the Beam for the Last Time-Step')


## 3-D Mesh Plot

Create a PDE model, include the geometry, and generate a mesh.

```
model = createpde;
importGeometry(model,'Tetrahedron.stl');
mesh = generateMesh(model,'Hmax',20,'GeometricOrder','linear');
```

Plot the surface mesh.
pdeplot3D(model)


Alternatively, you can plot a mesh by using mesh as an input argument. pdeplot3D(mesh)


Another approach is to use the nodes and elements of the mesh as input arguments for pdeplot3D. pdeplot3D(mesh.Nodes,mesh.Elements)


Display the node labels on the surface of a simple mesh.

```
pdeplot3D(model,'NodeLabels','on')
view(101,12)
```



Display the element labels.
pdeplot3D(model,'ElementLabels','on') view(101,12)


## Input Arguments

## model - Model object

PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or ElectromagneticModel object.

Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')
mesh - Mesh object
Mesh property of a PDEModel object | output of generateMesh
Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.

Example: model.Mesh

## nodes - Nodal coordinates

3-by-NumNodes matrix

Nodal coordinates, specified as a 3-by-NumNodes matrix. NumNodes is the number of nodes.

## elements - Element connectivity matrix in terms of node IDs

## 4-by-NumElements matrix | 10-by-NumElements matrix

Element connectivity matrix in terms of the node IDs, specified as a 4-by-NumElements or 10 -byNumElements matrix. Linear meshes contain only corner nodes. For linear meshes, the connectivity matrix has four nodes per 3-D element. Quadratic meshes contain corner nodes and nodes in the middle of each edge of an element. For quadratic meshes, the connectivity matrix has 10 nodes per 3D element.


3-D linear element


3-D quadratic element

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: pdeplot3D(model,'NodeLabels','on')

## ColorMapData - Data to plot as colored surface

column vector
Data to plot as a colored surface, specified as the comma-separated pair consisting of
'ColorMapData' and a column vector with the number of elements that equals the number of points in the mesh. Typically, this data is the solution returned by solvepde for a scalar PDE problem and a component of the solution for a multicomponent PDE system.
Example: 'ColorMapData', results. NodalSolution
Example: 'ColorMapData', results.NodalSolution(: , 1)
Data Types: double
FlowData - Data for quiver plot
matrix

Data for the quiver plot on page 5-784, specified as the comma-separated pair consisting of ' FlowData' and an M-by-3 matrix, where M is the number of mesh nodes. FlowData contains the $x$, $y$, and $z$ values of the field at the mesh points. Set FlowData as follows:

```
results = solvepde(model);
[cgradx,cgrady,cgradz] = evaluateCGradient(results);
pdeplot3D(model,'FlowData',[cgradx cgrady cgradz])
```

pdeplot3D plots the real part of complex data.
Example: 'FlowData',[cgradx cgrady cgradz]
Data Types: double

## Mesh - Indicator to show mesh

```
'off' (default)|'on'
```

Indicator to show the mesh, specified as the comma-separated pair consisting of 'Mesh ' and 'on ' or 'off'. Specify 'on' to show the mesh in the plot.

Example: 'Mesh', 'on'
Data Types: char|string

## NodeLabels - Node labels

'off' (default)| 'on'
Node labels, specified as the comma-separated pair consisting of 'NodeLabels'and 'off' or 'on'.
Example: 'NodeLabels', 'on'
Data Types: char|string

## ElementLabels - Element labels

'off' (default)|'on'
Element labels, specified as the comma-separated pair consisting of 'ElementLabels' and 'off' or 'on'.
Example: 'ElementLabels', 'on'
Data Types: char \| string

## FaceAlpha - Surface transparency for 3-D geometry

1 (default) | real number from 0 through 1
Surface transparency for 3-D geometry, specified as the comma-separated pair consisting of ' FaceAlpha' and a real number from 0 through 1. The default value 1 indicates no transparency. The value 0 indicates complete transparency.
Example: 'FaceAlpha', 0.5
Data Types: double
Deformation - Deformed shape for structural analysis models
FEStruct object representing displacement values at nodes
Deformed shape for structural analysis models, specified as the comma-separated pair consisting of 'Deformation' and the FEStruct object representing displacement values at nodes. The
displacement FEStruct object is a property of StaticStructuralResults, TransientStructuralResults, and FrequencyStructuralResults.

In an undeformed shape, center nodes in quadratic meshes are always added at half-distance between corners. When you plot a deformed shape, the center nodes might move away from the edge centers.

Example: 'Deformation', results.Displacement
DeformationScaleFactor - Scaling factor for plotting deformed shape
positive number
Scaling factor for plotting the deformed shape, specified as the comma-separated pair consisting of 'DeformationScaleFactor' and a positive number. Use this argument together with the Deformation name-value pair argument. The pdeplot3D function chooses the default value based on the geometry itself and on the magnitude of deformation.
Example: 'DeformationScaleFactor',1000
Data Types: double

## Output Arguments

## h - Handles to graphics objects

vector
Handles to graphics objects, returned as a vector.

## See Also

PDEModel | pdegplot | pdemesh | pdeplot

## Topics

"3-D Solution and Gradient Plots with MATLAB® Functions" on page 3-297
"Solve Problems Using PDEModel Objects" on page 2-2

## Introduced in R2015a

## pdepoly

Package: pde
Draw polygon in PDE Modeler app

## Syntax

```
pdepoly(X,Y)
```

pdepoly(X,Y,label)

## Description

pdepoly ( $\mathrm{X}, \mathrm{Y}$ ) draws a polygon with the corner coordinates (vertices) defined by X and Y . The pdepoly command opens the PDE Modeler app with the specified polygon drawn in it. If the app is already open, pdepoly adds the specified polygon to the app window without deleting any existing shapes.
pdepoly updates the state of the geometry description matrix inside the PDE Modeler app to include the polygon. You can export the geometry description matrix from the PDE Modeler app to the MATLAB Workspace by selecting DrawExport Geometry Description, Set Formula, Labels.... For details on the format of the geometry description matrix, see decsg.
pdepoly ( $\mathrm{X}, \mathrm{Y}, \mathrm{label}$ ) assigns a name to the polygon. Otherwise, pdepoly uses a default name, such as P1, P2, and so on.

## Examples

## Draw Polygon in PDE Modeler App

Open the PDE Modeler app window containing a polygon representing the L-shaped membrane geometry.
pdepoly([-1 $00011-1],[0011-1-1])$
Call the pdepoly command again to draw the diamond-shaped region with corners in ( $0.5,0$ ), $(1,-0.5),(0.5,-1)$, and $(0,-0.5)$. The pdepoly command adds the second polygon to the app window without deleting the first.

```
pdepoly([0.5 1 0.5 0],[0 -0.5 -1 -0.5])
```



## Assign Name to Polygon in PDE Modeler App

Open the PDE Modeler app window with a polygon representing the L-shaped membrane geometry. Assign the name L-shaped-membrane to this polygon.
pdepoly([-1 $00011-1],[0011-1-1], '$ L-shaped-membrane')



## Input Arguments

## $X-x$-coordinates of vertices

vector of real numbers
$x$-coordinates of vertices defining the polygon, specified as a vector of real numbers.
Example: pdepoly([-1 $0011-1],[0011-1-1])$

Data Types: double

## $\mathbf{Y}-\boldsymbol{y}$-coordinates of vertices

vector of real numbers
$y$-coordinates of vertices defining the polygon, specified as a vector of real numbers.
Example: pdepoly([-1 $\left.00011-1],\left[\begin{array}{llllll}0 & 0 & 1 & 1 & -1 & -1\end{array}\right]\right)$
Data Types: double

## label - Name

character vector | string scalar
Name of the polygon, specified as a character vector or string scalar.
Data Types: char|string

## Tips

- pdepoly opens the PDE Modeler app and draws a polygon. If, instead, you want to draw polygons in a MATLAB figure, use the plot function, for example:

```
x = [-1,-0.5,-0.5,0,1.5,-0.5,-1];
y = [-1,-1,-0.5,0,0.5,0.9,-1];
plot(x,y,'.-')
```


## See Also

PDE Modeler | pdecirc | pdeellip | pderect
Introduced before R2006a

## pdeprtni

(Not recommended) Interpolate from triangle midpoint data to node data

Note pdeprtni is not recommended. Use interpolateSolution and evaluateGradient instead.

## Syntax

un = pdeprtni $(p, t, u t)$

## Description

un = pdeprtni( $\mathrm{p}, \mathrm{t}, \mathrm{ut}$ ) gives linearly interpolated values at node points from the values at triangle midpoints.

The geometry of the PDE problem is given by the mesh data $p$ and $t$. For details on the mesh data representation, see initmesh.

Let $N$ be the dimension of the PDE system, $n_{p}$ the number of node points, and $n_{t}$ the number of triangles. The components of triangle data in ut are stored as $N$ rows of length $n_{t}$. The components of the node data are stored in un as $N$ columns of length $n_{p}$.

## Caution

pdeprtni and pdeintrp are not inverse functions. The interpolation introduces some averaging.

## See Also

interpolateSolution | solvepde
Introduced before R2006a

## pderect

Package: pde
Draw rectangle in PDE Modeler app

## Syntax

pderect([xmin xmax ymin ymax])
pderect([xmin xmax ymin ymax], label)

## Description

pderect ([xmin xmax ymin ymax]) draws a rectangle with the corner coordinates defined by [xmin xmax ymin ymax]. The pderect command opens the PDE Modeler app with the specified rectangle drawn in it. If the app is already open, pderect adds the specified rectangle to the app window without deleting any existing shapes.
pderect updates the state of the geometry description matrix inside the PDE Modeler app to include the rectangle. You can export the geometry description matrix from the PDE Modeler app to the MATLAB Workspace by selecting DrawExport Geometry Description, Set Formula, Labels.... For details on the format of the geometry description matrix, see decsg.
pderect ([xmin xmax ymin ymax], label) assigns a name to the rectangle. Otherwise, pderect uses a default name, such as R1, R2, and so on. For squares, pderect uses the default names SQ1, SQ2, and so on.

## Examples

## Draw Rectangle in PDE Modeler App

Open the PDE Modeler app window containing a rectangle with the corners at ( $-1,-0.5$ ), $(-1,0.5),(1,0.5)$, and ( $1,-0.5$ ).
pderect([-1 1-0.5 0.5])
Call the pderect command again to draw a square with the corners at ( $-0.25,-0.25$ ), $(-0.25,0.25),(0.25,0.25)$, and $(0.25,-0.25)$. The pderect command adds the square to the app window without deleting the rectangle.

```
pderect([-0.25 0.25 -0.25 0.25])
```



## Assign Name to Rectangle in PDE Modeler App

Open the PDE Modeler app window and draw a rectangle with the corners at ( $-1,-0.5$ ), ( $-1,0.5$ ), $(1,0.5)$, and $(1,-0.5)$. Assign the name rectangle1 to this rectangle.
pderect([-1 1-0.5 0.5],'rectangle1')


## Input Arguments

[xmin xmax ymin ymax] - Corner coordinates
vector of real numbers
Corner coordinates defining the rectangle, specified as a vector of real numbers.
Example: pderect([-1 0-1 0])

Data Types: double

label - Name<br>character vector | string scalar

Name of the rectangle, specified as a character vector or string scalar.
Data Types: char|string

## Tips

- pderect opens the PDE Modeler app and draws a rectangle. If, instead, you want to draw rectangles in a MATLAB figure, use the rectangle function, for example, rectangle('Position', [1,2,5,6]).

See Also<br>PDE Modeler | pdecirc | pdeellip | pdepoly<br>Introduced before R2006a

## pdesdp, pdesde, pdesdt

Indices of points/edges/triangles in set of subdomains

Note pdesdp and pdesdt are not recommended. Use findNodes and findElements instead.

## Syntax

$\mathrm{c}=\operatorname{pdesdp}(\mathrm{p}, \mathrm{e}, \mathrm{t})$
[i,c] $=\operatorname{pdesdp}(p, e, t)$
$\mathrm{c}=\mathrm{pdesdp}(\mathrm{p}, \mathrm{e}, \mathrm{t}, \mathrm{sdl})$
[i,c] = pdesdp(p,e,t,sdl)
i = pdesdt(t)
i = pdesdt(t,sdl)
i $=$ pdesde(e)
i = pdesde(e,sdl)

## Description

$[i, c]=p d e s d p(p, e, t, s d l)$ given mesh data $p, e$ and $t$ and a list of subdomain numbers $s d l$, the function returns all points belonging to those subdomains. A point can belong to several subdomains, and the points belonging to the domains in sdl are divided into two disjoint sets. i contains indices of the points that wholly belong to the subdomains listed in sdl, and clists points that also belongs to the other subdomains.
$c=p d e s d p(p, e, t, s d l)$ returns indices of points that belong to more than one of the subdomains in sdl.
$i=p d e s d t(t, s d l)$ given triangle data $t$ and a list of subdomain numbers $s d l$, $i$ contains indices of the triangles inside that set of subdomains.
$i=p d e s d e(e, s d l)$ given edge data $e$, it extracts indices of outer boundary edges of the set of subdomains.

If sdl is not given, a list of all subdomains is assumed.

Introduced before R2006a

## pdesmech

(Not recommended) Calculate structural mechanics tensor functions

Note pdesmech is not recommended. Use the PDE Modeler app instead.

## Syntax

```
ux = pdesmech(p,t,c,u,'PropertyName',PropertyValue,...)
```


## Description

ux = pdesmech ( $\mathrm{p}, \mathrm{t}, \mathrm{c}, \mathrm{u}$, 'PropertyName', PropertyValue, ...) returns a tensor expression evaluated at the center of each triangle. The tensor expressions are stresses and strains for structural mechanics applications with plane stress or plane strain conditions. pdesmech is intended to be used for postprocessing of a solution computed using the structural mechanics application modes of the PDE Modeler app, after exporting the solution, the mesh, and the PDE coefficients to the MATLAB workspace. Poisson's ratio, nu, has to be supplied explicitly for calculations of shear stresses and strains, and for the von Mises effective stress in plane strain mode.

Valid property name/property value pairs include the following.

Property Name	Property Value/Default	Description													
tensor	'ux' \| 'uy'	'vx'	'vy'	'exx'	'eyy'	'exy'	'sxx'	syy'	'sxy'	'e1'	'e2'	's1'	's2'	\{'vonmises'\}	Tensor expression
application	\{'ps'\}\|'pn'	Plane stress \| plane strain													
nu	Scalar \| vector	character vector	string scalar	\{0.3\}	Poisson's ratio. Applies to calculating von Mises ('vonmises') effective stress in plane strain mode ('pn '). Specify a scalar if the value is constant over the entire geometry. Specify a vector as a row vector whose length is equal to the number of elements. Specify a character vector or a string scalar in coefficient form.										

The available tensor expressions are

- 'ux', which is $\frac{\partial u}{\partial x}$
- 'uy ' , which is $\frac{\partial u}{\partial y}$
- 'vx', which is $\frac{\partial v}{\partial x}$
- 'vy', which is $\frac{\partial v}{\partial y}$
- 'exx', the $x$-direction strain $\left(\varepsilon_{x}\right)$
- 'eyy' , the $y$-direction strain $\left(\varepsilon_{y}\right)$
- 'exy', the shear strain $\left(\gamma_{x y}\right)$
- 'sxx', the $x$-direction stress $\left(\sigma_{x}\right)$
- 'syy', the $y$-direction stress $\left(\sigma_{y}\right)$
- 'sxy', the shear stress ( $\tau_{x y}$ )
- 'el', the first principal strain $\left(\varepsilon_{1}\right)$
- 'e2', the second principal strain $\left(\varepsilon_{2}\right)$
- 's1', the first principal stress $\left(\sigma_{1}\right)$
- 's2', the second principal stress $\left(\sigma_{2}\right)$
- 'vonmises ', the von Mises effective stress, for plane stress conditions $\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2}}$
or for plane strain conditions

$$
\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)\left(v^{2}-v+1\right)+\sigma_{1} \sigma_{2}\left(2 v^{2}-2 v-1\right)}
$$

where $v$ is Poisson's ratio nu.

## Examples

Assuming that a problem has been solved using the application mode Structural Mechanics, Plane Stress, and that the solution $u$, the mesh data $p$ and $t$, and the PDE coefficient $c$ all have been exported to the MATLAB workspace, the $x$-direction strain is computed as
$s x=$ pdesmech(p,t,c,u,'tensor','sxx');
To compute the von Mises effective stress for a plane strain problem with Poisson's ratio equal to 0.3, type

```
mises = pdesmech(p,t,c,u,'tensor','vonmises',...
 'application','pn','nu',0.3);
```

Introduced before R2006a

## PDESolverOptions Properties

Algorithm options for solvers

## Description

A PDESolverOptions object contains options used by the solvers when solving a structural, thermal, or general PDE problem specified as a StructuralModel, ThermalModel, or PDEModel object, respectively. StructuralModel, ThermalModel, and PDEModel objects contain a PDESolverOptions object in their SolverOptions property.

Solvers for structural modal analysis problems and reduced-order modeling use the Lanczos algorithm.

## Properties

## Statistics and Convergence Report

ReportStatistics - Flag to display internal solver statistics and convergence report during the solution process
'off' (default)|'on'
Flag to display the internal solver statistics and the convergence report during the solution process, returned as 'off' or 'on'.

Example: model.SolverOptions.ReportStatistics = 'on'
Data Types: char
ODE Solver
AbsoluteTolerance - Absolute tolerance for internal ODE solver
$1.0000 \mathrm{e}-06$ (default) | positive number
Absolute tolerance for the internal ODE solver, returned as a positive number. Absolute tolerance is a threshold below which the value of the solution component is unimportant. This property determines the accuracy when the solution approaches zero.
Example: model.SolverOptions.AbsoluteTolerance = 5.0000e-06
Data Types: double

## RelativeTolerance - Relative tolerance for internal ODE solver <br> $1.0000 \mathrm{e}-03$ (default) | positive number

Relative tolerance for the internal ODE solver, returned as a positive number. This tolerance is a measure of the error relative to the size of each solution component. Roughly, it controls the number of correct digits in all solution components, except those smaller than thresholds imposed by AbsoluteTolerance. The default value corresponds to $0.1 \%$ accuracy.
Example: model. SolverOptions.RelativeTolerance $=5.0000 e-03$
Data Types: double

## Nonlinear Solver

## ResidualTolerance - Acceptable residual tolerance for internal nonlinear solver

$1.0000 \mathrm{e}-04$ (default) | positive number
Acceptable residual tolerance for the internal nonlinear solver, returned as a positive number. The nonlinear solver iterates until the residual size is less than the value of ResidualTolerance.
Example: model. SolverOptions.ResidualTolerance $=5.0000 e-04$
Data Types: double

## MaxIterations - Maximal number of Gauss-Newton iterations for internal nonlinear solver <br> 25 (default) | positive integer

Maximal number of Gauss-Newton iterations for the internal nonlinear solver, returned as a positive integer.
Example: model.SolverOptions.MaxIterations = 30
Data Types: double

## MinStep - Minimum damping of search direction for internal nonlinear solver

$1.5259 \mathrm{e}-05$ (default) | positive number
Minimum damping of the search direction for the internal nonlinear solver, returned as a positive number. For details, see "Nonlinear Solver Algorithm" on page 5-822.

Example: model. SolverOptions.MinStep $=1.5259 \mathrm{e}-7$
Data Types: double

## ResidualNorm - Type of norm for computing residual for internal nonlinear solver

Inf (default) | - Inf | positive number | 'energy '
Type of norm for computing the residual for the internal nonlinear solver, returned as Inf, - Inf, a positive number, or 'energy'.

The infinity norms of a vector are

$$
\begin{aligned}
& \|\rho\|_{\infty}=\max _{i}(|\rho(i)|) \\
& \|\rho\|_{-\infty}=\min _{i}(|\rho(i)|)
\end{aligned}
$$

The $L^{\mathrm{p}}$-norm of a vector $\rho$ that has N elements is

$$
\|\rho\|_{p}=\frac{\left[\sum_{k=1}^{N}\left|\rho_{k}\right|^{p}\right]^{\frac{1}{p}}}{N^{\frac{1}{p}}}
$$

The energy norm of a vector $\rho$ is

$$
\|\rho\|=\rho^{T} K \rho
$$

Here, $K$ is the combined stiffness matrix defined in "Nonlinear Solver Algorithm" on page 5-822.

Example: model.SolverOptions.ResidualNorm = 'energy'
Data Types: double | char

## Lanczos Solver

## MaxShift - Maximum number of Lanczos shifts

100 (default) | positive integer
Maximum number of Lanczos shifts, specified as a positive integer. Increase this value when computing a large number of eigenpairs.
Example: model. SolverOptions.MaxShift $=500$
Data Types: double

## BlockSize - Block size for block Lanczos recurrence

ranges from 7 to 25 (default) | positive integer
Block size for block Lanczos recurrence, specified as a positive integer. The default number ranges from 7 to 25 , depending on the size of the stiffness matrix K .
Example: model. SolverOptions.BlockSize = 20
Data Types: double

## Algorithms

## Nonlinear Solver Algorithm

The residual equation of a nonlinear PDE is as follows:

$$
r(u)=-\nabla \cdot(c(u) \nabla(u))+a(u) u-f(u)=0
$$

To obtain a discretized residual equation, apply the finite element method (FEM) to a partial differential equation as described in "Finite Element Method Basics" on page 1-11:

$$
\rho(U)=K(U) U-F(U)=0
$$

The nonlinear solver uses a Gauss-Newton iteration scheme applied to the finite element matrices. Use a Taylor series expansion to obtain the linearized system for the residual:

$$
\rho\left(U^{n+1}\right) \cong \rho\left(U^{n}\right)+\frac{\partial \rho\left(U^{n}\right)}{\partial U}\left(U^{n+1}-U^{n}\right)+\ldots=0
$$

Neglecting the higher-order terms, write the linearized system of equations as

$$
\frac{\partial \rho\left(U^{n}\right)}{\partial U}\left(U^{n+1}-U^{n}\right)=-\rho\left(U^{n}\right)
$$

The descent direction for the residual is

$$
p_{n}=-\left(\frac{\partial \rho\left(U^{n}\right)}{\partial U}\right)^{-1} \rho\left(U^{n}\right)
$$

The Gauss-Newton iteration minimizes the residual, that is, the solution of $\min _{U}\|\rho(U)\|$, using the equation

$$
U^{n+1}=U^{n}+\alpha p_{n}
$$

Here, $\alpha \leq 1$ is a positive number, that must be set as large as possible so that the step has a reasonable descent. For a sufficiently small $\alpha$,

$$
\left\|\rho\left(U^{n}+\alpha p_{n}\right)\right\|<\left\|\rho\left(U^{n}\right)\right\|
$$

For the Gauss-Newton algorithm to converge, $U^{0}$ must be close enough to the solution. The first guess is often outside the region of convergence. The Armijo-Goldstein line search (a damping strategy for choosing a) helps to improve convergence from bad initial guesses. This method chooses the largest damping coefficient $\alpha$ out of the sequence $1,1 / 2,1 / 4, \ldots$ such that the following inequality holds:

$$
\left\|\rho\left(U^{n}\right)\right\|-\left\|\rho\left(U^{n}+\alpha p_{n}\right)\right\| \geq \frac{\alpha}{2}\left\|\rho\left(U^{n}\right)\right\|
$$

Using the Armijo-Goldstein line search guarantees a reduction of the residual norm by at least $1-\alpha / 2$. Each step of the line-search algorithm must evaluate the residual $\left\|\rho\left(U^{n}+\alpha p_{n}\right)\right\|$.

With this strategy, when $U^{n}$ approaches the solution, $\alpha \rightarrow 1$, thus, the convergence rate increases.

## See Also <br> PDEModel | solvepde | solvepdeeig

Introduced in R2016a

## pdesurf

Shorthand command for surface plot

Note This page describes the legacy workflow. Use it when you work with legacy code and do not plan to convert it to use the recommended approach. Otherwise, use pdeplot.

## Syntax

pdesurf( $\mathrm{p}, \mathrm{t}, \mathrm{u}$ )

## Description

pdesurf ( $\mathrm{p}, \mathrm{t}, \mathrm{u}$ ) plots a 3-D surface of PDE node or triangle data. If $u$ is a column vector, node data is assumed, and continuous style and interpolated shading are used. If $u$ is a row vector, triangle data is assumed, and discontinuous style and flat shading are used.
$h=p d e s u r f(p, t, u)$ additionally returns handles to the drawn axes objects.
For node data, this command is just shorthand for the call

```
pdeplot(p,[],t,'XYData',u,'XYStyle','interp',...
 'ZData',u,'ZStyle','continuous',...
 'ColorBar','off');
```

and for triangle data it is

```
pdeplot(p,[],t,'XYData',u,'XYStyle','flat',...
 'ZData',u,'ZStyle','discontinuous',...
 'ColorBar','off');
```

If you want to have more control over your surface plot, use pdeplot instead of pdesurf.

## Examples

## Surface Plot of The Solution

Surface plot of the solution to the equation $-\Delta u=1$ over the geometry defined by the L-shaped membrane. Use Dirichlet boundary conditions $u=0$ on $\partial \Omega$.

```
[p,e,t] = initmesh('lshapeg');
[p,e,t] = refinemesh('lshapeg',p,e,t);
u = assempde('lshapeb',p,e,t,1,0,1);
pdesurf(p,t,u)
```



## See Also

pdecont | pdemesh | pdeplot
Introduced before R2006a

## PDE Modeler

Create complex 2-D geometries by drawing, overlapping, and rotating basic shapes

## Description

The PDE Modeler app provides an interactive interface for solving 2-D geometry problems. Using the app, you can create complex geometries by drawing, overlapping, and rotating basic shapes, such as circles, polygons and so on. The app also includes preset modes for applications, such as electrostatics, magnetostatics, heat transfer, and so on.

When solving a PDE problem in the app, follow these steps:
1 Create a 2-D geometry.
2 Specify boundary conditions.
3 Specify equation coefficients.
4 Generate a mesh.
5 Specify parameters for solving a PDE. The set of parameters depends on the type of PDE. For parabolic and hyperbolic PDEs, these parameters include initial conditions.
6 Solve the problem.
7 Specify plotting parameters and plot the results.
You can choose to export data to the MATLAB workspace from any step in the app and continue your work outside the app.

Note The app does not support 3-D geometry problems and systems of more than two PDEs.


## Open the PDE Modeler App

- MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app icon.
- MATLAB command prompt: Enter pdeModeler.


## Examples

- "Solve 2-D PDEs Using the PDE Modeler App" on page 1-5
- "Open the PDE Modeler App" on page 4-2
- "2-D Geometry Creation in PDE Modeler App" on page 4-3
- "Specify Boundary Conditions in the PDE Modeler App" on page 4-12
- "Specify Coefficients in PDE Modeler App" on page 4-14
- "Specify Mesh Parameters in the PDE Modeler App" on page 4-24
- "Adjust Solve Parameters in the PDE Modeler App" on page 4-26
- "Plot the Solution in the PDE Modeler App" on page 4-31
- "von Mises Effective Stress and Displacements: PDE Modeler App" on page 3-3
- "Heat Transfer in Block with Cavity: PDE Modeler App" on page 3-207
- "Heat Distribution in Circular Cylindrical Rod: PDE Modeler App" on page 3-248
- "Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App" on page 3-157
- "Poisson's Equation on Unit Disk: PDE Modeler App" on page 3-178
- "Poisson's Equation with Complex 2-D Geometry: PDE Modeler App" on page 1-7
- "Electrostatic Potential in Air-Filled Frame: PDE Modeler App" on page 3-123
- "Magnetic Field in Two-Pole Electric Motor: PDE Modeler App" on page 3-135
- "Wave Equation on Square Domain: PDE Modeler App" on page 3-255
- "Scattering Problem: PDE Modeler App" on page 3-192
- "Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App" on page 3-146
- "Poisson's Equation on Unit Disk: PDE Modeler App" on page 3-178
- "Minimal Surface Problem: PDE Modeler App" on page 3-200
- "Current Density Between Two Metallic Conductors: PDE Modeler App" on page 3-154
- "L-Shaped Membrane with Rounded Corner: PDE Modeler App" on page 3-267
- "Eigenvalues and Eigenmodes of Square: PDE Modeler App" on page 3-275
- "Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App" on page 3-264


## Programmatic Use

pdeModeler opens the PDE Modeler app or brings focus to the app if it is already open.
pdecirc (xc,yc,r) opens the PDE Modeler app and draws a circle with center in ( $\mathrm{xc}, \mathrm{yc}$ ) and radius $r$.
pdeellip(xc,yc,a,b,phi) opens the PDE Modeler app and draws an ellipse with center in ( $\mathrm{xc}, \mathrm{yc}$ ) and semiaxes a and b . The rotation of the ellipse (in radians) is phi.
pdepoly ( $x, y$ ) opens the PDE Modeler app and draws a polygon with corner coordinates defined by $x$ and $y$.
pderect ([xmin xmax ymin ymax]) opens the PDE Modeler app and draws a rectangle with corner coordinates defined by [xmin xmax ymin ymax].

## See Also

## Functions

pdecirc| pdeellip|pdepoly|pderect

## Topics

"Solve 2-D PDEs Using the PDE Modeler App" on page 1-5
"Open the PDE Modeler App" on page 4-2
"2-D Geometry Creation in PDE Modeler App" on page 4-3
"Specify Boundary Conditions in the PDE Modeler App" on page 4-12
"Specify Coefficients in PDE Modeler App" on page 4-14
"Specify Mesh Parameters in the PDE Modeler App" on page 4-24
"Adjust Solve Parameters in the PDE Modeler App" on page 4-26
"Plot the Solution in the PDE Modeler App" on page 4-31
"von Mises Effective Stress and Displacements: PDE Modeler App" on page 3-3
"Heat Transfer in Block with Cavity: PDE Modeler App" on page 3-207
"Heat Distribution in Circular Cylindrical Rod: PDE Modeler App" on page 3-248
"Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App" on page 3-157
"Poisson's Equation on Unit Disk: PDE Modeler App" on page 3-178
"Poisson's Equation with Complex 2-D Geometry: PDE Modeler App" on page 1-7
"Electrostatic Potential in Air-Filled Frame: PDE Modeler App" on page 3-123
"Magnetic Field in Two-Pole Electric Motor: PDE Modeler App" on page 3-135
"Wave Equation on Square Domain: PDE Modeler App" on page 3-255
"Scattering Problem: PDE Modeler App" on page 3-192
"Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App" on page 3-146
"Poisson's Equation on Unit Disk: PDE Modeler App" on page 3-178
"Minimal Surface Problem: PDE Modeler App" on page 3-200
"Current Density Between Two Metallic Conductors: PDE Modeler App" on page 3-154
"L-Shaped Membrane with Rounded Corner: PDE Modeler App" on page 3-267
"Eigenvalues and Eigenmodes of Square: PDE Modeler App" on page 3-275
"Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App" on page 3-264

## Introduced before R2006a

## pdetrg

(Not recommended) Triangle geometry data

Note pdetrg is not recommended. Use area instead.

## Syntax

[ar,a1,a2,a3] = pdetrg(p,t)
[ar,g1x,g1y,g2x,g2y,g3x,g3y] $=\operatorname{pdetrg}(p, t)$

## Description

[ar, a1, a2, a3] = pdetrg( $p, t$ ) returns the area of each triangle in ar and half of the negative cotangent of each angle in a1, a2, and a3.
[ar,g1x,g1y,g2x,g2y,g3x,g3y]=pdetrg(p,t) returns the area and the gradient components of the triangle base functions.

The triangular mesh of the PDE problem is given by the mesh data $p$ and $t$. For details on the mesh data representation, see initmesh.

Introduced before R2006a

## pdetriq

(Not recommended) Triangle quality measure

Note pdetriq is not recommended. Use meshQuality instead.

## Syntax

$q=\operatorname{pdetriq}(p, t)$

## Description

$\mathrm{q}=\operatorname{pdetriq}(\mathrm{p}, \mathrm{t})$ returns a triangle quality measure given mesh data.
The triangular mesh is given by the mesh data $p, e$, and $t$. For details on the mesh data representation, see initmesh.

The triangle quality is given by the formula

$$
q=\frac{4 a \sqrt{3}}{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}}
$$

where $a$ is the area and $h_{1}, h_{2}$, and $h_{3}$ the side lengths of the triangle.
If $q>0.6$ the triangle is of acceptable quality. $q=1$ when $h_{1}=h_{2}=h_{3}$.

## References

Bank, Randolph E., PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User's Guide 6.0, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.

## See Also

Introduced before R2006a

## pdeviz

Create and plot PDE visualization object

## Syntax

```
pdeviz(MeshData,NodalData)
pdeviz(MeshData)
pdeviz(_,Name,Value)
pdeviz(figure,
```

$\qquad$

```
V = pdeviz(
```

$\qquad$

``` )
```


## Description

pdeviz(MeshData,NodalData) creates a PDEVisualization object and plots the data at the mesh nodes as a surface plot. For details, see PDEVisualization Properties.
pdeviz(MeshData) creates a PDEVisualization object and plots the mesh.
pdeviz( __ , Name, Value) customizes the plot appearance using one or more Name, Value arguments. Use name-value arguments with any combination of arguments from the previous syntaxes.
pdeviz(figure, __ ) specifies the graphics container for the PDEVisualization object. For example, you can plot the object in Figure 3 by specifying pdeviz(figure(3), $\qquad$ ).

V = pdeviz( $\qquad$ ) returns a handle to the PDEVisualization object, using any of the previous syntaxes.

## Examples

## Mesh and Solution of Structural Model

Use the pdeviz function to create a PDE visualization object and plot it. Change the properties of this object to interact with the resulting plot.

Create a structural analysis model for a 3-D problem.

```
structuralmodel = createpde('structural','static-solid');
```

Import the beam geometry and plot it.

```
importGeometry(structuralmodel,'SquareBeam.STL');
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
```



Specify the Young's modulus and Poisson's ratio.
structuralProperties(structuralmodel,'PoissonsRatio',0.3, ... 'YoungsModulus',210E3);

Specify that face 6 is a fixed boundary.
structuralBC(structuralmodel,'Face',6,'Constraint','fixed');
Specify the surface traction for face 5.
structuralBoundaryLoad(structuralmodel,'Face',5,'SurfaceTraction',[0;0;-2]);
Generate a mesh and solve the problem.
msh = generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);
Call pdeviz with only the mesh data. This call creates a PDEVisualization object and plots the mesh.
figure
v = pdeviz(msh)


```
V =
 PDEVisualization with properties:
```

```
 MeshData: [1x1 FEMesh]
 NodalData: [0x1 double]
 MeshVisible: on
 Transparency: 1
 Position: [0.1300 0.1100 0.6669 0.8150]
 Units: 'normalized'
```

    Show all properties
    Update the plot by adding the von Mises stress as the NodalData property of the PDEVisualization object v. The plot now shows the von Mises stress and the mesh.

```
figure
v.NodalData = structuralresults.VonMisesStress;
```



Update the plot to hide the mesh.
figure
v.MeshVisible = 'off';


## Input Arguments

## MeshData - Finite element mesh

FEMesh object
Finite element mesh, specified as an FEMesh object.

## NodalData - Data at mesh nodes

column vector
Data at mesh nodes, specified as a column vector.
Data Types: double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example:
pdeviz(model.Mesh,results.NodalSolution,'MeshVisible','on','DeformationData', results.Displacement)

## Transparency - Surface transparency

1 (default) | real number from 0 through 1

Surface transparency, specified as a real number from 0 through 1 . The default value 1 indicates no transparency. The value 0 indicates complete transparency.
Data Types: double

## MeshVisible - Toggle to show mesh

'on' | 'off' | on/off logical value
Toggle to show mesh, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this argument as a logical value.

When plotting only the mesh, the default is 'on'. Otherwise, the default is 'off'.
Data Types: char | string

## DeformationData - Mesh deformation data

FESt ruct object | matrix | structure array
Mesh deformation data, specified as one of the following:

- An FEStruct object with the properties ux, uy, and, for a 3-D geometry, uz
- A structure array with the fields ux, uy, and, for a 3-D geometry, uz
- A matrix with either two columns for a 2-D geometry or three columns for a 3-D geometry

DeformationScaleFactor - Level of mesh deformation
nonnegative number
Level of mesh deformation, specified as a nonnegative number. Use this name-value argument together with DeformationData.
pdeviz computes the default value of DeformationScaleFactor based on the mesh and the value of DeformationData.
Data Types: double

## Output Arguments

## V - Visualization container

handle
Visualization container, returned as a handle to the PDEVisualization object. For details, see PDEVisualization Properties.

## See Also

PDEVisualization Properties | pdemesh | pdeplot | pdeplot3D
Introduced in R2021a

## PDEVisualization Properties

PDE visualization of mesh and nodal results

## Description

PDEVisualization properties control the appearance and behavior of a PDEVisualization object. By changing property values, you can modify certain aspects of the visualization.

Create a PDEVisualization object using the pdeviz function.

## Properties

## Displayed Data

## MeshData - Finite element mesh

## FEMesh object

Finite element mesh, specified as an FEMesh object.

## NodalData - Data at mesh nodes

vector
Data at mesh nodes, specified as a vector.
Data Types: double

## DeformationData - Mesh deformation data

FESt ruct object | matrix | structure array
Mesh deformation data, specified as one of the following:

- An FEStruct object with the properties ux, uy, and, for a 3-D geometry, uz
- A structure array with the fields ux, uy, and, for a 3-D geometry, uz
- A matrix with either two columns for a 2-D geometry or three columns for a 3-D geometry

Data Types: double

## DeformationScaleFactor - Level of mesh deformation

nonnegative number
Level of mesh deformation, specified as a nonnegative number.
The toolbox computes the default value of DeformationScaleFactor based on the mesh and the value of DeformationData.

Example: v.DeformationScaleFactor = 1000;
Data Types: double
XLimits, YLimits, ZLimits - Axis limits
two-element vector of the form [min max]

Axis limits, specified as a two-element vector of the form [min max], where max is greater than min. You can specify the limits as numeric, categorical, datetime, or duration values. The type of values that you specify must match the type of values along the axis.

You can specify both limits or you can specify one limit and let the axes automatically calculate the other. For an automatically calculated minimum or maximum limit, use - Inf or Inf, respectively.
Example: ax. XLim = [0 0 10]
Example: ax.YLim $=$ [-Inf 10]
Example: ax. ZLim = [0 Inf]

## Color and Styling

## ColorLimits - Color limits

two-element vector
Color limits, specified as a two-element vector of the form [min max]. The color limits indicate the color data values that map to the first and last colors in the colormap.

Example: v.ColorLimits = [0 10];

## ColorbarVisible - Colorbar visibility

' on ' (default)| on/off logical value
Colorbar visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of ' on ' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.
Example: v.ColorbarVisible = 'off';

## MeshVisible - Mesh visibility

'on' | 'off'| on/off logical value
Mesh visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of ' on ' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.
Example: v.MeshVisible = 'on';
Data Types: char|string

## Transparency - Surface transparency

1 (default) | real number from 0 through 1

Surface transparency, specified as a real number from 0 through 1. The default value 1 indicates no transparency. The value 0 indicates complete transparency.

When you use the Transparency argument for solution plots, the plot colors might not match the color bar values. Always use a fully opaque plot to estimate the solution values.
Data Types: double

## Labels

## XLabel, YLabel, ZLabel - Text object for axis label

character vector $\mid$ cell array of character vectors $\mid$ string array | categorical array
Axis labels, specified as character vectors, cell arrays of character vectors, string arrays, or categorical arrays.

Example: v.XLabel = 'time';

## Title - Chart title

character vector $\mid$ cell array of character vectors $\mid$ string array | categorical array
Chart title, specified as a character vector, cell array of character vectors, string array, or categorical array.
Example: v.Title = 'My Title Text';
To create a multi-line title, specify a cell array of character vectors or a string array. Each element in the array corresponds to a line of text.

Example: v.Title = \{'My','Title'\};
If you specify the title as a categorical array, MATLAB uses the values in the array, not the categories.
If you create the chart using tabular data, the default chart has an autogenerated title. If you do not want a title, specify ' '.

## Interactivity

## Visible - State of visibility

' on ' (default) | on/off logical value
State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- 'on ' - Display the chart.
- 'off' - Hide the chart without deleting it. You still can access the properties of chart when it is not visible.


## Parent/Child

## Parent - Parent container

Figure object (default) | Panel object | Tab object | TiledChartLayout object
Parent container of the chart, specified as a Figure, Panel, Tab, or TiledChartLayout object.

## HandleVisibility - Visibility of object handle

'on' (default)|'off' | 'callback'
Visibility of the object handle in the Children property of the parent, specified as one of these values:

- 'on ' - Object handle is always visible.
- 'off' - Object handle is invisible at all times. This option is useful for preventing unintended changes by another function. Set the HandleVisibility to 'off' to temporarily hide the handle during the execution of that function.
- 'callback' - Object handle is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command line, but permits callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object handles by searching the object hierarchy or querying handle properties cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco, newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to ' on ' to list all object handles regardless of their HandleVisibility property setting.

## Position

## OuterPosition - Chart size and location, including margins

[left bottom width height]
Chart size and location, including the margins for decorations such as axis labels and tick marks. Specify this property as a vector of form [left bottom width height]. The values are in the units specified by the Units property.

- left - Distance from the left edge of the parent container to the outer-left edge of the chart that includes the margins. Typically, the parent container is a figure, panel, or tab.
- bottom - Distance from the bottom edge of the parent container to the outer-bottom edge of the chart that includes the margins.
- width - Width of chart, including the margins.
- height - Height of chart, including the margins.

Note Setting this property has no effect when the parent of the chart is a TiledChartLayout.

## InnerPosition - Chart size and location, excluding margins

[left bottom width height]
Chart size and location, excluding the margins for decorations such as axis labels and tick marks. Specify this property as a vector of form [left bottom width height]. The values are in the units specified by the Units property.

- left - Distance from the left edge of the parent container to the inner-left edge of the chart that excludes the margins. Typically, the parent container is a figure, panel, or tab.
- bottom - Distance from the bottom edge of the parent container to the inner-bottom edge of the chart that excludes the margins.
- width - Width of the of chart, excluding the margins.
- height - Height of the chart, excluding the margins.
$\overline{\text { Note Setting this property has no effect when the parent of the chart is a TiledChartLayout. }}$


## Position - Chart size and location, excluding margins

[left bottom width height]
Chart size and location, excluding the margins for decorations such as axis labels and tick marks. Specify this property as a vector of form [left bottom width height]. This property is equivalent to the InnerPosition property.

Note Setting this property has no effect when the parent of the chart is a TiledChartLayout.

## PositionConstraint - Position to hold constant

'outerposition' | 'innerposition'
Position property to hold constant when adding, removing, or changing decorations, specified as one of the following values:

- 'outerposition' - The OuterPosition property remains constant when you add, remove, or change decorations such as a title or an axis label. If any positional adjustments are needed, MATLAB adjusts the InnerPosition property.
- 'innerposition' - The InnerPosition property remains constant when you add, remove, or change decorations such as a title or an axis label. If any positional adjustments are needed, MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

## Units - Position units

'normalized' (default)| 'inches' | 'centimeters'|'characters'|'points'|'pixels'
Position units, specified as a value from the following table. To change the position of the chart in specific units, set the Units property before specifying the Position property. If you specify the Units and Position properties in a single command (using name-value pairs), be sure to specify Units before Position.

Units	Description
' normalized ' (default)	Normalized with respect to the parent container,   which is typically the figure, panel, or tab. The   lower left corner of the container maps to (0,0),   and the upper right corner maps to (1,1).
'inches '	Inches.
' centimeters '	Centimeters.
' characters '	Based on the default font of the graphics root   object:   - Character width = width of letter x.   -Character height = distance between the   baselines of two lines of text.   'points 'Typography points. One point equals 1/72 inch.



## Description

Distances in pixels are independent of your system resolution on Windows ${ }^{\circledR}$ and Macintosh systems:

- On Windows systems, a pixel is $1 / 96$ th of an inch.
- On Macintosh systems, a pixel is $1 / 72 \mathrm{nd}$ of an inch.

On Linux ${ }^{\circledR}$ systems, the size of a pixel is determined by your system resolution.

## Layout - Layout options

empty LayoutOptions array (default)| TiledChartLayout0ptions
Layout options, specified as a TiledChartLayout0ptions object. This property specifies options when an instance of your chart is a child of a tiled chart layout. If the instance is not a child of a tiled chart layout (for example, it is a child of a figure or panel), then this property is empty and has no effect. Otherwise, you can position the chart within the layout by setting the Tile and TileSpan properties on the TiledChartLayoutOptions object.

For example, this code places chart object c into the third tile of a tiled chart layout.
c. Layout.Tile = 3;

To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For example, this chart spans 2 rows and 3 columns of tiles.
c.Layout.TileSpan = [2 3];

Note Tiled chart layouts are not supported for the axes returned by the getAxes method. Instead, you can place an instance of your chart into a tiled chart layout.

## See Also

pdeviz

Introduced in R2021a

## poiasma

(Not recommended) Boundary point matrix contributions for fast solvers of Poisson's equation

Note poiasma is not recommended. To solve Poisson's equations, use solvepde. For details, see "Solve Problems Using PDEModel Objects".

## Syntax

$\mathrm{K}=$ poiasma(n1,n2,h1,h2)
$K=$ poiasma(n1,n2)
$K=$ poiasma(n)

## Description

$\mathrm{K}=$ poiasma $(\mathrm{n} 1, \mathrm{n} 2, \mathrm{~h} 1, \mathrm{~h} 2)$ assembles the contributions to the stiffness matrix from boundary points. n 1 and n 2 are the numbers of points in the first and second directions, and h 1 and h 2 are the mesh spacings. K is a sparse $\mathrm{n} 1 * \mathrm{n} 2$-by-n1*n2 matrix. The point numbering is the canonical numbering for a rectangular mesh.
$\mathrm{K}=$ poiasma( $\mathrm{n} 1, \mathrm{n} 2)$ uses $\mathrm{h} 1=\mathrm{h} 2$.
$K=$ poiasma( n ) uses $\mathrm{n} 1=\mathrm{n} 2=\mathrm{n}$.

## See Also

Introduced before R2006a

## poicalc

Fast solver for Poisson's equation on rectangular grid

Note poicalc is not recommended. To solve Poisson's equations, use solvepde. For details, see "Solve Problems Using PDEModel Objects".

## Syntax

```
u = poicalc(f,h1,h2,n1,n2)
u = poicalc(f,h1,h2)
u = poicalc(f)
```


## Description

$\mathrm{u}=$ poicalc( $\mathrm{f}, \mathrm{h} 1, \mathrm{~h} 2, \mathrm{n} 1, \mathrm{n} 2)$ calculates the solution of Poisson's equation for the interior points of an evenly spaced rectangular grid. The columns of $u$ contain the solutions corresponding to the columns of the right-hand side f. h1 and h2 are the spacings in the first and second direction, and n1 and n 2 are the number of points.

The number of rows in f must be $\mathrm{n} 1 * \mathrm{n} 2$. If n 1 and n 2 are not given, the square root of the number of rows of $f$ is assumed. If $h 1$ and $h 2$ are not given, they are assumed to be equal.

The ordering of the rows in $u$ and $f$ is the canonical ordering of interior points, as returned by poiindex.

The solution is obtained by sine transforms in the first direction and tridiagonal matrix solution in the second direction. n1 should be 1 less than a power of 2 for best performance.

## See Also

## Introduced before R2006a

## poiindex

(Not recommended) Indices of points in canonical ordering for rectangular grid

Note poiindex is not recommended. To solve Poisson's equations, use solvepde. For details, see "Solve Problems Using PDEModel Objects".

## Syntax

[n1, n2,h1,h2,i,c,ii, cc] = poiindex(p,e,t,sd)

## Description

[ $n 1, n 2, h 1, h 2, i, c, i i, c c]=p o i i n d e x(p, e, t, s d)$ identifies a given grid $p, e, t$ in the subdomain sd as an evenly spaced rectangular grid. If the grid is not rectangular, n 1 is 0 on return. Otherwise n 1 and n 2 are the number of points in the first and second directions, h 1 and h 2 are the spacings. i and ii are of length (n1-2)*(n2-2) and contain indices of interior points. i contains indices of the original mesh, whereas ii contains indices of the canonical ordering. c and cc are of length $n 1 * n 2-(n 1-2) *(n 2-2)$ and contain indices of border points. ii and cc are increasing.

In the canonical ordering, points are numbered from left to right and then from bottom to top. Thus if $\mathrm{n} 1=3$ and $\mathrm{n} 2=5$, then $\mathrm{ii}=\left[\begin{array}{lll}5 & 8 & 11\end{array}\right]$ and $\mathrm{cc}=\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 6 & 7 & 10 & 12 & 14\end{array}\right.$ 15$]$.

Introduced before R2006a

## poimesh

(Not recommended) Make regular mesh on rectangular geometry

Note poimesh is not recommended. To solve Poisson's equations, use solvepde. For details, see "Solve Problems Using PDEModel Objects".

## Syntax

[p,e,t] = poimesh(g,nx,ny)
$[p, e, t]=\operatorname{poimesh}(g, n)$
$[p, e, t]=\operatorname{poimesh}(g)$

## Description

[ $\mathrm{p}, \mathrm{e}, \mathrm{t}]=$ poimesh $(\mathrm{g}, \mathrm{nx}, \mathrm{ny})$ constructs a regular mesh on the rectangular geometry specified by g , by dividing the "x edge" into nx pieces and the " y edge" into ny pieces, and placing ( nx $+1) *(n y+1)$ points at the intersections.

The "x edge" is the one that makes the smallest angle with the $x$-axis.
$[\mathrm{p}, \mathrm{e}, \mathrm{t}]=\operatorname{poimesh}(\mathrm{g}, \mathrm{n})$ uses $\mathrm{nx}=\mathrm{ny}=\mathrm{n}$, and $[\mathrm{p}, \mathrm{e}, \mathrm{t}]=\operatorname{poimesh}(\mathrm{g})$ uses $\mathrm{nx}=\mathrm{ny}=1$.
The triangular mesh is described by the mesh data $p, e$, and $t$. For details on the mesh data representation, see initmesh.

For best performance with poisolv, the larger of $n x$ and ny should be a power of 2 .
If g does not seem to describe a rectangle, p is zero on return.
Introduced before R2006a

## poisolv

(Not recommended) Fast solution of Poisson's equation on rectangular grid

Note poisolv is not recommended. To solve Poisson's equations, use solvepde. For details, see "Solve Problems Using PDEModel Objects".

## Syntax

$u=\operatorname{poisolv}(b, p, e, t, f)$

## Description

$u=p o i s o l v(b, p, e, t, f)$ solves Poisson's equation with Dirichlet boundary conditions on a regular rectangular grid. A combination of sine transforms and tridiagonal solutions is used for increased performance.

The boundary conditions $b$ must specify Dirichlet conditions for all boundary points.
The mesh $p$, e, and $t$ must be a regular rectangular grid. For details on the mesh data representation, see initmesh.
f gives the right-hand side of Poisson's equation.
Apart from roundoff errors, the result should be the same as $u=\operatorname{assempde}(b, p, e, t, 1,0, f)$.

## References

Strang, Gilbert, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Cambridge, MA, 1986, pp. 453-458.

Introduced before R2006a

## reconstructSolution

Package: pde
Recover full-model transient solution from reduced-order model results

## Syntax

structuralresults = reconstructSolution(Rcb,u,ut,utt,tlist)

## Description

structuralresults = reconstructSolution(Rcb,u,ut,utt,tlist) recovers the full solution from the reduced-order model Rcb, displacement $u$, velocity $u t$, and acceleration $u t t$. Typically, the displacement, velocity, and acceleration are the values returned by Simscape.

## Examples

## Reconstruct Solution from ROM Results

Knowing the solution in terms of the interface DoFs and modal DoFs, reconstruct the solution for the full model.

Create a structural model for transient analysis.

```
modelT = createpde('structural','transient-solid');
```

Create a square cross-section beam geometry and include it in the model.
gm = multicuboid(0.05,0.003,0.003);
modelT.Geometry = gm;
Plot the geometry, displaying face and edge labels.

```
figure
pdegplot(modelT,'FaceLabels','on','FaceAlpha',0.5)
view([71 4])
```


figure
pdegplot(modelT,'EdgeLabels','on','FaceAlpha', 0.5)
view([71 4])


Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(modelT,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.
structuralBC(modelT,'Edge',[2 811 12],'Constraint','fixed');
Add a vertex at the center of face 3.
loadedVertex = addVertex(gm,'Coordinates',[0.025 0.0 0.0015]);
Generate a mesh.
generateMesh(modelT);
Apply a sinusoidal concentrated force in the $z$-direction on the new vertex.

```
structuralBoundaryLoad(modelT,'Vertex',loadedVertex, ...
 'Force',[0;0;10],'Frequency',6000);
```

Specify zero initial conditions.

```
structuralIC(modelT,'Velocity',[0 0 0],'Displacement',[0 0 0]);
```

Define superelement interfaces using the fixed and loaded boundaries. In this case, the reduced order model retains the DoFs on the fixed face and the loaded vertex while condensing all other DoFs in
favor of modal DoFs. For better performance, use the set of edges bounding face 5 instead of using the entire face.

```
structuralSEInterface(modelT,'Edge',[2 8 11 12]);
structuralSEInterface(modelT,'Vertex',loadedVertex);
```

Reduce the structure, retaining all fixed interface modes up to 5 e 5 .
rom $=$ reduce(modelT,'FrequencyRange',[-0.1,5e5]);
Next, use the reduced order model to simulate the transient dynamics. Use the ode15s function directly to integrate the reduced system ODE. Working with the reduced model requires indexing into the reduced system matrices rom. $K$ and rom. M. First, construct mappings of indices of $K$ and $M$ to loaded and fixed DoFs by using the data available in rom.

DoFs correspond to translational displacements. If the number of mesh points in a model is Nn , then the toolbox assigns the IDs to the DoFs as follows: the first 1 to Nn are $x$-displacements, $\mathrm{Nn}+1$ to $2 * \mathrm{Nn}$ are $y$-displacements, and $2 \mathrm{Nn}+1$ to $3 * \mathrm{Nn}$ are $z$-displacements. The reduced model object rom contains these IDs for the retained DoFs in rom. RetainedDoF.

Create a function that returns DoF IDs given node IDs and the number of nodes.

```
getDoF = @(x,numNodes) [x(:); x(:) + numNodes; x(:) + 2*numNodes];
```

Knowing the DoF IDs for the given node IDs, use the intersect function to find the required indices.

```
numNodes = size(rom.Mesh.Nodes,2);
loadedNode = findNodes(rom.Mesh,'region','Vertex',loadedVertex);
loadDoFs = getDoF(loadedNode,numNodes);
[~,loadNodeROMIds,~] = intersect(rom.RetainedDoF,loadDoFs);
```

In the reduced matrices rom. K and rom.M, generalized modal DoFs appear after the retained DoFs.

```
fixedIntModeIds = (numel(rom.RetainedDoF) + 1:size(rom.K,1))';
```

Because fixed-end DoFs are not a part of the ODE system, the indices for the ODE DoFs in reduced matrices are as follows.

```
odeDoFs = [loadNodeROMIds;fixedIntModeIds];
```

The relevant components of rom.K and rom.M for time integration are:

```
Kconstrained = rom.K(odeDoFs,odeDoFs);
Mconstrained = rom.M(odeDoFs,odeDoFs);
numODE = numel(odeDoFs);
```

Now you have a second-order system of ODEs. To use ode15s, convert this into a system of firstorder ODEs by applying linearization. Such a first-order system is twice the size of the second-order system.

```
Mode = [eye(numODE,numODE), zeros(numODE,numODE); ...
 zeros(numODE,numODE), Mconstrained];
Kode = [zeros(numODE,numODE), -eye(numODE,numODE); ...
 Kconstrained, zeros(numODE,numODE)];
Fode = zeros(2*numODE,1);
```

The specified concentrated force load in the full system is along the $z$-direction, which is the third DoF in the ODE system. Accounting for the linearization to obtain the first-order system gives the loaded ODE DoF.

```
loadODEDoF = numODE + 3;
```

Specify the mass matrix and the Jacobian for the ODE solver.

```
odeoptions = odeset;
odeoptions = odeset(odeoptions,'Jacobian',-Kode);
odeoptions = odeset(odeoptions,'Mass',Mode);
```

Specify zero initial conditions.
u0 = zeros(2*numODE,1);
Solve the reduced system by using ode15s and the helper function CMSODEf, which is defined at the end of this example.

```
tlist = 0:0.00005:3E-3;
sol = ode15s(@(t,y) CMSODEf(t,y,Kode,Fode,loadODEDoF),tlist,u0,odeoptions);
```

Compute the values of the ODE variable and the time derivatives.

```
[displ,vel] = deval(sol,tlist);
```

Knowing the solution in terms of the interface DoFs and modal DoFs, you can reconstruct the solution for the full model. The reconstructSolution function requires the displacement, velocity, and acceleration at all DoFs in rom. Construct the complete solution vector, including the zero values at the fixed DoFs.

```
u = zeros(size(rom.K,1),numel(tlist));
ut = zeros(size(rom.K,1),numel(tlist));
utt = zeros(size(rom.K,1),numel(tlist));
u(odeDoFs,:) = displ(1:numODE,:);
ut(odeDoFs,:) = vel(1:numODE,:);
utt(odeDoFs,:) = vel(numODE+1:2*numODE,:);
```

Construct a transient results object using this solution.

```
RTrom = reconstructSolution(rom,u,ut,utt,tlist);
```

Compute the displacement in the interior at the center of the beam using the reconstructed solution.

```
coordCenter = [0;0;0];
iDispRTrom = interpolateDisplacement(RTrom, coordCenter);
figure
plot(tlist,iDispRTrom.uz)
title('Z-Displacement at Geometric Center')
```



ODE Helper Function

```
function f = CMSODEf(t,u,Kode,Fode,loadedVertex)
Fode(loadedVertex) = 10*sin(6000*t);
f = -Kode*u +Fode;
end
```


## Input Arguments

## Rcb - Structural results obtained using Craig-Bampton order reduction method ReducedStructuralModel object

Structural results obtained using the Craig-Bampton order reduction method, specified as a ReducedStructuralModel object.

## u - Displacement

matrix
Displacement, specified as a matrix. The number of rows in the matrix must equal the sum of the numbers of interface degrees of freedom and the number of modes. The $X$-displacements at the retained degrees of freedom must appear first, then the $y$-displacements, and, for a 3-D geometry, $z$ displacements, followed by the generalized modal degrees of freedom. The number of columns must equal the number of elements in $t$ list.
Data Types: double

## ut - Velocity

## matrix

Velocity, specified as a matrix. The number of rows in the matrix must equal the sum of the numbers of interface degrees of freedom and the number of modes. The $X$-velocities at the retained degrees of freedom must appear first, then the $y$-velocities, and, for a 3-D geometry, $z$-velocities, followed by the generalized modal degrees of freedom. The number of columns must equal the number of elements in tlist.

Data Types: double
utt - Acceleration
matrix
Acceleration, specified as a matrix. The number of rows in the matrix must equal the sum of the numbers of interface degrees of freedom and the number of modes. The $X$-accelerations at the retained degrees of freedom must appear first, then the $y$-accelerations, and, for a 3-D geometry, $z$ accelerations, followed by the generalized modal degrees of freedom. The number of columns must equal the number of elements in $t$ list.
Data Types: double

## tlist - Solution times for solving reduced-order model

real vector
Solution times for solving the reduced-order model, specified as a real vector.
Data Types: double

## Output Arguments

## structuralresults - Transient structural results

TransientStructuralResults object
Transient structural results, returned as a TransientStructuralResults object. The object contains the displacement, velocity, and acceleration values at the nodes of the triangular or tetrahedral mesh generated by generateMesh.

## See Also

ReducedStructuralModel|StructuralModel|reduce|solve|structuralBC| structuralSEInterface

Introduced in R2019b

## reduce

Package: pde
Reduce structural model

## Syntax

Rcb = reduce(structuralmodel,'FrequencyRange',[omega1,omega2])

## Description

Rcb = reduce(structuralmodel,'FrequencyRange',[omega1,omega2]) reduces a structural analysis model to the fixed interface modes in the frequency range [omega1,omega2] and the boundary interface degrees of freedom.

## Examples

## Reduce Transient Structural Model

Reduce the model to the fixed interface modes in the specified frequency range and the boundary interface degrees of freedom.

Create a transient structural model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create a geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.1,0.01,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',70E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2700);
```

Generate a mesh.
generateMesh(structuralmodel);
Specify the ends of the beam as structural superelement interfaces. The reduced-order model technique retains the degrees of freedom on the superelement interfaces while condensing the degrees of freedom on all other boundaries. For better performance, use the set of edges that bound each side of the beam instead of using the entire face.

```
structuralSEInterface(structuralmodel,'Edge',[4,6,9,10]);
structuralSEInterface(structuralmodel,'Edge',[2,8,11,12]);
```

Reduce the model to the fixed interface modes in the frequency range [-Inf, 500000] and the boundary interface degrees of freedom.

```
R = reduce(structuralmodel,'FrequencyRange',[-Inf,500000])
R =
 ReducedStructuralModel with properties:
```

```
K: [166x166 double]
```

K: [166x166 double]
M: [166x166 double]

```
M: [166x166 double]
```

NumModes: 22
RetainedDoF: [144×1 double]
ReferenceLocations: []
Mesh: [1x1 FEMesh]

## Input Arguments

## structuralmodel - Structural model

StructuralModel object
Structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.
Example: structuralmodel = createpde('structural','transient-solid')

## [omega1, omega2] - Frequency range

vector of two elements
Frequency range, specified as a vector of two elements. Define omega1 as slightly smaller than the lowest mode's frequency and omega2 as slightly larger than the highest mode's frequency. For example, if the lowest expected frequency is zero, then use a small negative value for omegal.

You can find natural frequencies and mode shapes for the specified frequency range by solving a modal analysis problem first. Then you can use a more precise frequency range to reduce the model. Note that a modal analysis problem still requires you to specify a frequency range. For example, see "Modal Superposition Method for Structural Dynamics Problem" on page 3-91.
Example: [-0.1,1000]
Data Types: double

## Output Arguments

## Rcb - Structural results obtained using Craig-Bampton order reduction method ReducedStructuralModel object

Structural results obtained using the Craig-Bampton order reduction method, returned as a ReducedStructuralModel object.

## See Also

ReducedStructuralModel|StructuralModel|reconstructSolution | solve | structuralBC|structuralSEInterface

Introduced in R2019b

## ReducedStructuralModel

Reduced order structural model results

## Description

A ReducedStructuralModel object contains the stiffness matrix K , mass matrix M, mesh, multipoint constraint reference locations, and IDs of retained degrees of freedom.

To expand this data to a full solution that includes displacement, velocity, and acceleration, use reconstructSolution.

## Creation

Reduce a structural model by using the reduce function. This function returns structural results obtained using the Craig-Bampton reduced order method as a ReducedStructuralModel object.

## Properties

## K - Reduced stiffness matrix

real matrix
Reduced stiffness matrix, returned as a real $N$-by-N matrix.

- For models without multipoint constraints, N is the sum of the number of retained degrees of freedom and the number of fixed interface modes.
- For models with Nmp multipoint constraints, N is the sum of $6 * \mathrm{Nmp}$ and the number of fixed interface modes.

Data Types: double

## M - Reduced mass matrix

real matrix
Reduced mass matrix, returned as a real N-by-N matrix.

- For models without multipoint constraints, N is the sum of the number of retained degrees of freedom and the number of fixed interface modes.
- For models with Nmp multipoint constraints, N is the sum of $6 * \mathrm{Nmp}$ and the number of fixed interface modes.

Data Types: double

## NumModes - Number of fixed interface modes <br> integer

Number of fixed interface modes, returned as an integer.
Data Types: double

## RetainedDoF - IDs of retained degrees of freedom <br> real vector

IDs of retained degrees of freedom, returned as a real vector.
Data Types: double

## ReferenceLocations - Multipoint constraint reference locations

real matrix
Multipoint constraint reference locations, returned as a real 2-by-Nmp or 3-by-Nmp matrix for a 2-D or 3-D geometry, respectively. Here, Nmp is the number of multipoint constraints. If there are no multipoint constraints, ReferenceLocations is an empty matrix.
Data Types: double

## Mesh - Finite element mesh

FEMesh object
Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

## Object Functions

reconstructSolution Recover full-model transient solution from reduced-order model results

## Examples

## Reduce Transient Structural Model

Reduce the model to the fixed interface modes in the specified frequency range and the boundary interface degrees of freedom.

Create a transient structural model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create a geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.1,0.01,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',70E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2700);
```

Generate a mesh.
generateMesh(structuralmodel);
Specify the ends of the beam as structural superelement interfaces. The reduced-order model technique retains the degrees of freedom on the superelement interfaces while condensing the degrees of freedom on all other boundaries. For better performance, use the set of edges that bound each side of the beam instead of using the entire face.

```
structuralSEInterface(structuralmodel,'Edge',[4,6,9,10]);
structuralSEInterface(structuralmodel,'Edge',[2,8,11,12]);
```

Reduce the model to the fixed interface modes in the frequency range [-Inf, 500000] and the boundary interface degrees of freedom.

```
R = reduce(structuralmodel,'FrequencyRange',[-Inf,500000])
R =
 ReducedStructuralModel with properties:
```

```
K: [166x166 double]
```

K: [166x166 double]
M: [166x166 double]

```
M: [166x166 double]
```

NumModes: 22
RetainedDoF: [144×1 double]
ReferenceLocations: []
Mesh: [1x1 FEMesh]

## More About

## Degrees of Freedom (DoFs)

In Partial Differential Equation Toolbox, each node of a 2-D or 3-D geometry has two or three degrees of freedom (DoFs), respectively. DoFs correspond to translational displacements. If the number of mesh points in a model is NumNodes, then the toolbox assigns the IDs to the degrees of freedom as follows:

- Numbers from 1 to NumNodes correspond to an $x$-displacement at each node.
- Numbers from NumNodes+1 to 2*NumNodes correspond to a y-displacement at each node.
- Numbers from $2 *$ NumNodes +1 to $3 *$ NumNodes correspond to a $z$-displacement at each node of a 3-D geometry.


## See Also

StructuralModel| reconstructSolution | reduce | structuralBC|
structuralSEInterface
Introduced in R2019b

## refinemesh

Package: pde
Refine triangular mesh

Note This page describes the legacy workflow. New features might not be compatible with the legacy workflow. For the corresponding step in the recommended workflow, see generateMesh.

## Syntax

```
[pl,e1,t1] = refinemesh(g,p,e,t)
[p1,el,t1,ul] = refinemesh(g,p,e,t,u)
[___] = refinemesh(___,it)
[__] = refinemesh(___''longest')
```


## Description

Note This function does not support quadratic 2-D elements.
[ $p 1, e 1, t 1]=$ refinemesh ( $g, p, e, t)$ returns a refined version of the triangular mesh given by the mesh data $p$, e, and $t$. For details on the mesh data representation, see "Mesh Data as [p,e,t] Triples" on page 2-150.
[ $\mathrm{pl}, \mathrm{e} 1, \mathrm{t} 1, \mathrm{ul}]=$ refinemesh( $\mathrm{g}, \mathrm{p}, \mathrm{e}, \mathrm{t}, \mathrm{u})$ refines the mesh and extends the solution u to the new mesh nodes by linear interpolation. The number of rows in $u$ must correspond to the number of columns in p , and ul has as many rows as there are points in p 1 .
refinemesh interpolates each column of $u$ separately.
[___] = refinemesh (__ ,it) uses the input and output arguments from the previous syntaxes and specifies the list it of geometric faces or triangles to refine. A scalar or a row vector specifies faces. A column vector specifies triangles.
[ ___] = refinemesh( __ ,'longest') uses the longest edge refinement, where the longest edge of each triangle is bisected. By default, refinemesh uses the regular refinement, where all triangles are divided into four triangles of the same shape. You also can explicitly specify ' regular' instead of 'longest '. If you use a column vector it to specify the triangles to refine, then refinemesh can refine some triangles outside of the specified set to preserve the triangulation and its quality.

## Examples

## Mesh Refinement

Refine the mesh of the L-shaped membrane several times. Plot the initial mesh and refined meshes at each step.

```
[p,e,t] = initmesh('lshapeg','Hmax',Inf);
subplot(2,2,1)
pdemesh(p,e,t)
[p,e,t] = refinemesh('lshapeg',p,e,t);
subplot(2,2,2)
pdemesh(p,e,t)
[p,e,t] = refinemesh('lshapeg',p,e,t);
subplot(2,2,3)
pdemesh(p,e,t)
[p,e,t] = refinemesh('lshapeg',p,e,t);
subplot(2,2,4)
pdemesh(p,e,t)
```



## Mesh Refinement for Specified Faces

Refine the mesh for a particular face of the L-shaped membrane.
Plot the L-shaped membrane to identify the face numbers.
pdegplot('lshapeg','FaceLabels','on')


Create the initial mesh for the entire geometry, then refine the mesh for face 3 several times. Plot the initial mesh and refined meshes at each step.

```
[p,e,t] = initmesh('lshapeg','Hmax',Inf);
subplot(2,2,1)
pdemesh(p,e,t)
[p,e,t] = refinemesh('lshapeg',p,e,t,3);
subplot(2,2,2)
pdemesh(p,e,t)
[p,e,t] = refinemesh('lshapeg',p,e,t,3);
subplot(2,2,3)
pdemesh(p,e,t)
[p,e,t] = refinemesh('lshapeg',p,e,t,3);
subplot(2,2,4)
pdemesh(p,e,t)
```



## Input Arguments

## g - Geometry description

decomposed geometry matrix | geometry function \| handle to geometry function
Geometry description, specified as a decomposed geometry matrix, a geometry function, or a handle to the geometry function. For details about a decomposed geometry matrix, see decsg. For details about a geometry function, see "Parametrized Function for 2-D Geometry Creation" on page 2-10.

A geometry function must return the same result for the same input arguments in every function call. Thus, it must not contain functions and expressions designed to return a variety of results, such as random number generators.
Data Types: double | char | string | function_handle

## p-Mesh points

2-by-Np matrix
Mesh points, specified as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k of $p$ consists of the $x$-coordinate of point $k$ in $p(1, k)$ and the $y$-coordinate of point $k$ in $p(2, k)$. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

## e - Mesh edges

7-by-Ne matrix

Mesh edges, specified as a 7-by-Ne matrix, where Ne is the number of edges in the mesh. An edge is a pair of points in $p$ containing a boundary between subdomains, or containing an outer boundary. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

## t - Mesh elements

4-by-Nt matrix
Mesh elements, specified as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.
The $t(i, k)$, with $i$ ranging from 1 through end - 1 , contain indices to the corner points of element k. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150. The last row, $t$ (end, $k$ ), contains the subdomain number of the element.

## u - PDE solution

vector
PDE solution, specified as a vector.

- If the PDE is scalar, meaning that it has only one equation, then $u$ is a column vector representing the solution $u$ at each node in the mesh.
- If the PDE is a system of $N>1$ equations, then $u$ is a column vector with $N * N p$ elements, where Np is the number of nodes in the mesh. The first Np elements of $u$ represent the solution of equation 1 , the next $N$ p elements represent the solution of equation 2 , and so on.


## it - Faces or triangles to refine

positive number | vector of positive numbers
Faces or triangles to refine, specified as a positive number or a row or column vector of positive numbers. A scalar or a row vector specifies faces. A column vector specifies triangles.

## Output Arguments

## p1 - Refined mesh points

2-by-Np matrix
Refined mesh points, returned as a 2 -by-Np matrix. Np is the number of points (nodes) in the mesh. Column $k$ of $p$ consists of the $x$-coordinate of point $k$ in $p(1, k)$ and the $y$-coordinate of point $k$ in $p(2, k)$. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

## e1 - Refined mesh edges

7-by-Ne matrix
Refined mesh edges, returned as a 7-by-Ne matrix, where Ne is the number of edges in the mesh. An edge is a pair of points in $p$ containing a boundary between subdomains, or containing an outer boundary. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150.

## t1 - Refined mesh elements

4-by-Nt matrix
Refined mesh elements, returned as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.
The $t(i, k)$, with $i$ ranging from 1 through end -1 , contain indices to the corner points of element $k$. For details, see "Mesh Data as [p,e,t] Triples" on page 2-150. The last row, $t$ (end, $k$ ), contains the subdomain number of the element.

## u1 - PDE solution

## vector

PDE solution, returned as a vector.

- If the PDE is scalar, meaning that it has only one equation, then $u 1$ is a column vector representing the solution $u 1$ at each node in the mesh.
- If the PDE is a system of $N>1$ equations, then $u 1$ is a column vector with $N * N p$ elements, where Np is the number of nodes in the mesh. The first Np elements of $u 1$ represent the solution of equation 1, the next Np elements represent the solution of equation 2 , and so on.


## Algorithms

The refinement algorithm follows these steps:
1 Pick the initial set of triangles to refine.
2 Divide all edges of the selected triangles in half (regular refinement) or divide the longest edge in half (longest edge refinement).
3 Divide the longest edge of any triangle that has a divided edge.
4 Repeat step 3 until no more edges are divided.
5 Introduce new points of all divided edges, and replace all divided entries in e by two new entries.
6 Form the new triangles. If all three sides are divided, new triangles are formed by joining the side midpoints. If two sides are divided, the midpoint of the longest edge is joined with the opposing corner and with the other midpoint. If only the longest edge is divided, its midpoint is joined with the opposing corner.

## See Also

initmesh

## Topics

"Mesh Data as [p,e,t] Triples" on page 2-150
Introduced before R2006a

## rotate

Package: pde
Rotate geometry

## Syntax

```
rotate(g,theta)
rotate(g,theta,refpoint)
rotate(g,theta,refpoint1,refpoint2)
h = rotate(g,
```

$\qquad$

## Description

rotate( g , theta) rotates the geometry g about the $z$-axis by the angle theta, specified in degrees. Rotation follows the right-hand rule: a positive angle theta rotates counterclockwise, while sighting along the $z$-axis toward the origin.
rotate ( $g$, theta, refpoint) uses the rotation axis specified by the reference point refpoint. The axis of rotation is the line in the $z$-direction passing through the reference point.
rotate( g , theta, refpoint1, refpoint2) uses the rotation axis specified by two reference points. This syntax is only valid for a 3-D geometry.
$\mathrm{h}=\operatorname{rotate}(\mathrm{g}, \ldots \quad)$ returns a handle h to the resulting geometry object g . Use this syntax with any input arguments from the previous syntaxes.

If the original geometry is a DiscreteGeometry object, then the function modifies the original geometry and returns the handle $h$ to the modified DiscreteGeometry geometry object. If the original geometry is an AnalyticGeometry object, then h is a handle to a new DiscreteGeometry geometry object. In this case, the original geometry remains unchanged.

## Examples

## Rotate 2-D Geometry

Rotate a geometry with and without specifying the reference point for the axis of rotation.
Create a model.
model = createpde;
Import and plot a geometry.

```
g = importGeometry(model,'PlateHolePlanar.stl');
pdegplot(g)
```



Mesh the geometry and plot the mesh.
generateMesh(model);
figure
pdemesh(model)


Rotate the geometry around the default $z$-axis by 45 degrees. Plot the result.
rotate(g,45);
figure
pdegplot(g)


Plot the geometry and mesh. The rotate function modifies a geometry, but it does not modify a mesh.

```
figure
pdegplot(g)
hold on
pdemesh(model)
```



After modifying the geometry, always regenerate the mesh.

```
generateMesh(model);
```

figure
pdegplot(g)
hold on
pdemesh(model)


Restore the original geometry position.
rotate(g,-45) ;
Rotate the geometry by the same angle, but this time use the center of the geometry as a reference point. The axis of rotation is the line in the $z$-direction passing through the reference point.

```
rotate(g,45,[5 10]);
```

Regenerate the mesh.

```
generateMesh(model);
```

Plot the resulting geometry and mesh.

```
figure
subplot(1,2,1)
pdegplot(model)
axis([-6 16 -1 21])
subplot(1,2,2)
pdemesh(model)
axis([-6 16 -1 21])
```



## Rotate 3-D Geometry

Rotate a geometry with and without specifying the reference points for the axis of rotation.
Create and plot a geometry.
$\mathrm{g}=$ multicuboid(1,5,1);
pdegplot(g)


Rotate a 3-D geometry around the default $z$-axis by 45 degrees. Plot the result.
rotate(g,45); pdegplot(g)


Restore the original geometry position.
rotate(g,-45);
pdegplot(g)


Rotate the geometry by the same angle, but this time around the $y$-axis.
rotate(g,45,[0 0 0],[0 1 0]); pdegplot(g)


## Input Arguments

## g - Geometry

DiscreteGeometry object|AnalyticGeometry object
Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.
Example: g = model.Geometry

## theta - Rotation angle in degrees

real number
Rotation angle in degrees, specified as a real number.
Example: rotate (g,90)
refpoint - Reference point for rotation axis
vector of two or three real numbers
Reference point for a rotation axis, specified as a vector of two or three real numbers. The axis of rotation is the line in the $z$-direction passing through the reference point.

```
Example: rotate(g,45,[1 1.5])
```

refpoint1, refpoint2 - Reference points that define rotation axis
vector of three real numbers

Reference points that define a rotation axis for a 3-D geometry, specified as a vector of three real numbers.

Example: rotate(g,45,[0 0 0],[1 1 1])

## Output Arguments

## h - Resulting geometry

handle
Resulting geometry, returned as a handle. If the original geometry g is a DiscreteGeometry object, then h is a handle to the modified DiscreteGeometry geometry object g . If g is an AnalyticGeometry object, then h is a handle to a new DiscreteGeometry geometry object. In this case, the original geometry g remains unchanged.

## Tips

- rotate modifies a geometry, but it does not modify a mesh. After modifying a geometry, regenerate the mesh to ensure a proper mesh association with the new geometry.
- If $g$ is an AnalyticGeometry object, and you want to replace it with the resulting discrete geometry, assign the output to the original geometry, for example, $g=$ rotate $(g, 90)$.


## See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | generateMesh | geometryFromMesh | importGeometry|pdegplot|scale|translate

Introduced in R2020a

## scale

Package: pde
Scale geometry

## Syntax

```
scale(g,s)
scale(g,s,refpoint)
h = scale(g,
```

$\qquad$

## Description

scale ( $\mathrm{g}, \mathrm{s}$ ) scales the geometry g by the factor s with respect to the origin.
scale ( $g, s$, refpoint) scales the geometry with respect to the reference point refpoint.
$\mathrm{h}=\operatorname{scale}(\mathrm{g}, \ldots \quad$ ) returns a handle h to the resulting geometry object g . Use this syntax with any input arguments from the previous syntaxes.

If the original geometry is a DiscreteGeometry object, then the function modifies the original geometry and returns the handle $h$ to the modified DiscreteGeometry geometry object. If the original geometry is an AnalyticGeometry object, then h is a handle to a new DiscreteGeometry geometry object. In this case, the original geometry remains unchanged.

## Examples

## Scale 2-D Geometry

Scale a 2-D geometry along the $x$ - and $y$-axis and ensure consistency with the mesh.
Create a model.
model = createpde;
Import and plot a geometry.

```
g = importGeometry(model,'PlateHolePlanar.stl');
pdegplot(model)
```



Mesh the geometry and plot the mesh.
generateMesh(model);
figure
pdemesh(model)


Scale the geometry by a factor of 10 along the $x$-axis.

```
scale(g,[10 1])
ans =
 DiscreteGeometry with properties:
 NumCells: 0
 NumFaces: 1
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]
```

Plot the geometry.

```
figure
```

pdegplot(model)


Plot the geometry and mesh. The scale function modifies a geometry, but it does not modify a mesh.

```
figure
pdegplot(model)
hold on
pdemesh(model)
```



After modifying the geometry, always regenerate the mesh.
generateMesh(model);
figure
pdegplot(model)
hold on
pdemesh(model)


Reflect the geometry across the $x$-axis and regenerate the mesh.

```
scale(g,[1 -1]);
generateMesh(model);
```

Plot the resulting geometry and mesh.

```
figure
subplot(2,1,1)
pdegplot(model)
subplot(2,1,2)
pdemesh(model)
```



## Scale 3-D Geometry

Enlarge a geometry: first uniformly in all directions, and then using different scaling factors along different axes.

Create and plot a geometry.
$\mathrm{g}=$ multicuboid(1,1,1);
pdegplot(g,'VertexLabels','on','FaceAlpha', 0.5)


Scale the geometry by a factor of 2 uniformly along all coordinate axes. Plot the result.
scale(g,2);
pdegplot(g,'VertexLabels','on','FaceAlpha',0.5)


Now scale by factors of 2,3 , and 4 along the $x-y$-, and $z$-axes, respectively. Plot the result.
scale(g,[2 3 4]);
pdegplot(g,'VertexLabels','on','FaceAlpha', 0.5)


Flip the geometry upside down by scaling it with the factor -1 and using the bottom front corner (vertex 1) as a reference point.

```
scale(g,[1 1 -1], [2 -3 0]);
pdegplot(g,'VertexLabels','on','FaceAlpha',0.5)
```



## Input Arguments

## g - Geometry <br> DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

## s - Scaling factor

nonzero real number | vector of two or three nonzero real numbers
Scaling factor, specified as a real number or vector of two or three real numbers. Use one value for uniform scaling in all directions. Use a vector of two or three elements to specify different scaling factors along the $x-, y$-, and, for a 3-D geometry, $z$-axes.

## refpoint - Reference point for scaling

vector of two or three real numbers
Reference point for scaling specified as a vector of two or three real numbers for a 2-D and 3-D geometry, respectively

## Output Arguments

## h - Resulting geometry

handle

Resulting geometry, returned as a handle. If the original geometry g is a DiscreteGeometry object, then h is a handle to the modified DiscreteGeometry geometry object g . If g is an AnalyticGeomet ry object, then h is a handle to a new DiscreteGeometry geometry object. In this case, the original geometry $g$ remains unchanged.

## Tips

- scale modifies a geometry, but it does not modify a mesh. After modifying a geometry, regenerate the mesh to ensure a proper mesh association with the new geometry.
- If the scaling factor is negative, then the coordinates will flip their signs. The scaling factor of -1 mirrors the existing geometry if the reference point is the origin.
- If g is an AnalyticGeometry object, and you want to replace it with the resulting discrete geometry, assign the output to the original geometry, for example, $g=\operatorname{scale}(\mathrm{g}, 20)$.


## See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | generateMesh | geometryFromMesh | importGeometry|pdegplot|rotate|translate

Introduced in R2020a

## setInitialConditions

Package: pde
Give initial conditions or initial solution

## Syntax

```
setInitialConditions(model,u0)
setInitialConditions(model,u0,ut0)
setInitialConditions(
 ,RegionType,RegionID)
setInitialConditions(model,results)
setInitialConditions(model,results,iT)
ic = setInitialConditions(___)
```


## Description

setInitialConditions(model, u0) sets initial conditions in model. Use this syntax for stationary nonlinear problems or time-dependent problems where the time derivative is first order.

Note Include geometry in model before using setInitialConditions.
setInitialConditions(model, u0, ut0) use this syntax for time-dependent problems where a time derivative is second order, such as a hyperbolic problem.
setInitialConditions( __ , RegionType,RegionID) sets initial conditions on a geometry region using any of the arguments in the previous syntaxes.
setInitialConditions(model, results) sets the initial guess for stationary nonlinear problems using the solution results from a previous analysis on the same geometry and mesh. The initial derivative for stationary problems is 0 .
setInitialConditions(model, results,iT) sets the initial conditions for time-dependent problems using the solution results corresponding to the solution time index iT. If you do not specify the time index iT, setInitialConditions uses the last solution time in results.
ic = setInitialConditions(__ ) returns a handle to the initial conditions object.

## Examples

## Constant Initial Conditions

Create a PDE model, import geometry, and set the initial condition to 50 on the entire geometry.

```
model = createpde();
importGeometry(model,'BracketWithHole.stl');
setInitialConditions(model,50);
```


## Constant Initial Conditions for System

Set different initial conditions for each component of a system of PDEs.
Create a PDE model for a system with five components. Import the Block.stl geometry.
model = createpde(5);
importGeometry(model,'Block.stl');
Set the initial conditions for each component to twice the component number.

```
u0 = [2:2:10]';
setInitialConditions(model,u0)
ans =
 GeometricInitialConditions with properties:
 RegionType: 'cell'
 RegionID: 1
 InitialValue: [5x1 double]
 InitialDerivative: []
```


## Different Initial Conditions on Subdomains

Set different initial conditions on each portion of the L-shaped membrane geometry.
Create a model, set the geometry function, and view the subdomain labels.

```
model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
axis equal
ylim([-1.1,1.1])
```



Set subdomain 1 to initial value -1 , subdomain 2 to initial value 1, and subdomain 3 to initial value 5 .

```
setInitialConditions(model,-1);
setInitialConditions(model,1,'Face',2);
setInitialConditions(model,5,'Face',3);
```

The initial setting applies to the entire geometry. The subsequent settings override the initial settings for regions 2 and 3.

## Nonconstant Initial Conditions That Are Functions of Position

Set initial conditions for the L-shaped membrane geometry to be $x^{2}+y^{2}$, except in the lower left square where it is $x^{2}-y^{4}$.

```
model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
axis equal
ylim([-1.1,1.1])
```



Set the initial conditions to $x^{2}+y^{2}$.
initfun = @(location)location.x.^2 + location.y.^2;
setInitialConditions(model,initfun);
Set the initial conditions on region 2 to $x^{2}-y^{4}$. This setting overrides the first setting because you apply it after the first setting.
initfun2 = @(location)location.x.^2 - location.y.^4;
setInitialConditions(model,initfun2,'Face',2);

## Initial Conditions for Hyperbolic Equation

Hyperbolic equations have nonzero $m$ coefficient, so you must set both the $u 0$ and ut0 arguments.
Import the Block.stl to a PDE model with $\mathrm{N}=3$ components.
model = createpde(3);
importGeometry(model,'Block.stl');
Set the initial condition value to be 0 for all components. Set the initial derivative.

$$
u t 0=\left[\begin{array}{c}
4+\frac{x}{x^{2}+y^{2}+z^{2}} \\
5-\tanh (z) \\
10 \frac{y}{x^{2}+y^{2}+z^{2}}
\end{array}\right]
$$

To create this initial gradient, write a function file, and ensure that the function is on your MATLAB path.

```
function ut0 = ut0fun(location)
M = length(location.x);
ut0 = zeros(3,M);
denom = location.x.^2+location.y.^2+location.z.^2;
ut0(1,:) = 4 + location.x./denom;
ut0(2,:) = 5 - tanh(location.z);
ut0(3,:) = 10*location.y./denom;
end
```

Set the initial conditions.
setInitialConditions(model,0,@ut0fun)
ans =
GeometricInitialConditions with properties:
RegionType: 'cell'
RegionID: 1
InitialValue: 0
InitialDerivative: @ut0fun

## Initial Condition Is Previously Obtained Solution

Set initial conditions using the solution from a previous analysis on the same geometry and mesh.
Create and view the geometry: a square with a circular subdomain.

```
% Square centered at (1,1), circle centered at (1.5,0.5).
rect1 = [3;4;0;2;2;0;0;0;2;2];
circ1 = [1;1.5;.75;0.25];
% Append extra zeros to the circle;
circl = [circl;zeros(length(rect1)-length(circl),1)];
gd = [rect1,circl];
ns = char('rect1','circ1');
ns = ns';
sf = 'rect1+circl';
[dl,bt] = decsg(gd,sf,ns);
```

```
pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
axis equal
ylim([-0.1,2.1])
```



Include the geometry in a PDE model, set boundary and initial conditions, and specify coefficients.

```
model = createpde();
geometryFromEdges(model,dl);
% Set boundary conditions that the upper and left edges are at temperature 10.
applyBoundaryCondition(model,'dirichlet','Edge',[2,3],'u',10);
% Set initial conditions that the square region is at temperature 0,
% and the circle is at temperature 100.
setInitialConditions(model,0);
setInitialConditions(model,100,'Face',2);
specifyCoefficients(model,'m',0,...
 'd',1,...
 'c',1,...
 'a',0,...
 'f',0);
```

Solve the problem for times 0 through $1 / 2$ in steps of 0.01 .

```
generateMesh(model,'Hmax',0.05);
tlist = 0:0.01:0.5;
results = solvepde(model,tlist);
```

Plot the solution for times $0.02,0.04,0.1$, and 0.5 .

```
sol = results.NodalSolution;
subplot(2,2,1)
pdeplot(model,'XYData',sol(:,3))
title('Time 0.02')
subplot(2,2,2)
pdeplot(model,'XYData',sol(:,5))
title('Time 0.04')
subplot(2,2,3)
pdeplot(model,'XYData',sol(:,11))
title('Time 0.1')
subplot(2,2,4)
pdeplot(model,'XYData',sol(:,51))
title('Time 0.5')
```



Time 0.04


Time 0.5


Now, resume the analysis and solve the problem for times from $1 / 2$ to 1 . Use the previously obtained solution for time $1 / 2$ as an initial condition. Since $1 / 2$ is the last element in tlist, you do not need to specify the solution time index. By default, setInitialConditions uses the last solution index.

```
setInitialConditions(model,results)
ans =
 NodalInitialConditions with properties:
 InitialValue: [7289x1 double]
```


## InitialDerivative: []

Solve the problem for times $1 / 2$ through 1 in steps of 0.01 .

```
tlist1 = 0.5:0.01:1.0;
results1 = solvepde(model,tlist1);
```

Plot the solution for times $0.5,0.7,0.9$, and 1 .

```
sol1 = results1.NodalSolution;
```

figure
subplot (2,2,1)
pdeplot(model,'XYData', sol1(:, 1$)$ )
title('Time 0.5')
subplot (2,2,2)
pdeplot(model,'XYData', sol1(:,21))
title('Time 0.7')
subplot (2,2,3)
pdeplot(model,'XYData',sol1(:,41))
title('Time 0.9')
subplot $(2,2,4)$
pdeplot(model,'XYData',sol1(:,51))
title('Time 1.0')


To use the previously obtained solution for a particular solution time instead of the last one, specify the solution time index as a third parameter of setInitialConditions. For example, use the solution at time 0.2 , which is the 21 st element in tlist.

```
setInitialConditions(model,results,21)
ans =
 NodalInitialConditions with properties:
 InitialValue: [7289x1 double]
 InitialDerivative: []
```

Solve the problem for times 0.2 through 1 in steps of 0.01 .

```
tlist2 = 0.2:0.01:1.0;
results2 = solvepde(model,tlist2);
```


## Input Arguments

## model - PDE model

PDEModel object
PDE model, specified as a PDEModel object.
Example: model = createpde

## u0 - Initial condition

scalar | column vector of length $N \mid$ function handle
Initial conditions, specified as a scalar, a column vector of length $N$, or a function handle. $N$ is the size of the system of PDEs. See "Equations You Can Solve Using PDE Toolbox" on page 1-3.

- Scalar - Use it to represent a constant initial value for all solution components throughout the domain.
- Column vector - Use it to represent a constant initial value for each of the $N$ solution components throughout the domain.
- Function handle - Use it to represent the initial conditions as a function of position. The function must be of the form

```
u0 = initfun(location)
```

Solvers pass location as a structure with fields location. $x$, location. $y$, and, for 3-D problems, location. z. initfun must return a matrix $u 0$ of size $N$-by-M, where $\mathrm{M}=$ length(location.x).

Example: setInitialConditions(model,10)
Data Types: double| function_handle
Complex Number Support: Yes
ut0 - Initial condition for time derivative
scalar | column vector of length $N$ | function handle

Initial condition for time derivative, specified as a scalar, a column vector of length $N$, or a function handle. $N$ is the size of the system of PDEs. See "Equations You Can Solve Using PDE Toolbox" on page 1-3. You must specify ut0 when there is a nonzero second-order time-derivative coefficient m .

- Scalar - Use it to represent a constant initial value for all solution components throughout the domain.
- Column vector - Use it to represent a constant initial value for each of the $N$ solution components throughout the domain.
- Function handle - Use it to represent the initial conditions as a function of position. The function must be of the form

```
u0 = initfun(location)
```

Solvers pass location as a structure with fields location. $x$, location. $y$, and, for 3-D problems, location.z. initfun must return a matrix u0 of size $N$-by-M, where $\mathrm{M}=$ length(location.x).

Example: setInitialConditions(model, 10,@initfun)
Data Types: double | function_handle
Complex Number Support: Yes

## RegionType - Geometric region type

'Face'| 'Edge'| 'Vertex'|'Cell'
Geometric region type, specified as 'Face', 'Edge', 'Vertex', or 'Cell'.
When there are multiple initial condition assignments, solvers use the following precedence rules for determining the initial condition.

- If there are multiple assignments to the same geometric region, solvers use the last applied setting.
- If there are separate assignments to a geometric region and the boundaries of that region, the solvers use the specified assignment on the region and choose the assignment on the boundary as follows. The solvers give an 'Edge' assignment precedence over a 'Face' assignment, even if you specify a 'Face ' assignment after an 'Edge' assignment. The precedence levels are 'Vertex (highest precedence), 'Edge', 'Face', 'Cell' (lowest precedence).
- If there is an assignment made with the results object, solvers use that assignment instead of all previous assignments.

Example: setInitialConditions(model,10, 'Face' , 1:4)
Data Types: char|string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.
Example: setInitialConditions(model,10, 'Face' ,1:4)
Data Types: double
results - PDE solution
StationaryResults object | TimeDependentResults object

PDE solution, specified as a StationaryResults object or a TimeDependentResults object. Create results using solvepde or createPDEResults.

Example: results = solvepde(model)

## iT - Time index

positive integer
Time index, specified as a positive integer.
Example: setInitialConditions(model, results,21)
Data Types: double

## Output Arguments

## ic - Handle to initial condition <br> object

Handle to initial condition, returned as an object. ic associates the initial condition with the geometric region in the case of a geometric assignment or the nodes in the case of a results-based assignment.

## Tips

- To ensure that the model has the correct TimeDependent property setting, if possible specify coefficients before setting initial conditions.
- To avoid assigning initial conditions to a wrong region, ensure that you are using the correct geometric region IDs by plotting and visually inspecting the geometry.


## See Also

PDEModel|findInitialConditions | pdegplot

## Topics

"Set Initial Conditions" on page 2-98
"Solve Problems Using PDEModel Objects" on page 2-2
"Equations You Can Solve Using PDE Toolbox" on page 1-3

## Introduced in R2016a

## solve

Package: pde
Solve heat transfer, structural analysis, or electromagnetic analysis problem

## Syntax

```
structuralStaticResults = solve(structuralStatic)
structuralModalResults = solve(structuralModal,'FrequencyRange',
[omega1,omega2])
structuralTransientResults = solve(structuralTransient,tlist)
structuralFrequencyResponseResults = solve(structuralFrequencyResponse,flist)
structuralTransientResults = solve(structuralTransient,tlist,'ModalResults',
modalresults)
structuralFrequencyResponseResults = solve(structuralFrequencyResponse,
flist,'ModalResults',modalresults)
thermalSteadyStateResults = solve(thermalSteadyState)
thermalTransientResults = solve(thermalTransient,tlist)
emagResults = solve(emagmodel)
```


## Description

structuralStaticResults = solve(structuralStatic) returns the solution to the static structural analysis model represented in structuralStatic.
structuralModalResults = solve(structuralModal,'FrequencyRange',
[omegal, omega2]) returns the solution to the modal analysis model for all modes in the frequency range [omega1,omega2]. Define omega1 as slightly smaller than the lowest expected frequency and omega2 as slightly larger than the highest expected frequency. For example, if the lowest expected frequency is zero, then use a small negative value for omegal.
structuralTransientResults = solve(structuralTransient,tlist) returns the solution to the transient structural dynamics model represented in structuralTransient.
structuralFrequencyResponseResults = solve(structuralFrequencyResponse,flist) returns the solution to the frequency response model represented in structuralFrequencyResponse.
structuralTransientResults = solve(structuralTransient,tlist,'ModalResults', modalresults) and structuralFrequencyResponseResults = solve( structuralFrequencyResponse,flist,' ModalResults',modalresults) solve a transient and a frequency response structural model, respectively, by using the modal superposition method to speed up computations. First, perform modal analysis to compute natural frequencies and mode shapes in a particular frequency range. Then, use this syntax to invoke the modal superposition method. The accuracy of the results depends on the modes in the modal analysis results.
thermalSteadyStateResults = solve(thermalSteadyState) returns the solution to the steady-state thermal model represented in thermalSteadyState.
thermalTransientResults = solve(thermalTransient,tlist) returns the solution to the transient thermal model represented in thermalTransient at the times tlist.
emagResults = solve(emagmodel) returns the solution to the 2-D electromagnetic model represented in emagmodel.

## Examples

## Solution to Steady-State Thermal Model

Solve a 3-D steady-state thermal problem.
Create a thermal model for this problem.

```
thermalmodel = createpde('thermal');
```

Import and plot the block geometry.

```
importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,' FaceLabel','on','FaceAlpha',0.5)
axis equal
```



Assign material properties.
thermalProperties(thermalmodel,'ThermalConductivity', 80);

Apply a constant temperature of $100^{\circ} \mathrm{C}$ to the left side of the block (face 1 ) and a constant temperature of $300^{\circ} \mathrm{C}$ to the right side of the block (face 3). All other faces are insulated by default.

```
thermalBC(thermalmodel,'Face',1,'Temperature',100);
thermalBC(thermalmodel,'Face',3,'Temperature',300);
```

Mesh the geometry and solve the problem.

```
generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)
thermalresults =
 SteadyStateThermalResults with properties:
 Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]
 Mesh: [1x1 FEMesh]
```

The solver finds the temperatures and temperature gradients at the nodal locations. To access these values, use thermalresults. Temperature, thermalresults.XGradients, and so on. For example, plot temperatures at the nodal locations.
pdeplot3D(thermalmodel,'ColorMapData', thermalresults.Temperature)


## Solution to Transient Thermal Model

Solve a 2-D transient thermal problem.
Create a transient thermal model for this problem.

```
thermalmodel = createpde('thermal','transient');
```

Create the geometry and include it in the model.

```
SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);
geometryFromEdges(thermalmodel,dl);
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5 4.5])
ylim([-0.5 3.5])
axis equal
```



For the square region, assign these thermal properties:

- Thermal conductivity is $10 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$
- Mass density is $2 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat is $0.1 \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$

```
thermalProperties(thermalmodel,'ThermalConductivity',10, ...
 'MassDensity',2, ...
 'SpecificHeat',0.1, ...
 'Face',1);
```

For the diamond region, assign these thermal properties:

- Thermal conductivity is $2 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$
- Mass density is $1 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat is $0.1 \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$

```
thermalProperties(thermalmodel,'ThermalConductivity',2, ...
 'MassDensity',1, ...
 'SpecificHeat',0.1, ...
 'Face',2);
```

Assume that the diamond-shaped region is a heat source with a density of $4 \mathrm{~W} / \mathrm{m}^{2}$.
internalHeatSource(thermalmodel,4,'Face',2);
Apply a constant temperature of $0{ }^{\circ} \mathrm{C}$ to the sides of the square plate.

```
thermalBC(thermalmodel,'Temperature',0,'Edge',[1 2 7 8]);
```

Set the initial temperature to $0^{\circ} \mathrm{C}$.
thermalIC(thermalmodel,0);
Generate the mesh.

```
generateMesh(thermalmodel);
```

The dynamics for this problem are very fast. The temperature reaches a steady state in about 0.1 seconds. To capture the interesting part of the dynamics, set the solution time to logspace (-2,-1,10). This command returns 10 logarithmically spaced solution times between 0.01 and 0.1 .

```
tlist \(=\) logspace(-2,-1,10);
```

Solve the equation.

```
thermalresults = solve(thermalmodel,tlist)
thermalresults =
 TransientThermalResults with properties:
 Temperature: [1481x10 double]
 SolutionTimes: [1x10 double]
 XGradients: [1481x10 double]
 YGradients: [1481x10 double]
 ZGradients: []
```


## Mesh: [1x1 FEMesh]

Plot the solution with isothermal lines by using a contour plot.

```
T = thermalresults.Temperature;
pdeplot(thermalmodel,'XYData',T(:,10),'Contour','on','ColorMap','hot')
```



## Solution to Static Structural Model

Solve a static structural model representing a bimetallic cable under tension.
Create a static structural model for solving a solid (3-D) problem.
structuralmodel = createpde('structural','static-solid');
Create the geometry and include it in the model. Plot the geometry.

```
gm = multicylinder([0.01 0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','CellLabels','on','FaceAlpha',0.5)
```



Specify the Young's modulus and Poisson's ratio for each metal.

```
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);
```

Specify that faces 1 and 4 are fixed boundaries.
structuralBC(structuralmodel, 'Face', [1,4], 'Constraint','fixed');
Specify the surface traction for faces 2 and 5 .
structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'SurfaceTraction ', [0;0;100]);
Generate a mesh and solve the problem.

```
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)
structuralresults =
 StaticStructuralResults with properties:
 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]
 Mesh: [1x1 FEMesh]
```

The solver finds the values of displacement, stress, strain, and von Mises stress at the nodal locations. To access these values, use structuralresults.Displacement, structuralresults.Stress, and so on. The displacement, stress, and strain values at the nodal locations are returned as FEStruct objects with the properties representing their components. Note that properties of an FEStruct object are read-only.
structuralresults.Displacement
ans =
FEStruct with properties:
ux: [22306x1 double]
uy: [22306x1 double]
uz: [22306x1 double] Magnitude: [22306x1 double]
structuralresults.Stress
ans =
FEStruct with properties:

```
 sxx: [22306x1 double]
```

        syy: [22306x1 double]
        szz: [22306x1 double]
        syz: [22306x1 double]
        sxz: [22306x1 double]
        sxy: [22306x1 double]
    structuralresults.Strain
ans =
FEStruct with properties:
exx: [22306x1 double]
eyy: [22306x1 double]
ezz: [22306x1 double]
eyz: [22306x1 double]
exz: [22306x1 double]
exy: [22306x1 double]

Plot the deformed shape with the $z$-component of normal stress.

```
pdeplot3D(structuralmodel,'ColorMapData',structuralresults.Stress.szz, ...
 'Deformation',structuralresults.Displacement)
```



## Solution to Transient Structural Model

Solve for the transient response of a thin 3-D plate under a harmonic load at the center.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create the geometry and include it in the model. Plot the geometry.
gm = multicuboid([5,0.05],[5,0.05],0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha', 0.5)


Zoom in to see the face labels on the small plate at the center.
figure
pdegplot(structuralmodel,' FaceLabels', 'on','FaceAlpha', 0.25)
axis([-0.2 0.2 -0.2 0.2 -0.1 0.1])


Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);
```

Specify that all faces on the periphery of the thin 3-D plate are fixed boundaries.
structuralBC(structuralmodel,'Constraint','fixed','Face',5:8);
Apply a sinusoidal pressure load on the small face at the center of the plate.
structuralBoundaryLoad(structuralmodel,'Face',12,'Pressure',5E7, 'Frequency' , 25);
Generate a mesh with linear elements.
generateMesh(structuralmodel,'Geometric0rder','linear','Hmax',0.2);
Specify zero initial displacement and velocity.
structuralIC(structuralmodel,'Displacement', [0;0;0],'Velocity', [0;0;0]);
Solve the model.

```
tlist = linspace(0,1,300);
structuralresults = solve(structuralmodel,tlist)
structuralresults =
 TransientStructuralResults with properties:
```

```
Displacement: [1x1 FEStruct]
 Velocity: [1x1 FEStruct]
Acceleration: [1x1 FEStruct]
SolutionTimes: [1x300 double]
 Mesh: [1x1 FEMesh]
```

The solver finds the values of the displacement, velocity, and acceleration at the nodal locations. To access these values, use structuralresults.Displacement, structuralresults.Velocity, and so on. The displacement, velocity, and acceleration values are returned as FEStruct objects with the properties representing their components. Note that properties of an FEStruct object are readonly.

```
structuralresults.Displacement
ans =
 FEStruct with properties:
```

            ux: [1873×300 double]
            uy: [1873×300 double]
            uz: [1873×300 double]
        Magnitude: [1873x300 double]
    structuralresults.Velocity
ans $=$
FEStruct with properties:
vx: [1873x300 double]
vy: [1873×300 double]
vz: [1873x300 double]
Magnitude: [1873x300 double]
structuralresults.Acceleration
ans $=$
FEStruct with properties:
ax: [1873×300 double]
ay: [1873×300 double]
az: [1873x300 double]
Magnitude: [1873x300 double]

## Solution to Modal Analysis Structural Model

Find the fundamental (lowest) mode of a 2-D cantilevered beam, assuming prevalence of the planestress condition.

Specify the following geometric and structural properties of the beam, along with a unit plane-stress thickness.

```
length = 5;
height = 0.1;
```

```
E = 3E7;
nu = 0.3;
rho = 0.3/386;
```

Create a model plane-stress model, assign a geometry, and generate a mesh.

```
structuralmodel = createpde('structural','modal-planestress');
gdm = [3;4;0;length;length;0;0;0;height;height];
g = decsg(gdm,'S1',('S1')');
geometryFromEdges(structuralmodel,g);
```

Define a maximum element size (five elements through the beam thickness).

```
hmax = height/5;
msh=generateMesh(structuralmodel,'Hmax',hmax);
```

Specify the structural properties and boundary constraints.

```
structuralProperties(structuralmodel,'YoungsModulus',E, ...
 'MassDensity',rho, ...
 'PoissonsRatio',nu);
structuralBC(structuralmodel,'Edge',4,'Constraint','fixed');
```

Compute the analytical fundamental frequency (Hz) using the beam theory.

```
I = height^3/12;
analyticalOmega1 = 3.516*sqrt(E*I/(length^4*(rho*height)))/(2*pi)
analyticalOmega1 = 126.9498
```

Specify a frequency range that includes an analytically computed frequency and solve the model.

```
modalresults = solve(structuralmodel,'FrequencyRange',[0,1e6])
modalresults =
 ModalStructuralResults with properties:
 NaturalFrequencies: [32x1 double]
 ModeShapes: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]
```

The solver finds natural frequencies and modal displacement values at nodal locations. To access these values, use modalresults.NaturalFrequencies and modalresults.ModeShapes.

```
modalresults.NaturalFrequencies/(2*pi)
```

ans $=32 \times 1$
$10^{5} \times$

### 0.2455

modalresults.ModeShapes
ans =
FEStruct with properties:
ux: [6511x32 double]
uy: [6511x32 double]
Magnitude: [6511x32 double]

Plot the $y$-component of the solution for the fundamental frequency.
pdeplot(structuralmodel, 'XYData', modalresults.ModeShapes.uy(:,1)) title(['First Mode with Frequency ', ...
num2str(modalresults.NaturalFrequencies(1)/(2*pi)),' Hz'])
axis equal

First Mode with Frequency 126.9416 Hz


## Frequency Response Analysis

Perform frequency response analysis of a tuning fork.
First, create a structural model for modal analysis of a solid tuning fork.

```
model = createpde('structural','frequency-solid');
```

Import the tuning fork geometry.
importGeometry(model,'TuningFork.stl');
Specify the Young's modulus, Poisson's ratio, and mass density to model linear elastic material behavior. Specify all physical properties in consistent units.

```
structuralProperties(model,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);
```

Identify faces for applying boundary constraints and loads by plotting the geometry with the face labels.

```
figure('units','normalized','outerposition',[0 0 1 1])
pdegplot(model,'FaceLabels','on')
view(-50,15)
title 'Geometry with Face Labels'
```



Impose sufficient boundary constraints to prevent rigid body motion under applied loading. Typically, you hold a tuning fork by hand or mount it on a table. To create a simple approximation of this boundary condition, fix a region near the intersection of tines and the handle (faces 21 and 22).

```
structuralBC(model,'Face',[21,22],'Constraint','fixed');
```

Specify the pressure loading on a tine (face 11) as a short rectangular pressure pulse. In the frequency domain, this pressure pulse is a unit load uniformly distributed across all frequencies.

```
structuralBoundaryLoad(model,'Face',11,'Pressure',1);
flist = linspace(0,4000,150);
mesh = generateMesh(model,'Hmax',0.005);
R = solve(model,2*pi*flist)
R =
 FrequencyStructuralResults with properties:
Displacement: [1x1 FEStruct]
```

```
 Velocity: [1x1 FEStruct]
 Acceleration: [1x1 FEStruct]
SolutionFrequencies: [1\times150 double]
 Mesh: [1x1 FEMesh]
```

Plot the vibration frequency of the tine tip, which is face 12 . Find nodes on the tip face and plot the $y$ component of the displacement over the frequency, using one of these nodes.

```
excitedTineTipNodes = findNodes(mesh,'region','Face',12);
tipDisp = R.Displacement.uy(excitedTineTipNodes(1),:);
figure
plot(flist,abs(tipDisp))
xlabel('Frequency');
ylabel('|Y-Displacement|');
```



## Expansion of Cantilever Beam Under Thermal Load

Find the deflection of a 3-D cantilever beam under a nonuniform thermal load. Specify the thermal load on the structural model using the solution from a transient thermal analysis on the same geometry and mesh.

## Transient Thermal Model Analysis

Create a transient thermal model.

```
thermalmodel = createpde('thermal','transient');
```

Create and plot the geometry.

```
gm = multicuboid(0.5,0.1,0.05);
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)
```



Generate a mesh.
mesh = generateMesh(thermalmodel);
Specify the thermal properties of the material.

```
thermalProperties(thermalmodel,'ThermalConductivity',5e-3, ...
 'MassDensity',2.7*10^(-6), ...
 'SpecificHeat',10);
```

Specify the constant temperatures applied to the left and right ends on the beam.
thermalBC(thermalmodel,'Face', 3,'Temperature',100);
thermalBC(thermalmodel,'Face',5,'Temperature',0);
Specify the heat source over the entire geometry.
internalHeatSource(thermalmodel,10);
Set the initial temperature.
thermalIC(thermalmodel,0);
Solve the model.

```
tlist = [0:1e-4:2e-4];
thermalresults = solve(thermalmodel,tlist)
thermalresults =
 TransientThermalResults with properties:
 Temperature: [3870x3 double]
 SolutionTimes: [0 1.0000e-04 2.0000e-04]
 XGradients: [3870x3 double]
 YGradients: [3870x3 double]
 ZGradients: [3870x3 double]
 Mesh: [1x1 FEMesh]
```

Plot the temperature distribution for each time step.

```
for n = 1:numel(thermalresults.SolutionTimes)
 figure
 pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature(:,n))
 title(['Temperature at Time = ' num2str(tlist(n))])
 caxis([0 100])
end
```





## Structural Analysis with Thermal Load

Create a static structural model.
structuralmodel = createpde('structural','static-solid');
Include the same geometry as for the thermal model.
structuralmodel.Geometry = gm;
Use the same mesh that you used to obtain the thermal solution.
structuralmodel.Mesh = mesh;
Specify the Young's modulus, Poisson's ratio, and coefficient of thermal expansion.

```
structuralProperties(structuralmodel,'YoungsModulus',1e10, ...
 'PoissonsRatio',0.3, ...'
 'CTE',11.7e-6);
```

Apply a fixed boundary condition on face 5 .
structuralBC(structuralmodel, 'Face',5,'Constraint','fixed');
Apply a body load using the transient thermal model solution. By default, structuralBodyLoad uses the solution for the last time step.
structuralBodyLoad(structuralmodel, 'Temperature', thermalresults);

Specify the reference temperature.
structuralmodel.ReferenceTemperature = 10;
Solve the structural model.

```
thermalstressresults = solve(structuralmodel);
```

Plot the deformed shape of the beam corresponding to the last step of the transient thermal model solution.

```
pdeplot3D(structuralmodel,'ColorMapData',thermalstressresults.Displacement.Magnitude, ...
 'Deformation',thermalstressresults.Displacement)
title(['Thermal Expansion at Solution Time = ' num2str(tlist(end))])
caxis([0 3e-3])
```

Thermal Expansion at Solution Time $\mathbf{= 0 . 0 0 0 2}$


Now specify the body loads as the thermal model solutions for all time steps. For each body load, solve the structural model and plot the corresponding deformed shape of the beam.

```
for n = 1:numel(thermalresults.SolutionTimes)
 structuralBodyLoad(structuralmodel,'Temperature',thermalresults,'TimeStep',n);
 thermalstressresults = solve(structuralmodel);
 figure
 pdeplot3D(structuralmodel,'ColorMapData', ...
 thermalstressresults.Displacement.Magnitude, ...
 'Deformation', ...
 thermalstressresults.Displacement)
 title(['Thermal Results at Solution Time = ' num2str(tlist(n))])
```





## Solution to Transient Structural Model Using Modal Superposition Method

Solve the for transient response at the center of a 3-D beam under a harmonic load on one of its corners.

## Modal Analysis

Create a modal analysis model for a 3-D problem.
modelM = createpde('structural','modal-solid');
Create the geometry and include it in the model. Plot the geometry and display the edge and vertex labels.

```
gm = multicuboid(0.05,0.003,0.003);
modelM.Geometry = gm;
pdegplot(modelM,'EdgeLabels','on','VertexLabels','on');
view([95 5])
```



Generate a mesh.
msh = generateMesh(modelM);
Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(modelM,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Specify minimal constraints on one end of the beam to prevent rigid body modes. For example, specify that edge 4 and vertex 7 are fixed boundaries.

```
structuralBC(modelM,'Edge',4,'Constraint','fixed');
structuralBC(modelM,'Vertex',7,'Constraint','fixed');
```

Solve the problem for the frequency range from 0 to 500,000. The recommended approach is to use a value that is slightly smaller than the expected lowest frequency. Thus, use -0.1 instead of 0 .

Rm = solve(modelM,'FrequencyRange',[-0.1,500000]);

## Transient Analysis

Create a transient analysis model for a 3-D problem.

```
modelD = createpde('structural','transient-solid');
```

Use the same geometry and mesh as for the modal analysis.

```
modelD.Geometry = gm;
modelD.Mesh = msh;
Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.
```

```
structuralProperties(modelD,'YoungsModulus',210E9, ...
```

structuralProperties(modelD,'YoungsModulus',210E9, ...
'PoissonsRatio',0.3, ...
'PoissonsRatio',0.3, ...
'MassDensity',7800);

```
 'MassDensity',7800);
```

Specify the same minimal constraints on one end of the beam to prevent rigid body modes.

```
structuralBC(modelD,'Edge',4,'Constraint','fixed');
structuralBC(modelD,'Vertex',7,'Constraint','fixed');
```

Apply a sinusoidal force on the corner opposite to the constrained edge and vertex.
structuralBoundaryLoad(modelD, 'Vertex',5,'Force', [0, 0, 10], 'Frequency', 7600);
Specify zero initial displacement and velocity.

```
structuralIC(modelD,'Velocity',[0;0;0],'Displacement',[0;0;0]);
```

Specify the relative and absolute tolerances for the solver.

```
modelD.SolverOptions.RelativeTolerance = 1E-5;
modelD.SolverOptions.AbsoluteTolerance = 1E-9;
```

Solve the model using the modal results.

```
tlist = linspace(0,0.004,120);
Rdm = solve(modelD,tlist,'ModalResults',Rm)
Rdm =
 TransientStructuralResults with properties:
 Displacement: [1x1 FEStruct]
 Velocity: [1x1 FEStruct]
 Acceleration: [1x1 FEStruct]
 SolutionTimes: [1x120 double]
 Mesh: [1x1 FEMesh]
```

Interpolate and plot the displacement at the center of the beam.

```
intrpUdm = interpolateDisplacement(Rdm,0,0,0.0015);
plot(Rdm.SolutionTimes,intrpUdm.uz)
grid on
xlabel('Time');
ylabel('Center of beam displacement')
```



## Solution to Electrostatic Analysis Model

Solve an electromagnetic problem and find the electric potential and field distribution for a 2-D geometry representing a plate with a hole.

Create an electromagnetic model for electrostatic analysis.
emagmodel = createpde('electromagnetic','electrostatic');
Import and plot the geometry representing a plate with a hole.
importGeometry (emagmodel,'PlateHolePlanar.stl');
pdegplot(emagmodel,'EdgeLabels','on')


Specify the vacuum permittivity in the SI system of units.
emagmodel.VacuumPermittivity = 8.8541878128E-12;
Specify the relative permittivity of the material.
electromagneticProperties(emagmodel,'RelativePermittivity',1);
Apply the voltage boundary conditions on the edges framing the rectangle and the circle.
electromagneticBC(emagmodel, 'Voltage', 0, 'Edge', 1:4);
electromagneticBC(emagmodel,' Voltage',1000,' Edge',5);
Specify the charge density for the entire geometry.
electromagneticSource(emagmodel,'ChargeDensity',5E-9);
Generate the mesh.
generateMesh(emagmodel);
Solve the model.
R = solve(emagmodel)
$R=$
ElectrostaticResults with properties:

```
 ElectricPotential: [1218x1 double]
 ElectricField: [1x1 FEStruct]
ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]
```

Plot the electric potential and field.

```
pdeplot(emagmodel,'XYData',R.ElectricPotential, ...
 'FlowData',[R.ElectricField.Ex ...
 R.ElectricField.Ey])
axis equal
```



## Input Arguments

## structuralStatic - Static structural analysis model

StructuralModel object
Static structural analysis model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.

Example: structuralmodel = createpde('structural','static-solid')

## structuralModal - Modal analysis structural model

StructuralModel object

Modal analysis structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.

```
Example: structuralmodel = createpde('structural','modal-solid')
```


## structuralTransient - Transient structural analysis model

StructuralModel object
Transient structural analysis model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.

Example: structuralmodel = createpde('structural','transient-solid')

## structuralFrequencyResponse - Frequency response structural analysis model <br> StructuralModel object

Frequency response analysis structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.

```
Example: structuralmodel = createpde('structural','frequency-solid')
```


## tlist - Solution times

real vector
Solution times, specified as a real vector of monotonically increasing or decreasing values.
Example: 0:20
Data Types: double

## flist - Solution frequencies

real vector
Solution frequencies, specified as a real vector of monotonically increasing or decreasing values.
Example: linspace (0, 4000, 150)
Data Types: double

## [omega1, omega2] - Frequency range

vector of two elements
Frequency range, specified as a vector of two elements. Define omegal as slightly smaller than the lowest expected frequency and omega2 as slightly larger than the highest expected frequency. For example, if the lowest expected frequency is zero, then use a small negative value for omegal.
Example: [-0.1,1000]
Data Types: double
modalresults - Modal analysis results
ModalStructuralResults object
Modal analysis results, specified as a ModalStructuralResults object.
Example: modalresults = solve(structuralmodel,' FrequencyRange',[0,1e6])

## thermalSteadyState - Steady-state thermal analysis model <br> ThermalModel object

Steady-state thermal analysis model, specified as a ThermalModel object. The model contains the geometry, mesh, thermal properties of the material, internal heat source, boundary conditions, and initial conditions.

Example: thermalmodel = createpde('thermal','steadystate')

## thermalTransient - Transient thermal analysis model

ThermalModel object
Transient thermal analysis model, specified as a ThermalModel object. The model contains the geometry, mesh, thermal properties of the material, internal heat source, boundary conditions, and initial conditions.

Example: thermalmodel = createpde('thermal','transient')

## emagmodel - Electromagnetic model for electrostatic or magnetostatic analysis ElectromagneticModel object

Electromagnetic model for electrostatic or magnetostatic analysis, specified as an ElectromagneticModel object. The model contains the geometry, mesh, material properties, electromagnetic sources, and boundary conditions.
Example: emagmodel = createpde('electromagnetic','magnetostatic')

## Output Arguments

## structuralStaticResults - Static structural analysis results <br> StaticStructuralResults object

Static structural analysis results, returned as a StaticStructuralResults object.
structuralModalResults - Modal structural analysis results
ModalStructuralResults object
Modal structural analysis results, returned as a ModalStructuralResults object.

## structuralTransientResults - Transient structural analysis results <br> TransientStructuralResults object

Transient structural analysis results, returned as a TransientStructuralResults object.
structuralFrequencyResponseResults - Frequency response structural analysis results FrequencyStructuralResults object

Frequency response structural analysis results, returned as a FrequencyStructuralResults object.
thermalSteadyStateResults - Steady-state thermal analysis results
SteadyStateThermalResults object
Steady-state thermal analysis results, returned as a SteadyStateThermalResults object.

## thermalTransientResults - Transient thermal analysis results <br> TransientThermalResults object

Transient thermal analysis results, returned as a TransientThermalResults object.
emagResults - Electrostatic or magnetostatic analysis results
ElectrostaticResults object|MagnetostaticResults object
Electrostatic or magnetostatic analysis results, returned as an ElectrostaticResults or MagnetostaticResults object.

## Tips

- When you use modal analysis results to solve a transient structural dynamics model, the modal results argument must be created in Partial Differential Equation Toolbox version R2019a or newer.
- For a frequency response model with damping, the results are complex. Use functions such as abs and angle to obtain real-valued results, such as the magnitude and phase.


## See Also

geometryFromEdges | ElectromagneticModel|PDEModel|StructuralModel| ThermalModel|geometryFromMesh|importGeometry|reduce

Introduced in R2017a

## solvepde

Package: pde
Solve PDE specified in a PDEModel

## Syntax

```
result = solvepde(model)
result = solvepde(model,tlist)
```


## Description

result = solvepde(model) returns the solution to the stationary PDE represented in model. A stationary PDE has the property model.IsTimeDependent = false. That is, the time-derivative coefficients m and d in model. EquationCoefficients must be 0 .
result $=$ solvepde(model, tlist ) returns the solution to the time-dependent PDE represented in model at the times tlist. At least one time-derivative coefficient m or d in model. EquationCoefficients must be nonzero.

## Examples

## Solve a Stationary Problem: Poisson's Equation for the L-shaped Membrane

Create a PDE model, and include the geometry of the L-shaped membrane.

```
model = createpde();
geometryFromEdges(model,@lshapeg);
```

View the geometry with edge labels.

```
pdegplot(model,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal
```



Set zero Dirichlet conditions on all edges.
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
Poisson's equation is

$$
-\nabla \cdot \nabla u=1
$$

Toolbox solvers address equations of the form

$$
m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla(c \nabla u)+a u=f
$$

Include the coefficients for Poisson's equation in the model.

```
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
```

Mesh the model and solve the PDE.

```
generateMesh(model,'Hmax',0.25);
```

results = solvepde(model);

View the solution.

```
pdeplot(model,'XYData',results.NodalSolution)
```



## Solve a Time-Dependent Parabolic Equation with Nonconstant Coefficients

Create a model with 3-D rectangular block geometry.
model = createpde();
importGeometry(model,'Block.stl');
Suppose that radiative cooling causes the solution to decrease as the cube of temperature on the surface of the block.
gfun = @(region,state)-state.u.^3*1e-6;
applyBoundaryCondition(model,'neumann','Face',1:model.Geometry.NumFaces, 'g',gfun);
The model coefficients have no source term.

```
specifyCoefficients(model,'m',0,...
 'd',1,...
 'c',1,...
 'a',0,...
 'f',0);
```

The block starts at a constant temperature of 350 .
setInitialConditions(model,350);

Mesh the geometry and solve the model for times 0 through 20.
generateMesh(model);
tlist = 0:20;
results = solvepde(model,tlist);
Plot the solution on the surface of the block at times 1 and 20.
pdeplot3D(model,'ColorMapData', results.NodalSolution(:,2))

figure
pdeplot3D(model,'ColorMapData', results.NodalSolution(:,21))


## Input Arguments

model - PDE model
PDEModel object
PDE model, specified as a PDEModel object. The model contains the geometry, mesh, and problem coefficients.

Example: model = createpde(1)

## tlist - Solution times

real vector
Solution times, specified as a real vector. tlist must be a monotone vector (increasing or decreasing).
Example: 0:20
Data Types: double

## Output Arguments

StationaryResults object | TimeDependentResults object

PDE results, returned as a StationaryResults object or as a TimeDependentResults object. The type of result depends on whether model represents a stationary problem (model.IsTimeDependent $=$ false) or a time-dependent problem (model.IsTimeDependent $=$ true).

## Tips

- If the Newton iteration does not converge, solvepde displays the error message Too many iterations or Stepsize too small.
- If the initial guess produces matrices containing NaN or Inf elements, solvepde displays the error message Unsuitable initial guess U0 (default: U0 = 0).
- If you have very small coefficients, or very small geometric dimensions, solvepde can fail to converge, or can converge to an incorrect solution. In this case, you might obtain better results by scaling the coefficients or geometry dimensions to be of order one.


## See Also

PDEModel | applyBoundaryCondition | setInitialConditions | solvepdeeig | specifyCoefficients

## Topics

"Solve Problems Using PDEModel Objects" on page 2-2

## Introduced in R2016a

## solvepdeeig

Package: pde
Solve PDE eigenvalue problem specified in a PDEModel

## Syntax

result = solvepdeeig(model,evr)

## Description

result $=$ solvepdeeig (model,evr) solves the PDE eigenvalue problem in model for eigenvalues in the range evr. If the range does not contain any eigenvalues, solvepdeeig returns an EigenResults object with the empty EigenVectors, EigenValues, and Mesh properties.

## Examples

## Solve an Eigenvalue Problem With 3-D Geometry

Solve for several vibrational modes of the BracketTwoHoles geometry.
The equations of elasticity have three components. Therefore, create a PDE model that has three components. Import and view the BracketTwoHoles geometry.

```
model = createpde(3);
importGeometry(model,'BracketTwoHoles.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.4)
```



Set F1, the rear face, to have zero deflection.

```
applyBoundaryCondition(model,'dirichlet','Face',1,'u',[0;0;0]);
```

Set the model coefficients to represent a steel bracket. For details, see "Linear Elasticity Equations" on page 3-125.

```
E = 200e9; % elastic modulus of steel in Pascals
nu = 0.3; % Poisson's ratio
specifyCoefficients(model,'m',0,...
 'd',1,...
 'c',elasticityC3D(E,nu),...
 'a',0,...
 'f',[0;0;0]); % Assume all body forces are zero
```

Find the eigenvalues up to 1 e 7 .

```
evr = [-Inf,1e7];
```

Mesh the model and solve the eigenvalue problem.
generateMesh(model);
results = solvepdeeig(model,evr);

| Basis $=10$, | Time $=18.31$, | New conv eig= | 0 |
| :--- | :--- | :--- | :--- | :--- |
| Basis $=11$, | Time $=18.55$, | New conv eig $=$ | 0 |
| Basis $=12$, | Time $=18.69$, | New conv eig= | 0 |
| Basis $=13$, | Time $=18.83$, | New conv eig $=$ | 0 |



How many results did solvepdeeig return?
length(results.Eigenvalues)
ans $=3$
Plot the solution on the geometry boundary for the lowest eigenvalue.
V = results.Eigenvectors;
subplot (2,2,1)
pdeplot3D(model, 'ColorMapData', V(:, 1, 1))
title('x Deflection, Mode 1')
subplot $(2,2,2)$
pdeplot3D(model,'ColorMapData', V(:,2,1))
title('y Deflection, Mode 1')
subplot $(2,2,3)$
pdeplot3D(model,'ColorMapData', V(:,3,1))
title('z Deflection, Mode 1')


Plot the solution for the highest eigenvalue.

```
figure
subplot(2,2,1)
pdeplot3D(model,'ColorMapData',V(:,1,3))
title('x Deflection, Mode 3')
subplot(2,2,2)
pdeplot3D(model,'ColorMapData',V(:,2,3))
title('y Deflection, Mode 3')
subplot(2,2,3)
pdeplot3D(model,'ColorMapData',V(:,3,3))
title('z Deflection, Mode 3')
```



## Input Arguments

## model - PDE model

PDEModel object
PDE model, specified as a PDEModel object. The model contains the geometry, mesh, and problem coefficients.

Example: model = createpde(1)
evr - Eigenvalue range
two-element real vector

Eigenvalue range, specified as a two-element real vector. evr(1) specifies the lower limit of the range of the real part of the eigenvalues, and may be - Inf. evr (2) specifies the upper limit of the range, and must be finite.
Example: [-Inf;100]
Data Types: double

## Output Arguments

## result - Eigenvalue results

EigenResults object
Eigenvalue results, returned as an EigenResults object. If the range env does not contain any eigenvalues, the returned EigenResults object has the empty EigenVectors, EigenValues, and Mesh properties.

## Tips

- The equation coefficients cannot depend on the solution $u$ or its gradient.

See Also<br>PDEModel | applyBoundaryCondition | solvepde | specifyCoefficients<br>\section*{Topics}<br>"Eigenvalues and Eigenmodes of L-Shaped Membrane" on page 3-258<br>"Eigenvalues and Eigenmodes of Square" on page 3-270<br>"Solve Problems Using PDEModel Objects" on page 2-2<br>\section*{Introduced in R2016a}

## specifyCoefficients

Package: pde
Specify coefficients in a PDE model

## Syntax

specifyCoefficients(model, Name, Value)
specifyCoefficients(model, Name, Value, RegionType, RegionID)
CA = specifyCoefficients( $\qquad$ )

## Description

Coefficients of a PDE
solvepde solves PDEs of the form

$$
m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f
$$

solvepdeeig solves PDE eigenvalue problems of the form
$-\nabla \cdot(c \nabla u)+a u=\lambda d u$
or
$-\nabla \cdot(c \nabla u)+a u=\lambda^{2} m u$
specifyCoefficients defines the coefficients $m, d, c, a$, and $f$ in the PDE model.
specifyCoefficients(model, Name, Value) defines the specified coefficients in each Name to each associated Value, and includes them in model. You must specify all of these names: m, d, c, a, and f . This syntax applies coefficients to the entire geometry.

Note Include geometry in model before using specifyCoefficients.
specifyCoefficients(model, Name, Value,RegionType,RegionID) assigns coefficients for a specified geometry region.

CA = specifyCoefficients( $\qquad$ ) returns a handle to the coefficient assignment object in model.

## Examples

## Specify Poisson's Equation

Specify the coefficients for Poisson's equation $-\nabla \cdot \nabla u=1$.
solvepde addresses equations of the form
$m \frac{\partial^{2} u}{\partial t^{2}}+d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f$.
Therefore, the coefficients for Poisson's equation are $m=0, d=0, c=1, a=0, f=1$. Include these coefficients in a PDE model of the L-shaped membrane.

```
model = createpde();
geometryFromEdges(model,@lshapeg);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
```

Specify zero Dirichlet boundary conditions, mesh the model, and solve the PDE.

```
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
generateMesh(model,'Hmax',0.25);
results = solvepde(model);
```

View the solution.

```
pdeplot(model,'XYData',results.NodalSolution)
```



## Coefficient Handle for Nonconstant Coefficients

Specify coefficients for Poisson's equation in 3-D with a nonconstant source term, and obtain the coefficient object.

The equation coefficients are $m=0, d=0, c=1, a=0$. For the nonconstant source term, take $f=y^{2} \tanh (z) / 1000$.

```
f = @(location,state)location.y.^2.*tanh(location.z)/1000;
```

Set the coefficients in a 3-D rectangular block geometry.

```
model = createpde();
importGeometry(model,'Block.stl');
CA = specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',f)
CA =
 CoefficientAssignment with properties:
 RegionType: 'cell'
 RegionID: 1
 m: 0
 d: 0
 c: 1
 a: 0
 f: @(location,state)location.y.^2.*tanh(location.z)/1000
```

Set zero Dirichlet conditions on face 1, mesh the geometry, and solve the PDE.

```
applyBoundaryCondition(model,'dirichlet','Face',1,'u',0);
generateMesh(model);
results = solvepde(model);
```

View the solution on the surface.
pdeplot3D(model, 'ColorMapData', results.NodalSolution)


## Specify Coefficients Depending On Subdomain

Create a scalar PDE model with the L-shaped membrane as the geometry. Plot the geometry and subdomain labels.
model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
axis equal
ylim([-1.1,1.1])


Set the c coefficient to 1 in all domains, but the f coefficient to 1 in subdomain 1,5 in subdomain 2, and -8 in subdomain 3 . Set all other coefficients to 0 .

```
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1,'Face',1);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',5,'Face',2);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',-8,'Face',3);
```

Set zero Dirichlet boundary conditions to all edges. Create a mesh, solve the PDE, and plot the result.

```
applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0);
generateMesh(model,'Hmax',0.25);
results = solvepde(model);
pdeplot(model,'XYData',results.NodalSolution)
```



## Input Arguments

model - PDE model
PDEModel object
PDE model, specified as a PDEModel object.
Example: model = createpde

## Name-Value Pair Arguments

Note You must specify all of these names: m, d, c, a, and f.

Example: specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',@fcoeff)
m - Second-order time derivative coefficient
scalar | column vector | function handle
Second-order time derivative coefficient, specified as a scalar, column vector, or function handle. For details on the sizes, and for details of the function handle form of the coefficient, see "m, d, or a Coefficient for specifyCoefficients" on page 2-91.

Specify 0 if the term is not part of your problem.

Example: specifyCoefficients('m', @mcoef,'d', 0, 'c', 1, 'a', 0,'f',1,'Face', 1:4)
Data Types: double | function_handle
Complex Number Support: Yes

## d - First-order time derivative coefficient

scalar | column vector | function handle
First-order time derivative coefficient, specified as a scalar, column vector, or function handle. For details on the sizes, and for details of the function handle form of the coefficient, see " $m, d$, or a Coefficient for specifyCoefficients" on page 2-91.

Note If the m coefficient is nonzero, d must be 0 or a matrix, and not a function handle. See "d Coefficient When m is Nonzero" on page 5-956.

Specify 0 if the term is not part of your problem.
Example: specifyCoefficients('m', 0, 'd', @dcoef, 'c', 1,'a', 0, 'f', 1, 'Face', 1:4)
Data Types: double | function_handle
Complex Number Support: Yes

## c - Second-order space derivative coefficient

scalar | column vector | function handle
Second-order space derivative coefficient, specified as a scalar, column vector, or function handle. For details on the sizes, and for details of the function handle form of the coefficient, see "c Coefficient for specifyCoefficients" on page 2-76.
Example: specifyCoefficients('m', 0,'d',0,'c',@ccoef,'a',0,'f',1,'Face',1:4)
Data Types: double | function_handle
Complex Number Support: Yes

## a - Solution multiplier coefficient

scalar | column vector | function handle
Solution multiplier coefficient, specified as a scalar, column vector, or function handle. For details on the sizes, and for details of the function handle form of the coefficient, see " $m$, $d$, or a Coefficient for specifyCoefficients" on page 2-91.

Specify 0 if the term is not part of your problem.
Example: specifyCoefficients('m', 0, 'd', 0, 'c', 1, 'a', @acoef, 'f', 1, 'Face' , 1:4)
Data Types: double | function_handle
Complex Number Support: Yes

## f - Source coefficient

scalar | column vector | function handle
Source coefficient, specified as a scalar, column vector, or function handle. For details on the sizes, and for details of the function handle form of the coefficient, see "f Coefficient for specifyCoefficients" on page 2-74.

Specify 0 if the term is not part of your problem.

Example: specifyCoefficients('m', 0,'d',0,'c',1,'a',0,'f',@fcoeff,'Face',1:4)
Data Types: double | function_handle
Complex Number Support: Yes

## RegionType - Geometric region type

'Face' for a 2-D model \| 'Cell' for a 3-D model
Geometric region type, specified as 'Face' or 'Cell'.
Example: specifyCoefficients('m',0,'d',0,'c',1,'a',0,'f',10,'Cell', 2)
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.

Example: specifyCoefficients('m',0,'d',0,'c',1,'a',0,'f',10,'Cell',1:3)
Data Types: double

## Output Arguments

## CA - Coefficient assignment

CoefficientAssignment object
Coefficient assignment, returned as a CoefficientAssignment object.

## More About

## d Coefficient When m is Nonzero

The $d$ coefficient takes a special matrix form when $m$ is nonzero. You must specify $d$ as a matrix of a particular size, and not as a function handle.
$d$ represents a damping coefficient in the case of nonzero $m$. To specify $d$, perform these two steps:
1 Call results = assembleFEMatrices(...) for the problem with your original coefficients and using $\mathrm{d}=0$. Use the default ' none' method for assembleFEMatrices.
2 Take the d coefficient as a matrix of size results.M. Generally, dis either proportional to results.M, or is a linear combination of results.M and results.K.

See "Dynamics of Damped Cantilever Beam" on page 3-21.

## Tips

- For eigenvalue equations, the coefficients cannot depend on the solution $u$ or its gradient.
- You can transform a partial differential equation into the required form by using Symbolic Math Toolbox. The pdeCoefficients converts a PDE into the required form and extracts the coefficients into a structure that can be used by specifyCoefficients.

The pdeCoefficients function also can return a structure of symbolic expressions, in which case you need to use pdeCoefficientsToDouble to convert these expressions to double format before passing them to specifyCoefficients.

## See Also

PDEModel|findCoefficients | pdeCoefficients | pdeCoefficientsToDouble

## Topics

"Solve Problems Using PDEModel Objects" on page 2-2
"Put Equations in Divergence Form" on page 2-71
Introduced in R2016a

## sptarn

(Not recommended) Solve generalized sparse eigenvalue problem

Note sptarn is not recommended. Use solvepdeeig instead.

## Syntax

```
[xv,lmb,iresult] = sptarn(A,B,lb,ub)
[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd)
[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd,tolconv)
[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd,tolconv,jmax)
[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd,tolconv,jmax,maxmul)
```


## Description

[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd,tolconv,jmax,maxmul) finds eigenvalues of the pencil $(A-\lambda B) x=0$ in interval $[l b, u b]$. (A matrix of linear polynomials $A_{i j}-\lambda B_{i j}, A-\lambda B$, is called a pencil.)
$A$ and $B$ are sparse matrices. $l b$ and ub are lower and upper bounds for eigenvalues to be sought. We may have $\mathrm{lb}=-$ inf if all eigenvalues to the left of $u b$ are sought, and $r b=$ inf if all eigenvalues to the right of lb are sought. One of $l b$ and $u b$ must be finite. A narrower interval makes the algorithm faster. In the complex case, the real parts of lmb are compared to lb and ub .
$x v$ are eigenvectors, ordered so that norm(a*xv-b*xv*diag(lmb)) is small. lmb is the sorted eigenvalues. If iresult >= 0 the algorithm succeeded, and all eigenvalues in the intervals have been found. If iresult<0 the algorithm has not yet been successful, there may be more eigenvalues -try with a smaller interval.
spd is 1 if the pencil is known to be symmetric positive definite (default 0 ).
tolconv is the expected relative accuracy. Default is $100 *$ eps, where eps is the machine precision.
$j \max$ is the maximum number of basis vectors. The algorithm needs $j m a x * n$ working space so a small value may be justified on a small computer, otherwise let it be the default value $j$ max $=100$. Normally the algorithm stops earlier when enough eigenvalues have converged.
maxmul is the number of Arnoldi runs tried. Must at least be as large as maximum multiplicity of any eigenvalue. If a small value of jmax is given, many Arnoldi runs are necessary. The default value is maxmul $=n$, which is needed when all the eigenvalues of the unit matrix are sought.

## Algorithms

The Arnoldi algorithm with spectral transformation is used. The shift is chosen at ub, lb, or at a random point in interval ( $l \mathrm{~b}, \mathrm{ub}$ ) when both bounds are finite. The number of steps j in the Arnoldi run depends on how many eigenvalues there are in the interval, but it stops at $\mathrm{j}=\min (\mathrm{jmax}, \mathrm{n})$.

After a stop, the algorithm restarts to find more Schur vectors in orthogonal complement to all those already found. When no more eigenvalues are found in $\mathrm{lb}<\mathrm{lmb}<=\mathrm{ub}$, the algorithm stops. For small values of jmax, several restarts may be needed before a certain eigenvalue has converged. The algorithm works when jmax is at least one larger than the number of eigenvalues in the interval, but then many restarts are needed. For large values of $j$ max, which is the preferred choice, mul +1 runs are needed. mul is the maximum multiplicity of an eigenvalue in the interval.

Note The algorithm works on nonsymmetric as well as symmetric pencils, but then accuracy is approximately tol times the Henrici departure from normality. The parameter spd is used only to choose between symamd and colamd when factorizing, the former being marginally better for symmetric matrices close to the lower end of the spectrum.

In case of trouble,
If convergence is too slow, try (in this order of priority):

- a smaller interval lb, ub
- a larger jmax
- a larger maxmul

If factorization fails, try again with lb or ub finite. Then shift is chosen at random and hopefully not at an eigenvalue. If it fails again, check whether pencil may be singular.

If it goes on forever, there may be too many eigenvalues in the strip. Try with a small value maxmul = 2 and see which eigenvalues you get. Those you get are some of the eigenvalues, but a negative iresult tells you that you have not gotten them all.

If memory overflow, try smaller jmax.
The algorithm is designed for eigenvalues close to the real axis. If you want those close to the imaginary axis, try $A=i^{*}$ A.

When $\mathrm{spd}=1$, the shift is at lb so that advantage is taken of the faster factorization for symmetric positive definite matrices. No harm is done, but the execution is slower if lb is above the lowest eigenvalue.

## References

[1] Golub, Gene H., and Charles F. Van Loan, Matrix Computations, 2nd edition, Johns Hopkins University Press, Baltimore, MD, 1989.
[2] Saad, Yousef, "Variations on Arnoldi's Method for Computing Eigenelements of Large Unsymmetric Matrices," Linear Algebra and its Applications, Vol. 34, 1980, pp. 269-295.

## See Also

solvepdeeig
Introduced before R2006a

## StaticStructuralResults

Static structural solution and its derived quantities

## Description

A StaticStructuralResults object contains the displacement, stress, strain, and von Mises stress in a form convenient for plotting and postprocessing.

Displacements, stresses, and strains are reported for the nodes of the triangular or tetrahedral mesh generated by generateMesh. Displacement values at the nodes appear as an FEStruct object in the Displacement property. The properties of this object contain components of displacement at nodal locations.

Stress and strain values at the nodes appear as FEStruct objects in the Stress and Strain properties, respectively.
von Mises stress at the nodes appears as a vector in the VonMisesStress property.
To interpolate the displacement, stress, strain, and von Mises stress to a custom grid, such as the one specified by meshgrid, use interpolateDisplacement, interpolateStress, interpolateStrain, and interpolateVonMisesStress, respectively.

To evaluate reaction forces on a specified boundary, use evaluateReaction. To evaluate principal stress and principal strain at nodal locations, use evaluatePrincipalStress and evaluatePrincipalStrain, respectively.

## Creation

Solve a static linear elasticity problem by using the solve function. This function returns a static structural solution as a StaticStructuralResults object.

## Properties

Properties of an FESt ruct object are read-only.

## Displacement - Displacement values at nodes

FEStruct object
Displacement values at the nodes, returned as an FEStruct object. The properties of this object contain components of displacement at nodal locations.

## Stress - Stress values at nodes

FEStruct object
Stress values at the nodes, returned as an FESt ruct object. The properties of this object contain components of stress at nodal locations.

## Strain - Strain values at nodes

FEStruct object

Strain values at the nodes, returned as an FEStruct object. The properties of this object contain components of strain at nodal locations.

## VonMisesStress - Von Mises stress values at nodes

vector
Von Mises stress values at the nodes, returned as a vector.
Data Types: double

## Mesh - Finite element mesh

FEMesh object
Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

## Object Functions

interpolateDisplacement interpolateStress interpolateStrain interpolateVonMisesStress evaluateReaction evaluatePrincipalStress evaluatePrincipalStrain

Interpolate displacement at arbitrary spatial locations Interpolate stress at arbitrary spatial locations Interpolate strain at arbitrary spatial locations Interpolate von Mises stress at arbitrary spatial locations Evaluate reaction forces on boundary
Evaluate principal stress at nodal locations
Evaluate principal strain at nodal locations

## Examples

## Solution to Static Structural Model

Solve a static structural model representing a bimetallic cable under tension.
Create a static structural model for solving a solid (3-D) problem.

```
structuralmodel = createpde('structural','static-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicylinder([0.01 0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','CellLabels','on','FaceAlpha',0.5)
```



Specify the Young's modulus and Poisson's ratio for each metal.

```
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);
```

Specify that faces 1 and 4 are fixed boundaries.
structuralBC(structuralmodel, 'Face', [1,4], 'Constraint','fixed');
Specify the surface traction for faces 2 and 5 .
structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'SurfaceTraction ', [0;0;100]);
Generate a mesh and solve the problem.
generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)
structuralresults =
StaticStructuralResults with properties:

```
 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]
 Mesh: [1x1 FEMesh]
```

The solver finds the values of displacement, stress, strain, and von Mises stress at the nodal locations. To access these values, use structuralresults.Displacement, structuralresults.Stress, and so on. The displacement, stress, and strain values at the nodal locations are returned as FEStruct objects with the properties representing their components. Note that properties of an FEStruct object are read-only.

```
structuralresults.Displacement
```

ans =
FEStruct with properties:
ux: [22306x1 double]
uy: [22306x1 double]
uz: [22306x1 double]
Magnitude: [22306x1 double]
structuralresults.Stress
ans =
FEStruct with properties:
sxx: [22306x1 double]
syy: [22306x1 double]
szz: [22306x1 double]
syz: [22306x1 double]
sxz: [22306x1 double]
sxy: [22306x1 double]
structuralresults.Strain
ans =
FEStruct with properties:
exx: [22306x1 double]
eyy: [22306x1 double]
ezz: [22306x1 double]
eyz: [22306x1 double]
exz: [22306x1 double]
exy: [22306x1 double]

Plot the deformed shape with the $z$-component of normal stress.

```
pdeplot3D(structuralmodel,'ColorMapData',structuralresults.Stress.szz, ...
 'Deformation',structuralresults.Displacement)
```



## See Also

ModalStructuralResults|StructuralModel|TransientStructuralResults|solve Introduced in R2017b

## ModalStructuralResults

Structural modal analysis solution

## Description

A ModalStructuralResults object contains the natural frequencies and modal displacement in a form convenient for plotting and postprocessing.

Modal displacement is reported for the nodes of the triangular or tetrahedral mesh generated by generateMesh. The modal displacement values at the nodes appear as an FEStruct object in the ModeShapes property. The properties of this object contain the components of the displacement at the nodal locations.

You can use a ModalStructuralResults object to approximate solutions for transient dynamics problems. For details, see solve.

## Creation

Solve a modal analysis problem by using the solve function. This function returns a modal structural solution as a ModalStructuralResults object.

## Properties

Properties of an FEStruct object are read-only.

## NaturalFrequencies - Natural frequencies

column vector
Natural frequencies of the structure, returned as a column vector.
Data Types: double
ModeShapes - Modal displacement values at nodes
FEStruct object
Modal displacement values at the nodes, returned as an FEStruct object. The properties of this object contain components of modal displacement at nodal locations.

## Mesh - Finite element mesh

FEMesh object
Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

## Examples

## Solution to Modal Analysis Structural Model

Find the fundamental (lowest) mode of a 2-D cantilevered beam, assuming prevalence of the planestress condition.

Specify the following geometric and structural properties of the beam, along with a unit plane-stress thickness.

```
length = 5;
height = 0.1;
E = 3E7;
nu = 0.3;
rho = 0.3/386;
```

Create a model plane-stress model, assign a geometry, and generate a mesh.

```
structuralmodel = createpde('structural','modal-planestress');
gdm = [3;4;0;length;length;0;0;0;height;height];
g = decsg(gdm,'S1',('S1')');
geometryFromEdges(structuralmodel,g);
```

Define a maximum element size (five elements through the beam thickness).

```
hmax = height/5;
msh=generateMesh(structuralmodel,'Hmax',hmax);
```

Specify the structural properties and boundary constraints.

```
structuralProperties(structuralmodel,'YoungsModulus',E, ...
 'MassDensity',rho, ...
 'PoissonsRatio',nu);
structuralBC(structuralmodel,'Edge',4,'Constraint','fixed');
```

Compute the analytical fundamental frequency ( Hz ) using the beam theory.

```
I = height^3/12;
analyticalOmega1 = 3.516*sqrt(E*I/(length^4*(rho*height)))/(2*pi)
analyticalOmega1 = 126.9498
```

Specify a frequency range that includes an analytically computed frequency and solve the model.

```
modalresults = solve(structuralmodel,''FrequencyRange',[0,1e6])
modalresults =
 ModalStructuralResults with properties:
 NaturalFrequencies: [32x1 double]
 ModeShapes: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]
```

The solver finds natural frequencies and modal displacement values at nodal locations. To access these values, use modalresults. NaturalFrequencies and modalresults. ModeShapes.

```
modalresults.NaturalFrequencies/(2*pi)
ans = 32\times1
105 x
 0.0013
 0.0079
 0.0222
 0.0433
```

$$
\begin{aligned}
& 0.0711 \\
& 0.0983 \\
& 0.1055 \\
& 0.1462 \\
& 0.1930 \\
& 0.2455
\end{aligned}
$$

```
modalresults.ModeShapes
ans =
 FEStruct with properties:
```

```
 ux: [6511x32 double]
 uy: [6511\times32 double]
 Magnitude: [6511\times32 double]
```

Plot the $y$-component of the solution for the fundamental frequency.

```
pdeplot(structuralmodel,'XYData',modalresults.ModeShapes.uy(:,1))
title(['First Mode with Frequency ', ...
 num2str(modalresults.NaturalFrequencies(1)/(2*pi)),' Hz'])
axis equal
```

First Mode with Frequency 126.9416 Hz


## See Also

StaticStructuralResults|StructuralModel|TransientStructuralResults|solve
Introduced in R2018a

## FrequencyStructuralResults

Frequency response structural solution and its derived quantities

## Description

A FrequencyStructuralResults object contains the displacement, velocity, and acceleration in a form convenient for plotting and postprocessing.

Displacement, velocity, and acceleration are reported for the nodes of the triangular or tetrahedral mesh generated by generateMesh. The displacement, velocity, and acceleration values at the nodes appear as FEStruct objects in the Displacement, Velocity, and Acceleration properties. The properties of these objects contain the components of the displacement, velocity, and acceleration at the nodal locations.

To evaluate the stress, strain, von Mises stress, principal stress, and principal strain at the nodal locations, use evaluateStress, evaluateStrain, evaluateVonMisesStress, evaluatePrincipalStress, and evaluatePrincipalStrain, respectively.

To evaluate the reaction forces on a specified boundary, use evaluateReaction.
To interpolate the displacement, velocity, acceleration, stress, strain, and von Mises stress to a custom grid, such as the one specified by meshgrid, use interpolateDisplacement, interpolateVelocity, interpolateAcceleration, interpolateStress, interpolateStrain, and interpolateVonMisesStress, respectively.

For a frequency response model with damping, the results are complex. Use functions such as abs and angle to obtain real-valued results, such as the magnitude and phase. See "Solution to Frequency Response Structural Model with Damping" on page 5-970.

## Creation

Solve a frequency response problem by using the solve function. This function returns a frequency response structural solution as a FrequencyStructuralResults object.

## Properties

Properties of an FESt ruct object are read-only.

## Displacement - Displacement values at nodes FEStruct object

Displacement values at the nodes, returned as an FEStruct object. The properties of this object contain the components of the displacement at the nodal locations.

## Velocity - Velocity values at nodes

FEStruct object
Velocity values at the nodes, returned as an FEStruct object. The properties of this object contain the components of the velocity at the nodal locations.

## Acceleration - Acceleration values at nodes <br> FEStruct object

Acceleration values at the nodes, returned as an FEStruct object. The properties of this object contain the components of the acceleration at the nodal locations.

## SolutionFrequencies - Solution frequencies

real vector
Solution frequencies, returned as a real vector. SolutionFrequencies is the same as the flist input to solve.
Data Types: double
Mesh - Finite element mesh
FEMesh object
Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

## Object Functions

evaluateStress
evaluateStrain
evaluateVonMisesStress
evaluateReaction
evaluatePrincipalStress
evaluatePrincipalStrain
interpolateDisplacement
interpolateVelocity
interpolateAcceleration
interpolateStress
interpolateStrain
interpolateVonMisesStress

Evaluate stress for dynamic structural analysis problem Evaluate strain for dynamic structural analysis problem Evaluate von Mises stress for dynamic structural analysis problem Evaluate reaction forces on boundary Evaluate principal stress at nodal locations Evaluate principal strain at nodal locations Interpolate displacement at arbitrary spatial locations Interpolate velocity at arbitrary spatial locations for all time or frequency steps for dynamic structural model
Interpolate acceleration at arbitrary spatial locations for all time or frequency steps for dynamic structural model
Interpolate stress at arbitrary spatial locations
Interpolate strain at arbitrary spatial locations Interpolate von Mises stress at arbitrary spatial locations

## Examples

## Solution to Frequency Response Structural Model with Damping

Solve a frequency response problem with damping. The resulting displacement values are complex. To obtain the magnitude and phase of displacement, use the abs and angle functions, respectively. To speed up computations, solve the model using the results of modal analysis.

## Modal Analysis

Create a modal analysis model for a 3-D problem.

```
modelM = createpde('structural','modal-solid');
```

Create the geometry and include it in the model.

```
gm = multicuboid(10,10,0.025);
modelM.Geometry = gm;
```

Generate a mesh.
msh $=$ generateMesh(modelM);
Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(modelM,'YoungsModulus',2E11, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);
```

Identify faces for applying boundary constraints and loads by plotting the geometry with the face and edge labels.

```
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.5)
```


figure
pdegplot(gm,'EdgeLabels','on','FaceAlpha', 0.5)


Specify constraints on the sides of the plate (faces $3,4,5$, and 6 ) to prevent rigid body motions.
structuralBC(modelM, 'Face', [3,4,5,6],'Constraint','fixed');
Solve the problem for the frequency range from -Inf to $12 * \mathrm{pi}$.
Rm = solve(modelM,'FrequencyRange',[-Inf,12*pi]);

## Frequency Response Analysis

Create a frequency response analysis model for a 3-D problem.
modelFR = createpde('structural','frequency-solid');
Use the same geometry and mesh as you used for the modal analysis.

```
modelFR.Geometry = gm;
modelFR.Mesh = msh;
```

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.
structuralProperties(modelFR,'YoungsModulus',2E11,'PoissonsRatio', 0.3,'MassDensity', 8000);
Specify the same constraints on the sides of the plate to prevent rigid body modes.
structuralBC(modelFR,'Face',[3,4,5,6],'Constraint','fixed');
Specify the pressure loading on top of the plate (face 2) to model an ideal impulse excitation. In the frequency domain, this pressure pulse is uniformly distributed across all frequencies.

```
structuralBoundaryLoad(modelFR,'Face',2,'Pressure',1E2);
```

First, solve the model without damping.

```
flist = [0,1,1.5,linspace(2,3,100),3.5,4,5,6]*2*pi;
RfrModalU = solve(modelFR,flist,'ModalResults',Rm);
```

Now, solve the model with damping equal to $2 \%$ of critical damping for all modes.

```
structuralDamping(modelFR,'Zeta',0.02);
RfrModalAll = solve(modelFR,flist,'ModalResults',Rm);
```

Solve the same model with frequency-dependent damping. In this example, use the solution frequencies from flist and damping values between $1 \%$ and $10 \%$ of critical damping.

```
omega = flist;
zeta = linspace(0.01,0.1,length(omega));
zetaW = @(omegaMode) interp1(omega,zeta,omegaMode);
structuralDamping(modelFR,'Zeta',zetaW);
RfrModalFD = solve(modelFR,flist,'ModalResults',Rm);
```

Interpolate the displacement at the center of the top surface of the plate for all three cases.

```
iDispU = interpolateDisplacement(RfrModalU,[0;0;0.025]);
iDispAll = interpolateDisplacement(RfrModalAll,[0;0;0.025]);
iDispFD = interpolateDisplacement(RfrModalFD,[0;0;0.025]);
```

Plot the magnitude of the displacement. Zoom in on the frequencies around the first mode.

```
figure
hold on
plot(RfrModalU.SolutionFrequencies,abs(iDispU.Magnitude));
plot(RfrModalAll.SolutionFrequencies,abs(iDispAll.Magnitude));
plot(RfrModalFD.SolutionFrequencies,abs(iDispFD.Magnitude));
title('Magnitude')
xlim([10 25])
ylim([0 0.5])
```



Plot the phase of the displacement.
figure
hold on
plot(RfrModalU. SolutionFrequencies, angle(iDispU.Magnitude));
plot(RfrModalAll.SolutionFrequencies, angle(iDispAll.Magnitude));
plot(RfrModalFD.SolutionFrequencies,angle(iDispFD.Magnitude));
title('Phase')


## See Also

ModalStructuralResults|StaticStructuralResults|StructuralModel| TransientStructuralResults| solve

Introduced in R2019b

## TransientStructuralResults

Transient structural solution and its derived quantities

## Description

A TransientStructuralResults object contains the displacement, velocity, and acceleration in a form convenient for plotting and postprocessing.

Displacement, velocity, and acceleration are reported for the nodes of the triangular or tetrahedral mesh generated by generateMesh. The displacement, velocity, and acceleration values at the nodes appear as FEStruct objects in the Displacement, Velocity, and Acceleration properties. The properties of these objects contain the components of the displacement, velocity, and acceleration at the nodal locations.

To evaluate the stress, strain, von Mises stress, principal stress, and principal strain at the nodal locations, use evaluateStress, evaluateStrain, evaluateVonMisesStress, evaluatePrincipalStress, and evaluatePrincipalStrain, respectively.

To evaluate the reaction forces on a specified boundary, use evaluateReaction.
To interpolate the displacement, velocity, acceleration, stress, strain, and von Mises stress to a custom grid, such as the one specified by meshgrid, use interpolateDisplacement, interpolateVelocity, interpolateAcceleration, interpolateStress, interpolateStrain, and interpolateVonMisesStress, respectively.

## Creation

Solve a dynamic linear elasticity problem by using the solve function. This function returns a transient structural solution as a TransientStructuralResults object.

## Properties

Properties of an FESt ruct object are read-only.

## Displacement - Displacement values at nodes <br> FESt ruct object

Displacement values at the nodes, returned as an FEStruct object. The properties of this object contain components of displacement at nodal locations.

## Velocity - Velocity values at nodes

FEStruct object
Velocity values at the nodes, returned as an FEStruct object. The properties of this object contain components of velocity at nodal locations.

## Acceleration - Acceleration values at nodes <br> FEStruct object

Acceleration values at the nodes, returned as an FEStruct object. The properties of this object contain components of acceleration at nodal locations.

## SolutionTimes - Solution times

real vector
Solution times, returned as a real vector. SolutionTimes is the same as the tlist input to solve.
Data Types: double

## Mesh - Finite element mesh

FEMesh object
Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

## Object Functions

evaluateStress evaluateStrain evaluateVonMisesStress evaluateReaction evaluatePrincipalStress evaluatePrincipalStrain interpolateDisplacement interpolateVelocity
interpolateAcceleration
interpolateStress
interpolateStrain
interpolateVonMisesStress

Evaluate stress for dynamic structural analysis problem Evaluate strain for dynamic structural analysis problem Evaluate von Mises stress for dynamic structural analysis problem Evaluate reaction forces on boundary Evaluate principal stress at nodal locations Evaluate principal strain at nodal locations Interpolate displacement at arbitrary spatial locations Interpolate velocity at arbitrary spatial locations for all time or frequency steps for dynamic structural model Interpolate acceleration at arbitrary spatial locations for all time or frequency steps for dynamic structural model Interpolate stress at arbitrary spatial locations Interpolate strain at arbitrary spatial locations Interpolate von Mises stress at arbitrary spatial locations

## Examples

## Solution to Transient Structural Model

Solve for the transient response of a thin 3-D plate under a harmonic load at the center.
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid([5,0.05],[5,0.05],0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
```



Zoom in to see the face labels on the small plate at the center.
figure
pdegplot(structuralmodel,' $F a c e L a b e l s ', ' o n ', ' F a c e A l p h a ', 0.25)$
axis([-0.2 0.2 -0.2 0.2 -0.1 0.1])


Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);
```

Specify that all faces on the periphery of the thin 3-D plate are fixed boundaries.
structuralBC(structuralmodel,'Constraint','fixed','Face',5:8);
Apply a sinusoidal pressure load on the small face at the center of the plate.
structuralBoundaryLoad(structuralmodel, 'Face', 12, 'Pressure', 5E7, 'Frequency' , 25);
Generate a mesh with linear elements.
generateMesh(structuralmodel,'GeometricOrder','linear','Hmax', 0.2);
Specify zero initial displacement and velocity.
structuralIC(structuralmodel,'Displacement', [0;0;0],'Velocity', [0;0;0]);
Solve the model.

```
tlist = linspace(0,1,300);
structuralresults = solve(structuralmodel,tlist)
structuralresults =
 TransientStructuralResults with properties:
```

```
Displacement: [1x1 FEStruct]
 Velocity: [1x1 FEStruct]
Acceleration: [1x1 FEStruct]
SolutionTimes: [1x300 double]
 Mesh: [1x1 FEMesh]
```

The solver finds the values of the displacement, velocity, and acceleration at the nodal locations. To access these values, use structuralresults.Displacement, structuralresults.Velocity, and so on. The displacement, velocity, and acceleration values are returned as FEStruct objects with the properties representing their components. Note that properties of an FEStruct object are readonly.

```
structuralresults.Displacement
ans =
 FEStruct with properties:
 ux: [1873x300 double]
 uy: [1873x300 double]
 uz: [1873x300 double]
 Magnitude: [1873\times300 double]
```

structuralresults.Velocity
ans $=$
FEStruct with properties:
vx: [1873x300 double]
vy: [1873x300 double]
vz: [1873x300 double]
Magnitude: [1873x300 double]
structuralresults.Acceleration
ans =
FEStruct with properties:
ax: [1873x300 double]
ay: [1873x300 double]
az: [1873×300 double]
Magnitude: [1873×300 double]

## See Also

ModalStructuralResults|StaticStructuralResults|StructuralModel|solve
Introduced in R2018a

## structuralBC

Package: pde

Specify boundary conditions for structural model

## Syntax

structuralBC(structuralmodel, RegionType, RegionID, 'Constraint' ', Cval)
structuralBC(structuralmodel, RegionType, RegionID, 'Displacement' , Dval)
structuralBC(structuralmodel, RegionType, RegionID, 'XDisplacement',
XDval,'YDisplacement', YDval,' ZDisplacement', ZDval)
structuralBC(structuralmodel,RegionType, RegionID,'RDisplacement',
RDval,'ZDisplacement',ZDval)
structuralBC(structuralmodel,RegionType,RegionID,'XDisplacement',XDval, Name, Value)
structuralBC(structuralmodel, RegionType, RegionID,'Constraint','multipoint')
structuralBC( $\qquad$ ,'Reference',Coords)
structuralBC( $\qquad$ ,'Reference',Coords,'Radius', R)
structuralBC( $\qquad$ ,'Vectorized','on')
bc = structuralBC( $\qquad$ )

## Description

## Standard Boundary Constraints and Displacements

structuralBC(structuralmodel,RegionType,RegionID, 'Constraint', Cval) specifies one of the standard structural boundary constraints. Here, Cval can be 'fixed', 'free', 'roller', or 'symmetric'. The default value is 'free'.

Avoid using ' symmetric' for transient and modal analysis, since the symmetric constraint can prevent the participation of some structural modes.
structuralBC(structuralmodel, RegionType,RegionID, 'Displacement',Dval) enforces displacement on the boundary of type RegionType with RegionID ID numbers.
structuralBC(structuralmodel,RegionType, RegionID, 'XDisplacement', XDval,'YDisplacement', YDval,' ZDisplacement', ZDval) specifies the x -, y -, and z components of the enforced displacement.
structuralBC does not require you to specify all three components. Depending on your structural analysis problem, you can specify one or more components by picking the corresponding arguments and omitting others.
structuralBC(structuralmodel,RegionType, RegionID, 'RDisplacement', RDval, 'ZDisplacement' , ZDval) specifies the r-and z-components of the enforced displacement for an axisymmetric model. The radial component (r-component) must be zero on the axis of rotation.
structuralBC does not require you to specify both components.

## Harmonic, Rectangular, Triangular, and Trapezoidal Displacement Pulses

structuralBC(structuralmodel, RegionType, RegionID, 'XDisplacement', XDval, Name, Value) specifies the form and duration of the time-varying value of the x-component of the enforced displacement. You can also specify the form and duration of the other components of the displacement as follows:

- structuralBC(...,'YDisplacement',YDval, Name, Value) for the y-component.
- structuralBC(...,'ZDisplacement',ZDval,Name, Value) for the z-component. Use this syntax for a 3-D or axisymmetric model.
- structuralBC(...,'RDisplacement', RDval,Name, Value) for the radial component in an axisymmetric model.


## Multipoint Constraint

structuralBC(structuralmodel, RegionType, RegionID, 'Constraint', 'multipoint') sets the multipoint constraint using all degrees of freedom on the combination of geometric regions specified by RegionType and RegionID. The reference location for the constraint is the geometric center of all nodes on the combination of all specified geometric regions.

This syntax is required if you intend to use results obtained with the model order reduction technique in the Simscape Multibody ${ }^{\text {TM }}$ Reduced Order Flexible Solid block. Simscape models expect the connections at all joints to have six degrees of freedom, while Partial Differential Equation Toolbox uses two or three degrees of freedom at each node. Setting a multipoint constraint ensures that all nodes and all degrees of freedom for the specified geometric regions have a rigid constraint with the geometric center of all specified geometric regions altogether as the reference point. The reference location has six degrees of freedom.

For better performance, specify geometric regions with a minimal number of nodes. For example, use a set of edges instead of using a face, and a set of vertices instead of using an edge.
structuralBC( __ , 'Reference' , Coords) specifies the reference point for the multipoint constraint instead of using the geometric center of all specified regions as a reference point.

Use this syntax with the input arguments from the previous syntax.
structuralBC( $\qquad$ ,'Reference', Coords, 'Radius',$R$ ) restricts the region for multipoint constraint to nodes within the circle (for a 2-D geometry) or sphere (for a 3-D geometry) of radius R around the reference point.

## Vectorized Evaluation for Function Handles

structuralBC( $\qquad$ ,'Vectorized','on') uses vectorized function evaluation when you pass a function handle as an argument. If your function handle computes in a vectorized fashion, then using this argument saves time. See "Vectorization". For details on this evaluation, see "Nonconstant Boundary Conditions" on page 2-116.

Use this syntax with any of the input arguments from previous syntaxes.

## Structural Boundary Condition Object

bc = structuralBC( $\qquad$ ) returns the structural boundary condition object using any of the input arguments from previous syntaxes.

## Examples

## Apply Fixed Boundaries and Specify Surface Traction

Apply fixed boundaries and traction on two ends of a bimetallic cable.
Create a structural model.

```
structuralModel = createpde('structural','static-solid');
```

Create nested cylinders to model a bimetallic cable.
gm = multicylinder([0.01,0.015],0.05);
Assign the geometry to the structural model and plot the geometry.
structuralModel.Geometry = gm;
pdegplot(structuralModel,'CellLabels','on', 'FaceLabels','on','FaceAlpha', 0.4)


For each metal, specify the Young's modulus and Poisson's ratio.
structuralProperties(structuralModel,'Cell',1,'YoungsModulus',110E9, ...
'PoissonsRatio',0.28);
structuralProperties(structuralModel,'Cell',2,'YoungsModulus',210E9, ...
'PoissonsRatio',0.3);
Specify that faces 1 and 4 are fixed boundaries.

```
structuralBC(structuralModel,'Face',[1,4],'Constraint','fixed')
ans =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: [1 4]
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "fixed"
 Radius: []
 Reference: []
 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
```

Specify the surface traction for faces 2 and 5.

```
structuralBoundaryLoad(structuralModel,'Face',[2,5],'SurfaceTraction',[0;0;100])
ans =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: [2 5]
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Boundary Loads
 Force: []
 SurfaceTraction: [3x1 double]
 Pressure: []
 TranslationalStiffness: []
```


## Specify Displacements

Create a structural model.

```
structuralModel = createpde('structural','static-solid');
```

Create a block geometry.
gm = multicuboid(0.2, 0.1, 0.05);
Assign the geometry to the structural model and plot the geometry.
structuralModel. Geometry = gm;
pdegplot(structuralModel,'FaceLabels','on','FaceAlpha',0.5)


Specify the Young's modulus, Poisson's ratio, and mass density.
structuralProperties(structuralModel, 'YoungsModulus',74e9,...
'PoissonsRatio', 0.42,...
'MassDensity',19.29e3);
Specify the gravity load on the beam.
structuralBodyLoad(structuralModel, 'GravitationalAcceleration',[0;0;-9.8]);
Specify that face 5 is a fixed boundary.
structuralBC(structuralModel, 'Face', 5, 'Constraint','fixed');
Specify $z$-displacement on face 3 of the model. By leaving the $x$ - and $y$-displacements unspecified, you enable face 3 to move in the $x$ - and $y$-directions.
structuralBC(structuralModel, 'Face', 3,'ZDisplacement',0.0001);

Generate a mesh and solve the model.
generateMesh(structuralModel);
R = solve(structuralModel);
Plot the deformed shape with the $x$-component of normal stress.
pdeplot3D(structuralModel, 'ColorMapData', R.Stress.sxx, 'Deformation' , R.Displacement)


Now specify all three displacements on the same face. Here, the $z$-displacement is the same, but the $x$ - and $y$-displacements are both zero. Face 3 cannot move in the $x$ - and $y$-directions.
structuralBC(structuralModel,'Face',3,'Displacement', [0;0;0.0001]);
R = solve(structuralModel);
pdeplot3D(structuralModel,'ColorMapData',R.Stress.sxx,'Deformation',R.Displacement)


Thus, specifying 'Displacement',$[0 ; 0 ; 0.0001]$ is equivalent to specifying 'XDisplacement',0,'YDisplacement',0,'ZDisplacement',0.0001.
structuralBC(structuralModel,'Face',3,'XDisplacement',0, ...

> 'YDisplacement',0, ...
'ZDisplacement',0.0001);
R = solve(structuralModel);
pdeplot3D(structuralModel,'ColorMapData',R.Stress.sxx,'Deformation',R.Displacement)


## Static Analysis of Spinning Disk with Press-Fit at Hub

Analyze a spinning disk with radial compression at the hub due to press-fit. The inner radius of the disk is 0.05 , and the outer radius is 0.2 . The thickness of the disk is 0.05 with an interference fit of $50 \mathrm{E}-6$. For this analysis, simplify the 3-D axisymmetric model to a 2-D model.

Create a static structural analysis model for solving an axisymmetric problem.
structuralmodel = createpde('structural','static-axisymmetric');
The 2-D model is a rectangular strip whose $x$-dimension extends from the hub to the outer surface, and whose $y$-dimension extends over the height of the disk. Create the geometry by specifying the coordinates of the strip's four corners. For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing through $r=0$, which is equivalent to $x=0$.

```
g = decsg([3 4 0.05 0.2 0.2 0.05 -0.025 -0.025 0.025 0.025]');
```

Include the geometry in the model.

```
geometryFromEdges(structuralmodel,g);
```

Plot the geometry with the edge and vertex labels.
figure
pdegplot(structuralmodel,'EdgeLabels','on','VertexLabels','on')
$x \lim ([0 \quad 0.3])$
$y \lim ([-0.050 .05])$


Specify the Young's modulus, Poisson's ratio, and mass density.

```
structuralProperties(structuralmodel,'YoungsModulus',210e9, ...
 'PoissonsRatio',0.28, ...
 'MassDensity',7700);
```

Apply centrifugal load due to spinning of the disk. Assume that the disk is spinning at $104.7 \mathrm{rad} / \mathrm{s}$.
structuralBodyLoad(structuralmodel,'AngularVelocity',1047);
Apply radial displacement at the hub of the disk to model press-fit.
structuralBC(structuralmodel,'Edge',4,'RDisplacement',50e-6);
Fix axial displacement of a point on the hub to prevent rigid body motion.
structuralBC(structuralmodel,'Vertex',1,'ZDisplacement',0);
Generate a mesh
generateMesh(structuralmodel);
Solve the model.
structuralresults = solve(structuralmodel);

Plot the radial displacement of the disk.
figure
pdeplot(structuralmodel, ...
'XYData', structuralresults.Displacement.ur, ...
'ColorMap','jet')
axis equal
$x \lim ([00.3])$
$y \lim ([-0.050 .05])$


Plot circumferential (hoop) stress.
figure
pdeplot(structuralmodel, ...
'XYData', structuralresults.Stress.sh, ... 'ColorMap','jet')
axis equal
$x \lim ([00.3])$
ylim([-0.05 0.05])


## Specify Nonconstant Displacement by Using Function Handle

Use a function handle to specify a harmonically varying excitation in a beam.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create a geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.

```
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
```

Apply a sinusoidal displacement along the $y$-direction on the end opposite to the fixed end of the beam.

```
yDisplacementFunc = @(location,state) ones(size(location.y))*1E-4*sin(50*state.time);
structuralBC(structuralmodel,'Face',3,'YDisplacement',yDisplacementFunc)
ans =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: 3
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: [function_handle]
 ZDisplacement: []
```

```
 Constraint: []
 Radius: []
 Reference: []
Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: []
 EndTime: []
 RiseTime: []
 FallTime: []
Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []
```


## Apply Sinusoidal Displacement by Specifying Frequency

Specify a harmonically varying excitation by specifying its frequency.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create a geometry and include it in the model. Plot the geometry.
gm = multicuboid(0.06, 0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel, 'FaceLabels', 'on', 'FaceAlpha', 0.5)
view (50,20)


Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);
```

Fix one end of the beam.
structuralBC(structuralmodel,'Face',5,'Constraint','fixed');
Apply a sinusoidal displacement along the $y$-direction on the end opposite to the fixed end of the beam.

```
structuralBC(structuralmodel,'Face',3,'YDisplacement',1E-4,'Frequency',50);
```


## Specify Displacement at Corner of Rectangle

Fix one corner of a rectangular plate to restrain all rigid body motions of the model.
Create a structural model for static plane-stress analysis.
model = createpde('structural','static-planestress');
Create the geometry and include it in the structural model.

```
length = 1;
width = 0.5;
radius = 0.1;
R1 = [3 4 -length length length -length ...
 -width -width width width]';
C1 = [1 0 0 radius 0 0 0 0 0 0]';
gdm = [R1 C1];
ns = char('R1','C1');
g = decsg(gdm,'R1- C1',ns');
geometryFromEdges(model,g);
```

Plot the geometry, displaying edge labels.

## figure

pdegplot(model,'EdgeLabels','on');
axis([-1.2*length 1.2*length ...
-1.2*width 1.2*width])


Plot the geometry, displaying vertex labels.
figure
pdegplot(model, 'VertexLabels','on');
axis([-1.2*length 1.2*length ...
-1.2*width 1.2*width])


Specify the Young's modulus and Poisson's ratio of the material.
structuralProperties(model,'YoungsModulus',210E9, 'PoissonsRatio',0.3);
Set the $x$-component of displacement on the left edge of the plate to zero to resist the applied load.
structuralBC(model,'Edge', 3, 'XDisplacement', 0 );
Apply the surface traction with a nonzero $x$-component on the right edge of the plate.
structuralBoundaryLoad(model,'Edge',1,'SurfaceTraction',[100000 0]);
Set the $y$-component of displacement at the bottom-left corner (vertex 3 ) to zero to restraint the rigid body motion.
structuralBC(model,' Vertex',3,'YDisplacement',0) ;
Generate the mesh, using Hmax to control the mesh size. A fine mesh lets you capture the gradation in the solution accurately.
generateMesh(model,'Hmax', radius/6);
Solve the problem.
R = solve(model);
Plot the x -component of the normal stress distribution.

```
pdeplot(model,'XYData',R.Stress.sxx);
axis equal
colormap jet
title 'Normal Stress Along x-Direction';
```



Set Multipoint Constraint and Obtain ROM Results Compatible with Simscape Multibody ${ }^{\text {TM }}$
Set multipoint constraints on two opposite sides of a beam.
Create a transient structural model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create a geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.1,0.01,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'EdgeLabels','on','FaceAlpha',0.5)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',70E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2700);
```

Generate a mesh.
generateMesh(structuralmodel);
Set the multipoint constraint on the right side of the beam. For better performance, set the constraint on the set of edges bounding the right side of the beam instead of setting it on the entire face.

```
structuralBC(structuralmodel,'Edge',[4,6,9,10],'Constraint','multipoint')
ans =
 StructuralBC with properties:
 RegionType: 'Edge'
 RegionID: [4 6 9 10]
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "multipoint"
```

```
 Radius: []
 Reference: []
Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
TranslationalStiffness: []
Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: []
 EndTime: []
 RiseTime: []
 FallTime: []
Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []
```

Using the same approach, set the multipoint constraint on the left side of the beam.

```
structuralBC(structuralmodel,'Edge',[2,8,11,12],'Constraint','multipoint')
```

ans $=$
StructuralBC with properties:
RegionType: 'Edge'
RegionID: [2 8 11 12]
Vectorized: 'off'
Boundary Constraints and Enforced Displacements
Displacement: []
XDisplacement: []
YDisplacement: []
ZDisplacement: []
Constraint: "multipoint"
Radius: []
Reference: []
Boundary Loads
Force: []
SurfaceTraction: []
Pressure: []
TranslationalStiffness: []
Time Variation of Force, Pressure, or Enforced Displacement
StartTime: []
EndTime: []
RiseTime: []
FallTime: []
Sinusoidal Variation of Force, Pressure, or Enforced Displacement
Frequency: []
Phase: []

Reduce the model to all modes in the frequency range [-Inf, 500000] and the interface degrees of freedom.

```
R = reduce(structuralmodel,'FrequencyRange',[-Inf,500000])
R =
 ReducedStructuralModel with properties:
 K: [34\times34 double]
 M: [34\times34 double]
 NumModes: 22
 RetainedDoF: [1x144 double]
 ReferenceLocations: [3x2 double]
 Mesh: [1x1 FEMesh]
```


## Input Arguments

## structuralmodel - Structural model

StructuralModel object
Structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.

Example: structuralmodel = createpde('structural','transient-solid')

## RegionType - Geometric region type

'Vertex' | 'Edge ' | 'Face' (for a 3-D model only)
Geometric region type, specified as 'Vertex', 'Edge', or, for a 3-D model, 'Face'.
You cannot use the following geometric region types if you specify the 'roller' or 'symmetric' value for the boundary constraint Cval:

- 'Edge' for a 3-D model
- 'Vertex' for a 2-D or 3-D model

Example: structuralBC(structuralmodel,' Face', [2,5],'XDisplacement', 0.1)
Data Types: char \| string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.
Example: structuralBC(structuralmodel,' Face', [2,5],'XDisplacement', 0.01)
Data Types: double

## Displacement

## Dval - Enforced displacement

numeric vector | function handle

Enforced displacement, specified as a numeric vector or function handle. A numeric vector must contain two elements for a 2-D model (including axisymmetric models) and three elements for a 3-D model. The function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix must correspond to an enforced displacement vector at the boundary coordinates provided by the solver. In case of a transient or frequency response analysis, Dval also can be a function of time or frequency, respectively. For details, see "More About" on page 5-1005.

Note that when you specify Dval for an axisymmetric model, the radial displacement on the axis of rotation must always be zero.

```
Example: structuralBC(structuralmodel, 'Face', [2,5],'Displacement', [0;0;0.01])
```

Data Types: double | function_handle

## XDval - x-component of enforced displacement

## number | function handle

x -component of enforced displacement, specified as a number or function handle. The function must return a row vector. Each element of this vector corresponds to the x-component value of the enforced displacement at the boundary coordinates provided by the solver. In case of a transient or frequency response analysis, XDval also can be a function of time or frequency, respectively. For details, see "More About" on page 5-1005.

Example: structuralBC(structuralmodel,' Face', [2,5],'XDisplacement', 0.01)
Data Types: double | function_handle

## YDval - y-component of enforced displacement

number | function handle
y -component of enforced displacement, specified as a number or function handle. The function must return a row vector. Each element of this vector corresponds to the $y$-component value of the enforced displacement at the boundary coordinates provided by the solver. In case of a transient or frequency response analysis, YDval also can be a function of time or frequency, respectively. For details, see "More About" on page 5-1005.
Example: structuralBC(structuralmodel,' Face', [2,5],'YDisplacement', 0.01)
Data Types: double | function_handle

## ZDval - z-component of enforced displacement

number | function handle
z-component of enforced displacement, specified as a number or function handle. The function must return a row vector. Each element of this vector corresponds to the z-component value of the enforced displacement at the boundary coordinates provided by the solver. For a transient or frequency response analysis, ZDval also can be a function of time or frequency, respectively. For details, see "More About" on page 5-1005.

You can specify ZDval for a 3-D or axisymmetric model.
Example: structuralBC(structuralmodel,' Face', [2,5],'ZDisplacement', 0.01)
Data Types: double | function_handle

## RDval - r-component of enforced displacement

number | function handle
r-component of enforced displacement, specified as a number or function handle. The function must return a row vector. Each element of this vector corresponds to the r-component value of the enforced displacement at the boundary coordinates provided by the solver. For a transient or frequency response analysis, RDval also can be a function of time or frequency, respectively. For details, see "More About" on page 5-1005.

You can specify RDval only for an axisymmetric model. RDval must be zero on the axis of rotation.
Example: structuralBC(structuralmodel, 'Face', [2,5],'RDisplacement', 0.01)
Data Types: double | function_handle

## Cval - Standard structural boundary constraints

'free' (default)| 'fixed'| 'roller'| 'symmetric'| 'multipoint'
Standard structural boundary constraints, specified as 'free','fixed','roller','symmetric', or 'multipoint'.

You cannot use the 'roller' and 'symmetric' values with the following geometric region types:

- 'Edge' for a 3-D model
- 'Vertex' for a 2-D or 3-D model

Example: structuralBC(structuralmodel,'Face',[2,5],'Constraint','fixed')
Data Types: char|string

## Coords - Reference point location for multipoint constraint

2-by-1 numeric vector | 3 -by-1 numeric vector
Reference point location for the multipoint constraint, specified as a 2-by-1 (for a 2-D geometry) or 3-by-1 (for a 3-D geometry) numeric vector.

```
Example: structuralBC(structuralmodel,'Vertex',
[1,3,5:10],'Constraint','multipoint','Reference',[0;0;1])
Data Types: double
```


## R - Radius of circle (for 2-D geometry) or sphere (for 3-D geometry) around reference point location for multipoint constraint

Radius of a circle (for a 2-D geometry) or a sphere (for a 3-D geometry) around the reference point location for the multipoint constraint, specified as a positive number.

```
Example: structuralBC(structuralmodel,'Vertex',
[1,3,5:10],'Constraint','multipoint','Reference',[0;0;1],'Radius',0.2)
Data Types: double
```


## Name-Value Pair Arguments

Use one or more name-value pair arguments to specify the form and duration of the time-varying value of a component of displacement. Specify the displacement value using one of the following arguments: XDval, YDval, ZDval, or RDval. You cannot use these name-value pair arguments to specify more than one time-varying component or to specify the Dval value.

You can model rectangular, triangular, and trapezoidal displacement pulses. If the start time is 0 , you do not need to specify it.

- For a rectangular pulse, specify the start and end times.
- For a triangular pulse, specify the start time and any two of the following times: rise time, fall time, and end time. You also can specify all three times, but they must be consistent.
- For a trapezoidal pulse, specify all four times.


You can model a harmonic displacement by specifying its frequency and initial phase. If the initial phase is 0 , you do not need to specify it.


Example: structuralBC(structuralmodel, 'Face', [2,5],'XDisplacement', 0.01,'RiseTime', 0.5,'FallTime', 0.5,'EndTime' , 3)

## Rectangular, Triangular, or Trapezoidal Pulse

## StartTime - Start time for displacement component

0 (default) | positive number
Start time for the displacement component, specified as 0 or a positive number. Specify this argument only for transient structural models.
Example: structuralBC(structuralmodel,'Face',
[2,5],'XDisplacement',0.01,'StartTime',1,'EndTime', 3)
Data Types: double

## EndTime - End time for displacement component

positive number
End time for the displacement component, specified as a positive number equal or greater than the start time value. Specify this argument only for transient structural models.

Example: structuralBC(structuralmodel,' Face',
[2,5],'XDisplacement',0.01,'StartTime',1,'EndTime',3)
Data Types: double

## RiseTime - Rise time for displacement component

positive number
Rise time for the displacement component, specified as a positive number. Specify this argument only for transient structural models.

```
Example: structuralBC(structuralmodel,' 'Face',
[2,5],'XDisplacement',0.01,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)
```


## Data Types: double

## FallTime - Fall time for displacement component

 positive numberFall time for the displacement component, specified as a positive number. Specify this argument only for transient structural models.

```
Example: structuralBC(structuralmodel,'Face',
[2,5],'XDisplacement',0.01,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)
```

Data Types: double
Harmonic Displacement

## Frequency - Frequency of sinusoidal displacement component

positive number
Frequency of a sinusoidal displacement component value, specified as a positive number in radians per unit of time. Specify this argument only for transient structural models.

Example:
structuralBC(structuralmodel,'Face','XDisplacement',0.01,'Frequency',25)
Data Types: double
Phase - Frequency of sinusoidal displacement component
0 (default) | positive number
Phase of a sinusoidal displacement component value, specified as a positive number in radians. Specify this argument only for transient structural models.
Example: structuralBC(structuralmodel, 'Face',
[2,5],'XDisplacement',0.01,'Frequency',25,'Phase', pi/6)
Data Types: double

## Output Arguments

## bc - Handle to boundary condition

StructuralBC object
Handle to the boundary condition, returned as a StructuralBC object. See StructuralBC Properties.

## More About

Degrees of Freedom (DoFs)
In Partial Differential Equation Toolbox, each node of a 2-D or 3-D geometry has two or three degrees of freedom (DoFs), respectively. DoFs correspond to translational displacements. If the number of mesh points in a model is NumNodes, then the toolbox assigns the IDs to the degrees of freedom as follows:

- Numbers from 1 to NumNodes correspond to an x-displacement at each node.
- Numbers from NumNodes+1 to $2 *$ NumNodes correspond to a $y$-displacement at each node.
- Numbers from 2*NumNodes+1 to 3*NumNodes correspond to a z-displacement at each node of a 3-D geometry.


## Specifying Nonconstant Parameters of a Structural Model

Use a function handle to specify the following structural parameters when they depend on space and, depending of the type of structural analysis, either time or frequency:

- Surface traction on the boundary
- Pressure normal to the boundary
- Concentrated force at a vertex
- Distributed spring stiffness for each translational direction used to model elastic foundation
- Enforced displacement and its components
- Initial displacement and velocity

For example, use function handles to specify the pressure load, $x$-component of the enforced displacement, and the initial displacement for this model.

```
structuralBoundaryLoad(model,'Face',12,'Pressure',@myfun)
structuralBC(model,'Face', 2,'XDisplacement',@myfun)
structuralIC(model,'Face',12,'Displacement',@myfun)
```

The function must be of the form:

```
function structuralVal = myfun(location,state)
```

The solver passes the location and state data to your function.

- location - A structure containing these fields:
- location. $x$ - The $x$-coordinate of the point or points
- location. y - The $y$-coordinate of the point or points
- location.z - For a 3-D or an axisymmetric geometry, the $z$-coordinate of the point or points
- location. r - For an axisymmetric geometry, the $r$-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

- location. $\mathrm{nx}-x$-component of the normal vector at the evaluation point or points
- location.ny - $y$-component of the normal vector at the evaluation point or points
- location.nz - For a 3-D or an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- location.nz - For an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- state - A structure containing these fields for dynamic structural problems:
- state. time contains the time at evaluation points.
- state. frequency contains the frequency at evaluation points.
state.time and state.frequency are scalars.
Boundary constraints and loads get these data from the solver:
- location.x, location.y,location.z,location.r
- location.nx, location.ny, location.nz, location.nr
- state.time or state.frequency (depending of the type of structural analysis)

Initial conditions get these data from the solver:

- location.x, location.y,location.z,location.r
- Subdomain ID

If a parameter represents a vector value, such as surface traction, spring stiffness, force, or displacement, your function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix corresponds to the parameter value (a vector) at the boundary coordinates provided by the solver.

If a parameter represents a scalar value, such as pressure or a displacement component, your function must return a row vector where each element corresponds to the parameter value (a scalar) at the boundary coordinates provided by the solver.

If boundary conditions depend on state.time or state.frequency, ensure that your function returns a matrix of NaN of the correct size when state.frequency or state. time are NaN. Solvers check whether a problem is nonlinear or time dependent by passing NaN state values and looking for returned NaN values.

## Tips

- Restrain all rigid body motions by specifying as many boundary conditions as needed. If you do not restrain all rigid body motions, the entire geometry can freely rotate or move. The resulting linear system of equations is singular. The system can take a long time to converge, or it might not converge at all. If the system converges, the solution includes a large rigid body motion in addition to deformation.


## See Also

StructuralModel| reconstructSolution| reduce | solve | structuralBodyLoad| structuralBoundaryLoad |structuralDamping|structuralProperties|
structuralSEInterface

Introduced in R2017b

## StructuralBC Properties

Boundary condition or boundary load for structural analysis model

## Description

A StructuralBC object specifies the type of PDE boundary condition or boundary load on a set of geometry boundaries. A StructuralModel object contains a vector of StructuralBC objects in its BoundaryConditions.StructuralBCAssignments property.

To specify boundary conditions for your model, use the structuralBC function. To specify boundary loads, use structuralBoundaryLoad.

## Properties

Properties of StructuralBC
RegionType - Geometric region type
'Face' for 3-D geometry | 'Edge' for 2-D geometry
Geometric region type, returned as 'Face' for a 3-D geometry or 'Edge' for a 2-D geometry.
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, returned as a vector of positive integers. Find the region IDs by using pdegplot with 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) set to 'on'.
Data Types: double

## Vectorized - Vectorized function evaluation <br> 'off' (default)|'on'

Vectorized function evaluation, returned as 'off' or 'on'. This evaluation applies when you pass a function handle as an argument. To save time in the function handle evaluation, specify ' on ', assuming that your function handle computes in a vectorized fashion. See "Vectorization". For details on this evaluation, see "Nonconstant Boundary Conditions" on page 2-116.
Data Types: char | string

## Boundary Constraints and Enforced Displacements

## Displacement - Enforced displacement

numeric vector | function handle
Enforced displacement, returned as a numeric vector or function handle. The numeric vector must contain two elements for a 2-D model and three elements for a 3-D model. The function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix must correspond to the enforced displacement vector at the boundary coordinates provided by the solver.

## Data Types: double | function_handle

## XDisplacement - x-component of enforced displacement <br> number | function handle

x -component of the enforced displacement, returned as a number or function handle. The function must return a row vector. Each column of the vector must correspond to the value of the x-component of the enforced displacement at the boundary coordinates provided by the solver.

For axisymmetric models, this property contains the radial component (r-component) of the enforced displacement.

Data Types: double | function_handle

## YDisplacement - y-component of enforced displacement number | function handle

$y$-component of the enforced displacement, returned as a number or function handle. The function must return a row vector. Each column of the vector must correspond to the value of the y-component of the enforced displacement at the boundary coordinates provided by the solver.

For axisymmetric models, this property contains the axial component (z-component) of the enforced displacement.
Data Types: double | function_handle

## ZDisplacement - z-component of enforced displacement <br> number | function handle

z-component of the enforced displacement, returned as a number or function handle. The function must return a row vector. Each column of the vector must correspond to the value of the $z$-component of the enforced displacement at the boundary coordinates provided by the solver.

## Data Types: double | function_handle

## Constraint - Standard structural boundary constraints <br> 'free'|'fixed'|'roller'|'symmetric'|'multipoint'

Standard structural boundary constraints, returned as 'free','fixed','roller','symmetric', or 'multipoint'.

## Data Types: char

## Radius - Radius of circle (for 2-D geometry) or sphere (for 3-D geometry) around reference point location for multipoint constraint

positive number
Radius of a circle (for a 2-D geometry) or a sphere (for a 3-D geometry) around the reference point location for the multipoint constraint, returned as a positive number.
Data Types: double

## Reference - Reference point location for multipoint constraint

2-by-1 numeric vector | 3-by-1 numeric vector
Reference point location for the multipoint constraint, returned as a 2-by-1 (for a 2-D geometry) or 3-by-1 (for a 3-D geometry) numeric vector.

## Data Types: double

## Boundary Loads

Force - Concentrated force
numeric vector | function handle
Concentrated force at a vertex, returned as a numeric vector or function handle.
Data Types: double | function_handle

## SurfaceTraction - Normal and tangential distributed forces on boundary <br> numeric vector | function handle

Normal and tangential distributed forces on the boundary (in the global Cartesian coordinates system), returned as a numeric vector or function handle. The numeric vector must contain two elements for a 2-D model and three elements for a 3-D model. The function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix must correspond to the surface traction vector at the boundary coordinates provided by the solver.
Data Types: double | function_handle

## Pressure - Pressure normal to boundary

number | function handle
Pressure normal to the boundary, returned as a number or function handle. The function must return a row vector in which each column corresponds to the value of pressure at the boundary coordinates provided by the solver. A positive value of pressure acts in the direction of the outward normal to the boundary.
Data Types: double | function_handle

## TranslationalStiffness - Distributed spring stiffness

numeric vector | function handle
Distributed spring stiffness for each translational direction used to model an elastic foundation, returned as a numeric vector or function handle. The numeric vector must contain two elements for a 2-D model and three elements for a 3-D model. The custom function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of this matrix corresponds to the stiffness vector at the boundary coordinates provided by the solver.
Data Types: double | function_handle

## Time Variation of Force, Pressure, or Enforced Displacement

## StartTime - Start time for displacement component, pressure, or concentrated force load nonnegative number

Start time for a displacement component, the pressure, or the concentrated force load, returned as a nonnegative number.
Data Types: double
EndTime - End time for displacement component, pressure, or concentrated force load
nonnegative number
End time for a displacement component, the pressure, or the concentrated force load, returned as a nonnegative number.

Data Types: double
RiseTime - Rise time for displacement component, pressure, or concentrated force load nonnegative number

Rise time for a displacement component, the pressure, or the concentrated force load, returned as a nonnegative number.
Data Types: double
FallTime - Fall time for displacement component, pressure, or concentrated force load nonnegative number

Fall time for a displacement component, the pressure, or the concentrated force load, returned as a nonnegative number.
Data Types: double
Sinusoidal Variation of Force, Pressure, or Enforced Displacement
Frequency - Frequency of sinusoidal displacement component, sinusoidal pressure, or concentrated force
positive number
Frequency of a sinusoidal displacement component, the sinusoidal pressure, or the concentrated force, returned as a positive number, in radians per unit of time.
Data Types: double
Phase - Phase of sinusoidal displacement component, sinusoidal pressure, or concentrated force
nonnegative number
Phase of a sinusoidal displacement component, the sinusoidal pressure, or the concentrated force, returned as a nonnegative number, in radians per unit of time.

Data Types: double

## See Also

StructuralSEIAssignment Properties | findStructuralBC | structuralBC | structuralBoundaryLoad | structuralSEInterface

Introduced in R2017b

## structuralIC

Package: pde
Set initial conditions for a transient structural model

## Syntax

```
structuralIC(structuralmodel,'Displacement',u0,'Velocity',v0)
structuralIC(___RegionType,RegionID)
structuralIC(structuralmodel,Sresults)
structuralIC(structuralmodel,Sresults,iT)
struct_ic = structuralIC(
```

$\qquad$

## Description

structuralIC(structuralmodel,'Displacement',u0,'Velocity',v0) sets initial displacement and velocity for the entire geometry.
structuralIC( $\qquad$ RegionType,RegionID) sets initial displacement and velocity for a particular geometry region using the arguments from the previous syntax.
structuralIC(structuralmodel, Sresults) sets initial displacement and velocity using the solution Sresults from a previous structural analysis on the same geometry. If Sresults is obtained by solving a transient structural problem, then structuralIC uses the solution Sresults for the last time-step.
structuralIC(structuralmodel, Sresults,iT) uses the solution Sresults for the time-step iT from a previous structural analysis on the same geometry.
struct_ic = structuralIC( $\qquad$ ) returns a handle to the structural initial conditions object.

## Examples

## Specify Initial Velocity

Specify initial velocity values for the entire geometry and for a particular face.
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create a geometry and include it into the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)
```



Specify the zero initial velocity on the entire geometry. When you specify only the initial velocity or initial displacement, structuralIC assumes that the omitted parameter is zero. For example, here the initial displacement is also zero.

```
structuralIC(structuralmodel,'Velocity',[0;0;0])
ans =
 GeometricStructuralICs with properties:
 RegionType: 'Cell'
 RegionID: 1
 InitialDisplacement: []
 InitialVelocity: [3x1 double]
```

Update the initial velocity on face 2 to model impulsive excitation.

```
structuralIC(structuralmodel,'Face',2,'Velocity',[0;60;0])
ans =
 GeometricStructuralICs with properties:
 RegionType: 'Face'
 RegionID: 2
 InitialDisplacement: []
 InitialVelocity: [3x1 double]
```


## Specify Nonconstant Initial Displacement by Using Function Handle

Specify initial $z$-displacement to be dependent on the coordinates $x$ and $y$.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create the geometry and include it into the model. Plot the geometry.
gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha', 0.5)
view(50,20)


Specify the zero initial displacement on the entire geometry.

```
structuralIC(structuralmodel,'Displacement',[0;0;0])
ans =
 GeometricStructuralICs with properties:
 RegionType: 'Cell'
 RegionID: 1
 InitialDisplacement: [3x1 double]
```

```
InitialVelocity: []
```

Now change the initial displacement in the $z$-direction on face 2 to a function of the coordinates $x$ and $y$ :

$$
u(0)=\left[\begin{array}{c}
0 \\
0 \\
x^{2}+y^{2}
\end{array}\right]
$$

Write the following function file. Save it to a location on your MATLAB® path.

```
function uinit = initdisp(location)
M = length(location.x);
uinit = zeros(3,M);
uinit(3,:) = location.x.^2 + location.y.^2;
```

Pass the initial displacement to your structural model.

```
structuralIC(structuralmodel,'Face',2,'Displacement',@initdisp)
ans =
 GeometricStructuralICs with properties:
 RegionType: 'Face'
 RegionID: 2
 InitialDisplacement: @initdisp
 InitialVelocity: []
```


## Use Static Solution as Initial Condition

Use a static solution as an initial condition for a dynamic structural model.
Create a static model.

```
staticmodel = createpde('structural','static-solid');
```

Create the geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.06,0.005,0.01);
staticmodel.Geometry = gm;
pdegplot(staticmodel,'FaceLabels','on',''FaceAlpha',0.5)
view(50,20)
```



Specify the Young's modulus, Poisson's ratio, and mass density.

```
structuralProperties(staticmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);
```

Apply the boundary condition and static load.

```
structuralBC(staticmodel,'Face',5,'Constraint','fixed');
structuralBoundaryLoad(staticmodel,'Face',3,'SurfaceTraction',[0;1E6;0]);
```

Generate a mesh and solve the model.
generateMesh(staticmodel,'Hmax', 0.02);
Rstatic = solve(staticmodel);
Create a dynamic model and assign geometry.

```
dynamicmodel = createpde('structural','transient-solid');
```

gm = multicuboid(0.06,0.005,0.01);
dynamicmodel.Geometry = gm;

Apply the boundary condition.
structuralBC(dynamicmodel,'Face',5,'Constraint','fixed');
Generate a mesh.
generateMesh(dynamicmodel,'Hmax', 0.02);

Specify the initial condition using the static solution.

```
structuralIC(dynamicmodel,Rstatic)
ans =
 NodalStructuralICs with properties:
 InitialDisplacement: [113x3 double]
 InitialVelocity: [113x3 double]
```


## Input Arguments

## structuralmodel - Transient structural model

StructuralModel object
Transient structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, boundary conditions, and initial conditions.

Example: structuralmodel = createpde('structural','transient-solid')

## u0 - Initial displacement

numeric vector | function handle
Initial displacement, specified as a numeric vector or function handle. A numeric vector must contain two elements for a 2-D model and three elements for a 3-D model. The elements represent the components of initial displacement.

The function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix corresponds to the initial displacement at the coordinates provided by the solver. For details, see "More About" on page 5-1019.

Example: structuralIC(structuralmodel, 'Face', [2,5],'Displacement', [0;0;0.01])
Data Types: double|function_handle

## v0 - Initial velocity

numeric vector | function handle
Initial velocity, specified as a numeric vector or function handle. A numeric vector must contain two elements for a 2-D model and three elements for a 3-D model. The elements represent the components of initial velocity.

The function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix corresponds to the initial velocity at the coordinates provided by the solver. For details, see "More About" on page 5-1019.

Example: structuralIC(structuralmodel,' Face', [2,5],'Displacement',
[0;0;0.01], 'Velocity', [0;60;0])
Data Types: double \| function_handle

## RegionType - Geometric region type

'Face'| 'Edge'| 'Vertex'|'Cell'
Geometric region type, specified as 'Face', 'Edge', 'Vertex', or 'Cell'.

When you apply multiple initial condition assignments, the solver uses these precedence rules for determining the initial condition.

- For multiple assignments to the same geometric region, the solver uses the last applied setting.
- For separate assignments to a geometric region and the boundaries of that region, the solver uses the specified assignment on the region and chooses the assignment on the boundary as follows. The solver gives an 'Edge' assignment precedence over a 'Face' assignment, even if you specify a 'Face' assignment after an 'Edge' assignment. The precedence levels are 'Vertex (highest precedence), 'Edge', 'Face', 'Cell' (lowest precedence).
- For an assignment made with the results object, the solver uses that assignment instead of all previous assignments.

Example: structuralIC(structuralmodel,'Face', [2,5],'Displacement',
[0;0;0.01],'Velocity', [0;60;0])
Data Types: char

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.
Example: structuralIC(structuralmodel,'Face', [2,5],'Displacement', [0;0;0.01], 'Velocity', [0;60;0])

Data Types: double

## Sresults - Structural model solution

StaticStructuralResults object|TransientStructuralResults object
Structural model solution, specified as a StaticStructuralResults or TransientStructuralResults object. Create Sresults by using solve.

## iT - Time index

positive integer
Time index, specified as a positive integer.
Example: structuralIC(structuralmodel,Sresults,21)
Data Types: double

## Output Arguments

## struct_ic - Handle to initial conditions

GeometricStructuralICs object| NodalStructuralICs object
Handle to initial conditions, returned as a GeometricStructuralICs or NodalStructuralICs object. See GeometricStructuralICs Properties and NodalStructuralICs Properties.
structuralIC associates the structural initial condition with the geometric region in the case of a geometric assignment, or the nodes in the case of a results-based assignment.

## More About

## Specifying Nonconstant Parameters of a Structural Model

Use a function handle to specify the following structural parameters when they depend on space and, depending of the type of structural analysis, either time or frequency:

- Surface traction on the boundary
- Pressure normal to the boundary
- Concentrated force at a vertex
- Distributed spring stiffness for each translational direction used to model elastic foundation
- Enforced displacement and its components
- Initial displacement and velocity

For example, use function handles to specify the pressure load, $x$-component of the enforced displacement, and the initial displacement for this model.

```
structuralBoundaryLoad(model,'Face',12,'Pressure',@myfun)
structuralBC(model,'Face',2,'XDisplacement',@myfun)
structuralIC(model,'Face',12,'Displacement',@myfun)
```

The function must be of the form:

```
function structuralVal = myfun(location,state)
```

The solver passes the location and state data to your function.

- location - A structure containing these fields:
- location. $x$ - The $x$-coordinate of the point or points
- location. y - The $y$-coordinate of the point or points
- location. z - For a 3-D or an axisymmetric geometry, the $z$-coordinate of the point or points
- location. r - For an axisymmetric geometry, the $r$-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

- location. $\mathrm{nx}-x$-component of the normal vector at the evaluation point or points
- location.ny - y-component of the normal vector at the evaluation point or points
- location.nz - For a 3-D or an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- location.nz - For an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- state - A structure containing these fields for dynamic structural problems:
- state. time contains the time at evaluation points.
- state. frequency contains the frequency at evaluation points.
state.time and state.frequency are scalars.
Boundary constraints and loads get these data from the solver:
- location.x, location.y, location.z, location.r
- location.nx, location.ny, location.nz, location.nr
- state.time or state.frequency (depending of the type of structural analysis)

Initial conditions get these data from the solver:

- location.x, location.y,location.z,location.r
- Subdomain ID

If a parameter represents a vector value, such as surface traction, spring stiffness, force, or displacement, your function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix corresponds to the parameter value (a vector) at the boundary coordinates provided by the solver.

If a parameter represents a scalar value, such as pressure or a displacement component, your function must return a row vector where each element corresponds to the parameter value (a scalar) at the boundary coordinates provided by the solver.

If boundary conditions depend on state.time or state.frequency, ensure that your function returns a matrix of NaN of the correct size when state.frequency or state. time are NaN. Solvers check whether a problem is nonlinear or time dependent by passing NaN state values and looking for returned NaN values.

## See Also

GeometricStructuralICs Properties | NodalStructuralICs Properties | StructuralModel| findStructuralIC| reduce | solve | structuralBC | structuralBodyLoad |
structuralBoundaryLoad | structuralDamping| structuralProperties|
structuralSEInterface

## Introduced in R2018a

## structuralDamping

Specify damping parameters for transient or frequency response structural model

## Syntax

```
structuralDamping(structuralmodel,'Alpha',a,'Beta',b)
structuralDamping(structuralmodel,'Zeta',z)
damping = structuralDamping(
```

$\qquad$

``` )
```


## Description

structuralDamping(structuralmodel,'Alpha',a,'Beta',b) specifies proportional (Rayleigh) damping parameters a and b for a structuralmodel object.

For a frequency response model with damping, the results are complex. Use the abs and angle functions to obtain real-valued magnitude and phase, respectively.
structuralDamping(structuralmodel,'Zeta',z) specifies the modal damping ratio. Use this parameter when you solve a transient or frequency response model using the results of modal analysis.
damping = structuralDamping( $\qquad$ ) returns the damping parameters object, using any of the previous input syntaxes.

## Examples

## Rayleigh Damping Parameters

Specify proportional (Rayleigh) damping parameters for a beam.
Create a transient structural model.

```
structuralModel = createpde('structural','transient-solid');
```

Import and plot the geometry.

```
gm = importGeometry(structuralModel,'SquareBeam.STL');
pdegplot(structuralModel,''FaceAlpha',0.5)
```



Specify the Young's modulus, Poisson's ratio, and mass density.

```
structuralProperties(structuralModel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);
```

Specify the Rayleigh damping parameters.

```
structuralDamping(structuralModel,'Alpha',10,'Beta',2)
ans =
 StructuralDampingAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 DampingModel: "proportional"
 Alpha: 10
 Beta: 2
 Zeta: []
```


## Solution to Frequency Response Structural Model with Damping

Solve a frequency response problem with damping. The resulting displacement values are complex. To obtain the magnitude and phase of displacement, use the abs and angle functions, respectively. To speed up computations, solve the model using the results of modal analysis.

## Modal Analysis

Create a modal analysis model for a 3-D problem.

```
modelM = createpde('structural','modal-solid');
```

Create the geometry and include it in the model.

```
gm = multicuboid(10,10,0.025);
```

modelM.Geometry = gm;

Generate a mesh.

```
msh = generateMesh(modelM);
```

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(modelM,'YoungsModulus',2E11, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);
```

Identify faces for applying boundary constraints and loads by plotting the geometry with the face and edge labels.

```
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.5)
```


figure
pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.5)


Specify constraints on the sides of the plate (faces $3,4,5$, and 6 ) to prevent rigid body motions.
structuralBC(modelM, 'Face',[3,4,5,6],'Constraint','fixed');
Solve the problem for the frequency range from -Inf to $12 * \mathrm{pi}$.
Rm = solve(modelM,'FrequencyRange',[-Inf,12*pi]);

## Frequency Response Analysis

Create a frequency response analysis model for a 3-D problem.
modelFR = createpde('structural','frequency-solid');
Use the same geometry and mesh as you used for the modal analysis.

```
modelFR.Geometry = gm;
modelFR.Mesh = msh;
```

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.
structuralProperties(modelFR,'YoungsModulus',2E11,'PoissonsRatio', 0.3,'MassDensity',8000);
Specify the same constraints on the sides of the plate to prevent rigid body modes.
structuralBC(modelFR,'Face',[3,4,5,6],'Constraint','fixed');
Specify the pressure loading on top of the plate (face 2) to model an ideal impulse excitation. In the frequency domain, this pressure pulse is uniformly distributed across all frequencies.

```
structuralBoundaryLoad(modelFR,'Face',2,'Pressure',1E2);
```

First, solve the model without damping.

```
flist = [0,1,1.5,linspace(2,3,100),3.5,4,5,6]*2*pi;
RfrModalU = solve(modelFR,flist,'ModalResults',Rm);
```

Now, solve the model with damping equal to $2 \%$ of critical damping for all modes.

```
structuralDamping(modelFR,'Zeta',0.02);
RfrModalAll = solve(modelFR,flist,'ModalResults',Rm);
```

Solve the same model with frequency-dependent damping. In this example, use the solution frequencies from flist and damping values between $1 \%$ and $10 \%$ of critical damping.

```
omega = flist;
zeta = linspace(0.01,0.1,length(omega));
zetaW = @(omegaMode) interp1(omega,zeta,omegaMode);
structuralDamping(modelFR,'Zeta',zetaW);
RfrModalFD = solve(modelFR,flist,'ModalResults',Rm);
```

Interpolate the displacement at the center of the top surface of the plate for all three cases.

```
iDispU = interpolateDisplacement(RfrModalU,[0;0;0.025]);
iDispAll = interpolateDisplacement(RfrModalAll,[0;0;0.025]);
iDispFD = interpolateDisplacement(RfrModalFD,[0;0;0.025]);
```

Plot the magnitude of the displacement. Zoom in on the frequencies around the first mode.

```
figure
hold on
plot(RfrModalU.SolutionFrequencies,abs(iDispU.Magnitude));
plot(RfrModalAll.SolutionFrequencies,abs(iDispAll.Magnitude));
plot(RfrModalFD.SolutionFrequencies,abs(iDispFD.Magnitude));
title('Magnitude')
xlim([10 25])
ylim([0 0.5])
```


## Magnitude



Plot the phase of the displacement.
figure
hold on
plot(RfrModalU.SolutionFrequencies, angle(iDispU.Magnitude));
plot(RfrModalAll.SolutionFrequencies, angle(iDispAll.Magnitude));
plot(RfrModalFD.SolutionFrequencies, angle(iDispFD.Magnitude));
title('Phase')


## Input Arguments

structuralmodel - Transient or frequency response structural model
StructuralModel object
Transient or frequency response structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, boundary conditions, and initial conditions.
Example: structuralmodel = createpde('structural','transient-solid')
a - Mass proportional damping
nonnegative number
Mass proportional damping, specified as a nonnegative number.
Data Types: double
b - Stiffness proportional damping
nonnegative number
Stiffness proportional damping, specified as a nonnegative number.
Data Types: double
z - Modal damping ratio
nonnegative number | function handle

Modal damping ratio, specified as a nonnegative number or a function handle. Use a function handle when each mode has its own damping ratio. The function must accept a vector of natural frequencies as an input argument and return a vector of corresponding damping ratios. It must cover the full frequency range for all modes used for modal solution. For details, see "Modal Damping Depending on Frequency" on page 5-1029.
Data Types: double | function_handle

## Output Arguments

## damping - Handle to damping parameters

StructuralDampingAssignment object
Handle to damping parameters, returned as a StructuralDampingAssignment object. See StructuralDampingAssignment Properties.

## More About

## Modal Damping Depending on Frequency

To use the individual value of modal damping for each mode, specify $z$ as a function of frequency.

```
function z = dampingFcn(omega)
```

Typically, the damping ratio function is a linear interpolation of frequency versus the modal damping parameter:

```
structuralDamping(modelD,'Zeta',@(omegaMode) ...
```

    interp1(omega, zeta,omegaMode))
    Here, omega is a vector of frequencies, and zeta is a vector of corresponding damping ratio values.

## See Also

StructuralDampingAssignment Properties | StructuralModel|findStructuralDamping|solve | structuralBC| structuralBodyLoad|structuralBoundaryLoad| structuralProperties

Introduced in R2018a

## findStructuralDamping

Package: pde
Find damping model assigned to structural dynamics model

## Syntax

```
dma = findStructuralDamping(structuralmodel.DampingModels)
```


## Description

dma = findStructuralDamping(structuralmodel.DampingModels) returns the damping model and its parameters assigned to the structural dynamics model. The toolbox supports the proportional (Rayleigh) damping model and the modal damping model. The parameters of the proportional damping model are the mass and stiffness proportional damping parameters. The parameter of the modal damping model is the modal damping ratio.

Use this function to find which damping model and parameters are currently active if you made multiple damping assignments.

## Examples

## Find Damping Model Assignment

Find the damping model assignment for a 3-D model.
Create a transient structural model.
structuralModel = createpde('structural','transient-solid');
Import and plot the geometry.

```
importGeometry(structuralModel,'Block.stl');
pdegplot(structuralModel,'CellLabels','on')
```



Specify the stiffness proportional damping parameter.
structuralDamping(structuralModel,'Beta',40);
Now specify the mass proportional damping parameter.
structuralDamping(structuralModel,'Alpha',10);
Check the damping parameter assignment for structuralModel. Notice that the Beta parameter is empty.

```
findStructuralDamping(structuralModel.DampingModels)
ans =
 StructuralDampingAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 DampingModel: "proportional"
 Alpha: 10
 Beta: []
 Zeta: []
```

When you specify damping parameters by calling the structuralDamping function several times, the toolbox uses the last assignment. Specify both the mass and stiffness parameters.

```
structuralDamping(structuralModel,'Alpha',10,'Beta',40);
```

```
Check the damping parameter assignment for structuralModel.
findStructuralDamping(structuralModel.DampingModels)
ans =
 StructuralDampingAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 DampingModel: "proportional"
 Alpha: 10
 Beta: 40
 Zeta: []
```


## Input Arguments

structuralmodel. DampingModels - Damping model
DampingModels property of StructuralModel object
Damping model of the structural model, specified as a DampingModels property of a StructuralModel object.

## Output Arguments

dma - Damping model assignment
StructuralDampingAssignment object
Damping model assignment, returned as a StructuralDampingAssignment object. For details, see StructuralDampingAssignment Properties.

See Also<br>StructuralDampingAssignment Properties | structuralDamping<br>Introduced in R2018a

## StructuralDampingAssignment Properties

Damping assignment for a structural analysis model

## Description

A StructuralDampingAssignment object contains the damping model and its parameters for a structural analysis model. A StructuralModel container has a vector of
StructuralDampingAssignment objects in its
DampingModels.StructuralDampingAssignments property.
To set damping parameters for your structural model, use the structuralDamping function.

## Properties

## Properties

## RegionType - Region type

'Face' | 'Cell'
Region type, returned as 'Face' for a 2-D region, or 'Cell' for a 3-D region.
Data Types: char|string

## RegionID - Region ID

positive integer
Region ID, returned as a positive integer. The toolbox defines damping parameters for the entire geometry.
Data Types: double

## DampingModel - Damping model type

'proportional' | 'modal'
Damping model type, returned as 'proportional' or 'modal'.
Data Types: double
Alpha - Mass proportional damping parameter
nonnegative number
Mass proportional damping parameter, returned as a nonnegative number.
Data Types: double
Beta - Stiffness proportional damping parameter
nonnegative number
Stiffness proportional damping parameter, returned as a nonnegative number.
Data Types: double

## Zeta - Modal damping ratio

nonnegative number | function handle
Modal damping ratio, returned as a nonnegative number or a function handle. Use a function handle when each mode has its own damping ratio. The function must accept a vector of natural frequencies as an input argument and return a vector of corresponding damping ratios. It must cover the full frequency range for all modes used for modal solution.

Data Types: double | function_handle

See Also<br>findStructuralDamping|structuralDamping<br>Introduced in R2018a

## StructuralMaterialAssignment Properties

Structural material property assignments

## Description

A StructuralMaterialAssignment object contains the description of material properties of a structural analysis model. A StructuralModel container has a vector of StructuralMaterialAssignment objects in its MaterialProperties.MaterialAssignments property.

To create the material properties assignments for your structural analysis model, use the structuralProperties function.

## Properties

Properties of StructuralMaterialAssignment
RegionType - Region type
'Face '|'Cell'
Region type, returned as 'Face' for a 2-D region, or 'Cell' for a 3-D region.
Data Types: char|string

## RegionID - Region ID

vector of positive integers
Region ID, returned as a vector of positive integers. To determine which ID corresponds to which portion of the geometry, use the pdegplot function, setting the 'FaceLabels ' name-value pair to 'on'.
Data Types: double

## YoungsModulus - Young's modulus

positive number
Young's modulus of the material, returned as a positive number.
Data Types: double
PoissonsRatio - Poisson's ratio
positive number
Poisson's ratio of the material, returned as a positive number.
Data Types: double

## MassDensity - Mass density

positive number
Mass density of the material, returned as a positive number. This property is required when modeling gravitational effects.

Data Types: double

## See Also

findStructuralProperties|structuralProperties
Introduced in R2017b

## structuralBodyLoad

Package: pde
Specify body load for structural model

## Syntax

```
structuralBodyLoad(structuralmodel,'GravitationalAcceleration',GAval)
structuralBodyLoad(structuralmodel,'AngularVelocity',omega)
structuralBodyLoad(structuralmodel,'Temperature',Tval)
structuralBodyLoad(structuralmodel,'Temperature',Tresults)
structuralBodyLoad(structuralmodel,'Temperature',Tresults,'TimeStep',iT)
bodyLoad = structuralBodyLoad(
```

$\qquad$

``` )
```


## Description

structuralBodyLoad(structuralmodel,' GravitationalAcceleration', GAval) specifies acceleration due to gravity as a body load for a static or transient structural model. Structural models for modal analysis cannot have body loads.
structuralBodyLoad(structuralmodel,'AngularVelocity',omega) specifies an angular velocity to model centrifugal loading for an axisymmetric structural model.
structuralBodyLoad(structuralmodel, 'Temperature', Tval) specifies a thermal load on a static structural analysis model.

Tip If Tval is the temperature itself, and not a change in temperature, you must specify a reference temperature using structuralmodel.ReferenceTemperature. Otherwise, the toolbox uses the default value (zero) for the reference temperature. For details, see StructuralModel.
structuralBodyLoad(structuralmodel,'Temperature',Tresults) uses the steady-state or transient thermal analysis results Tresults to specify a thermal load on a static structural analysis model. If Tresults is the solution of a transient thermal problem, then this syntax uses the temperature and its gradients from the last time step.
structuralBodyLoad(structuralmodel,'Temperature',Tresults, 'TimeStep',iT) uses the transient thermal analysis results Tresults and the time step index iT to specify a thermal load on a static structural analysis model.
bodyLoad = structuralBodyLoad( $\qquad$ ) returns the body load object.

## Examples

## Gravity Load on Beam

Create a structural model.
structuralModel = createpde('structural','static-solid');
Create and plot the geometry.
gm = multicuboid(0.5,0.1,0.1);
structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceAlpha',0.5)


Specify the Young's modulus, Poisson's ratio, and mass density. The mass density value is required for modeling gravitational effects.

```
structuralProperties(structuralModel,'YoungsModulus',210E3, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2.7E-6);
```

Specify the gravity load on the beam.
structuralBodyLoad(structuralModel,'GravitationalAcceleration',[0;0;-9.8])
ans $=$
BodyLoadAssignment with properties:
RegionType: 'Cell'
RegionID: 1

```
GravitationalAcceleration: [3x1 double]
 AngularVelocity: []
 Temperature: []
 TimeStep: []
```


## Static Analysis of Spinning Disk with Press-Fit at Hub

Analyze a spinning disk with radial compression at the hub due to press-fit. The inner radius of the disk is 0.05 , and the outer radius is 0.2 . The thickness of the disk is 0.05 with an interference fit of 50E-6. For this analysis, simplify the 3-D axisymmetric model to a 2-D model.

Create a static structural analysis model for solving an axisymmetric problem.
structuralmodel = createpde('structural','static-axisymmetric');
The 2-D model is a rectangular strip whose $x$-dimension extends from the hub to the outer surface, and whose $y$-dimension extends over the height of the disk. Create the geometry by specifying the coordinates of the strip's four corners. For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing through $r=0$, which is equivalent to $x=0$.

```
g = decsg([3 4 0.05 0.2 0.2 0.05 -0.025 -0.025 0.025 0.025]');
```

Include the geometry in the model.

```
geometryFromEdges(structuralmodel,g);
```

Plot the geometry with the edge and vertex labels.

```
figure
pdegplot(structuralmodel,'EdgeLabels','on','VertexLabels','on')
xlim([0 0.3])
ylim([-0.05 0.05])
```



Specify the Young's modulus, Poisson's ratio, and mass density.
structuralProperties(structuralmodel,'YoungsModulus',210e9, ...
'PoissonsRatio',0.28, ...
'MassDensity',7700);
Apply centrifugal load due to spinning of the disk. Assume that the disk is spinning at $104.7 \mathrm{rad} / \mathrm{s}$.
structuralBodyLoad(structuralmodel,'AngularVelocity',1047);
Apply radial displacement at the hub of the disk to model press-fit.
structuralBC(structuralmodel,'Edge',4,'RDisplacement',50e-6);
Fix axial displacement of a point on the hub to prevent rigid body motion.
structuralBC(structuralmodel,'Vertex',1,'ZDisplacement',0);
Generate a mesh.
generateMesh(structuralmodel);
Solve the model.
structuralresults = solve(structuralmodel);
Plot the radial displacement of the disk.
figure
pdeplot(structuralmodel, ...
'XYData', structuralresults.Displacement.ur, ...
'ColorMap','jet')
axis equal
$x \lim ([00.3])$
ylim([-0.05 0.05])


Plot circumferential (hoop) stress.
figure
pdeplot(structuralmodel, ...
'XYData',structuralresults.Stress.sh, ...
'ColorMap','jet')
axis equal
$x \lim ([00.3])$
ylim([-0.05 0.05])


## Constant Thermal Load

Specify a constant temperature rise for a thermal stress analysis of a bimetallic cantilever beam.
Create a static structural model.
structuralmodel = createpde('structural','static-solid');
Create and plot the geometry.

```
gm = multicuboid(0.5,0.04,[0.03,0.03],'Zoffset',[0,0.03]);
```

structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'CellLabels','on')


Set the reference temperature. This temperature corresponds to the state of zero thermal stress of the model.

```
structuralmodel.ReferenceTemperature = 20
structuralmodel =
 StructuralModel with properties:
 AnalysisType: 'static-solid'
 Geometry: [1x1 DiscreteGeometry]
 MaterialProperties: []
 BodyLoads: []
 BoundaryConditions: []
 ReferenceTemperature: 20
 SuperelementInterfaces: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Apply the constant temperature as a structural body load.

```
structuralBodyLoad(structuralmodel,'Temperature',300)
ans =
 BodyLoadAssignment with properties:
 RegionType: 'Cell'
 RegionID: [1 2]
```

```
GravitationalAcceleration: []
 AngularVelocity: []
 Temperature: 300
 TimeStep: []
```


## Thermal Load as Steady-State Thermal Model Solution

Specify a thermal load using the solution from a steady-state thermal analysis on the same geometry and mesh.

## Steady-State Thermal Model Analysis

Create a steady-state thermal model.
thermalmodel = createpde('thermal','steadystate');
Create and plot the geometry.
gm = multicuboid(0.5, 0.1, 0.05);
thermalmodel.Geometry $=\mathrm{gm}$;
pdegplot(thermalmodel,'FaceLabels','on', 'FaceAlpha',0.5)


Generate a mesh.
generateMesh(thermalmodel);

Specify the thermal conductivity of the material.
thermalProperties(thermalmodel,'ThermalConductivity',5e-3);
Specify constant temperatures on the left and right ends on the beam.
thermalBC(thermalmodel,' Face',3,'Temperature',100);
thermalBC(thermalmodel,'Face',5,'Temperature',0);
Specify the heat source over the entire geometry.
internalHeatSource(thermalmodel,10);
Solve the model.

```
thermalresults = solve(thermalmodel)
thermalresults =
 SteadyStateThermalResults with properties:
 Temperature: [3870x1 double]
 XGradients: [3870x1 double]
 YGradients: [3870x1 double]
 ZGradients: [3870x1 double]
 Mesh: [1x1 FEMesh]
```

Plot the temperature distribution.

```
pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature)
```



## Static Structural Analysis with Thermal Load

Create a static structural model.
structuralmodel = createpde('structural','static-solid');
Include the same geometry as for the thermal model.
structuralmodel.Geometry = gm;
Apply the solution of the thermal model analysis as a body load for the structural model.

```
structuralBodyLoad(structuralmodel,'Temperature',thermalresults)
ans =
 BodyLoadAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 GravitationalAcceleration: []
 AngularVelocity: []
 Temperature: [1\times1 pde.SteadyStateThermalResults]
 TimeStep: []
```


## Thermal Load as Transient Thermal Model Solution

Specify a thermal load using the solution from a transient thermal analysis on the same geometry and mesh.

## Transient Thermal Model Analysis

Create a transient thermal model.

```
thermalmodel = createpde('thermal','transient');
```

Create and plot the geometry.
gm = multicuboid(0.5,0.1, 0.05);
thermalmodel.Geometry $=\mathrm{gm}$;
pdegplot(thermalmodel, 'FaceLabels', 'on', 'FaceAlpha', 0.5)


Generate a mesh.
generateMesh(thermalmodel);
Specify the thermal properties of the material.

```
thermalProperties(thermalmodel,'ThermalConductivity',5e-3, ...
 'MassDensity',2.7*10^(-6), ...
 'SpecificHeat',10);
```

Specify the constant temperatures on the left and right ends on the beam.

```
thermalBC(thermalmodel,'Face',3,'Temperature',100);
```

thermalBC(thermalmodel,'Face',5,'Temperature',0);

Specify the heat source over the entire geometry.
internalHeatSource(thermalmodel,10);
Set the initial temperature.
thermalIC(thermalmodel,0);
Solve the model.
tlist $=$ [0:1e-4:2e-4];
thermalresults = solve(thermalmodel,tlist)

```
thermalresults =
 TransientThermalResults with properties:
 Temperature: [3870x3 double]
SolutionTimes: [0 1.0000e-04 2.0000e-04]
 XGradients: [3870x3 double]
 YGradients: [3870x3 double]
 ZGradients: [3870x3 double]
 Mesh: [1x1 FEMesh]
```

Plot the temperature distribution for each time step.

```
for n = 1:numel(thermalresults.SolutionTimes)
 figure
 pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature(:,n))
 title(['Time = ' num2str(tlist(n))])
 caxis([0 100])
end
```





## Static Structural Analysis with Thermal Load

Create a static structural model.

```
structuralmodel = createpde('structural','static-solid');
```

Include the same geometry as for the thermal model.
structuralmodel.Geometry = gm;
Apply the solution of the thermal model analysis as a body load for the structural model. By default, structuralBodyLoad uses the thermal model solution for the last time step.
structuralBodyLoad(structuralmodel,'Temperature',thermalresults);
You also can specify the time step you want to use. For example, apply the thermal model solution for the second time step as a body load for the structural model.

```
structuralBodyLoad(structuralmodel,'Temperature',thermalresults, ...
 TimeStep',2);
```


## Input Arguments

Static or transient structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.
Example: structuralmodel = createpde('structural','transient-solid')

## GAval - Acceleration due to gravity

numeric vector
Acceleration due to gravity, specified as a numeric vector. GAval must be specified in units consistent with those of the geometry and material properties.
Example: structuralBodyLoad(structuralmodel,' GravitationalAcceleration', [0;0;-9.8])
Data Types: double

## omega - Angular velocity for axisymmetric model

positive number
Angular velocity for an axisymmetric model, specified as a positive number. omega must be specified in units consistent with those of the geometry and material properties.

For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing through $r=0$, which is equivalent to $x=0$.
Example: structuralBodyLoad(structuralmodel, 'AngularVelocity', 2.3)
Data Types: double

## Tval - Constant thermal load

real number
Constant thermal load on a static structural model, specified as a real number. Tval must be specified in units consistent with those of the geometry and material properties.

Example: structuralBodyLoad(structuralmodel, 'Temperature', 300)
Data Types: double

## Tresults - Thermal model solution

StaticThermalResults object | TransientThermalResults object
Thermal model solution applied as a body load on a static structural model, specified as a StaticThermalResults or TransientThermalResults object. Create Tresults by using solve.

Example: Tresults = solve(thermalmodel);
structuralBodyLoad(structuralmodel, 'Temperature', Tresults)

## iT - Time index

positive integer
Time index, specified as a positive integer.

```
Example:
structuralBodyLoad(structuralmodel,'Temperature',Tresults,'TimeStep',21)
Data Types: double
```


## Output Arguments

## bodyLoad - Handle to body load

BodyLoadAssignment object
Handle to body load, returned as a BodyLoadAssignment object. See BodyLoadAssignment Properties.

## See Also

BodyLoadAssignment Properties | StructuralModel | structuralBC | structuralBoundaryLoad | structuralDamping|structuralProperties

Introduced in R2017b

## structuralBoundaryLoad

Package: pde
Specify boundary loads for structural model

## Syntax

structuralBoundaryLoad(structuralmodel, RegionType,RegionID, 'SurfaceTraction', STval,'Pressure',Pval,'TranslationalStiffness',TSval)
structuralBoundaryLoad(structuralmodel, 'Vertex', VertexID, 'Force', Fval)
structuralBoundaryLoad( __ , 'Vectorized','on')
structuralBoundaryLoad( __ ,'Pressure', Pval, Name, Value)
structuralBoundaryLoad(structuralmodel, 'Vertex', VertexID, 'Force', Fval, Name, Value)
boundaryLoad = structuralBoundaryLoad( $\qquad$ )

## Description

structuralBoundaryLoad(structuralmodel, RegionType, RegionID, 'SurfaceTraction', STval,'Pressure',Pval,'TranslationalStiffness',TSval) specifies the surface traction, pressure, and translational stiffness on the boundary of type RegionType with RegionID ID numbers.

- Surface traction is determined as distributed normal and tangential forces acting on a boundary, resolved along the global Cartesian coordinate system.
- Pressure must be specified in the direction that is normal to the boundary. A positive pressure value acts into the boundary (for example, compression). A negative pressure value acts away from the boundary (for example, suction).
- Translational stiffness is a distributed spring stiffness for each translational direction. Translational stiffness is used to model an elastic foundation.
structuralBoundaryLoad does not require you to specify all three boundary loads. Depending on your structural analysis problem, you can specify one or more boundary loads by picking the corresponding arguments and omitting others. You can specify translational stiffness for any structural model. To specify pressure or surface traction, structuralmodel must be a static, transient, or frequency response model. Structural models for modal analysis cannot have pressure or surface traction.

The default boundary load is a stress-free boundary condition.
structuralBoundaryLoad(structuralmodel, 'Vertex',VertexID, 'Force',Fval) specifies concentrated force at a vertex with the VertexID number. You can specify force only if structuralmodel is a static, transient, or frequency response model. Structural models for modal analysis cannot have concentrated force.
structuralBoundaryLoad( $\qquad$ ,'Vectorized', 'on') uses vectorized function evaluation when you pass a function handle as an argument. If your function handle computes in a vectorized fashion,
then using this argument saves time. See "Vectorization". For details on this evaluation, see "Nonconstant Boundary Conditions" on page 2-116.

Use this syntax with any of the input arguments from previous syntaxes.
structuralBoundaryLoad( __ , 'Pressure', Pval, Name, Value) lets you specify the form and duration of a nonconstant pressure pulse and harmonic excitation for a transient structural model without creating a function handle. When using this syntax, you must specify the model, region type and region ID, and pressure. Surface traction and translational stiffness are optional arguments. This syntax does not work for static, modal analysis, and frequency response models.
structuralBoundaryLoad(structuralmodel, 'Vertex', VertexID, 'Force', Fval, Name, Value) lets you specify the form and duration of a nonconstant concentrated force and harmonic excitation for a transient structural model without creating a function handle.
boundaryLoad $=$ structuralBoundaryLoad( $\qquad$ ) returns the boundary load object.

## Examples

## Apply Fixed Boundaries and Specify Surface Traction

Apply fixed boundaries and traction on two ends of a bimetallic cable.
Create a structural model.
structuralModel = createpde('structural', 'static-solid');
Create nested cylinders to model a bimetallic cable.
gm = multicylinder([0.01,0.015],0.05);
Assign the geometry to the structural model and plot the geometry.

```
structuralModel.Geometry = gm;
```

pdegplot(structuralModel, 'CellLabels', 'on', 'FaceLabels', 'on', 'FaceAlpha', 0.4)


For each metal, specify the Young's modulus and Poisson's ratio.

```
structuralProperties(structuralModel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralModel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);
```

Specify that faces 1 and 4 are fixed boundaries.

```
structuralBC(structuralModel,'Face',[1,4],'Constraint','fixed')
ans =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: [1 4]
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "fixed"
 Radius: []
 Reference: []
 Boundary Loads
```

```
 Force: []
 SurfaceTraction: []
 Pressure: []
TranslationalStiffness: []
```

Specify the surface traction for faces 2 and 5 .

```
structuralBoundaryLoad(structuralModel,'Face',[2,5],'SurfaceTraction',[0;0;100])
ans =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: [2 5]
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Boundary Loads
 Force: []
 SurfaceTraction: [3x1 double]
 Pressure: []
 TranslationalStiffness: []
```


## Specify Translational Stiffness

Create a structural model.

```
structuralModel = createpde('structural','static-solid');
```

Create a block geometry.
gm = multicuboid(20,10,5);
Assign the geometry to the structural model and plot the geometry.
structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceLabels','on','FaceAlpha',0.5)


Specify the Young's modulus and Poisson's ratio.

```
structuralProperties(structuralModel,'YoungsModulus',30, ...
 'PoissonsRatio',0.3);
```

The bottom face of the block rests on an elastic foundation (a spring). To model this foundation, specify the translational stiffness.

```
structuralBoundaryLoad(structuralModel,'Face',1,'TranslationalStiffness',[0;0;30])
ans =
 StructuralBC with properties:
```

            RegionType: 'Face'
            RegionID: 1
            Vectorized: 'off'
    Boundary Constraints and Enforced Displacements
            Displacement: []
            XDisplacement: []
            YDisplacement: []
            ZDisplacement: []
            Constraint: []
                    Radius: []
            Reference: []
    Boundary Loads
Force: []

SurfaceTraction: []
Pressure: []
TranslationalStiffness: [3x1 double]

## Apply Concentrated Force at Point

Specify a force value at a vertex of a geometry.
Create a structural model for static analysis of a solid (3-D) problem.
model = createpde('structural','static-solid');
Create the geometry, which consists of two cuboids stacked on top of each other.
gm = multicuboid(0.2,0.01,[0.01 0.01],'Zoffset',[0 0.01]);
Include the geometry in the structural model.
model. Geometry = gm;
Plot the geometry and display the face labels. Rotate the geometry so that you can see the face labels on the left side.
figure
pdegplot(model, 'FaceLabels', 'on');
view([-67 5])


Plot the geometry and display the vertex labels. Rotate the geometry so that you can see the vertex labels on the right side.

```
figure
pdegplot(model,'VertexLabels','on','FaceAlpha',0.5)
xlim([-0.01 0.1])
zlim([-0.01 0.02])
view([60 5])
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.
structuralProperties(model,'YoungsModulus',201E9,'PoissonsRatio', 0.3);
Specify that faces 5 and 10 are fixed boundaries.
structuralBC(model,'Face',[5 10],'Constraint','fixed');
Specify the concentrated force at vertex 6.
structuralBoundaryLoad(model,'Vertex',6,'Force',[0;10^4;0])
ans =
StructuralBC with properties:
RegionType: 'Vertex'
RegionID: 6
Vectorized: 'off'

```
Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
Boundary Loads
 Force: [3x1 double]
 SurfaceTraction: []
 Pressure: []
TranslationalStiffness: []
```


## Specify Pressure for Frequency Response Model

Use a function handle to specify a frequency-dependent pressure for a frequency response model.
Create a frequency response model for a 3-D problem.

```
fmodel = createpde('structural','frequency-solid');
```

Import and plot the geometry.
importGeometry(fmodel,'TuningFork.stl');
figure
pdegplot(fmodel,'FaceLabels','on')


Specify the pressure loading on a tine (face 11) as a short rectangular pressure pulse. In the frequency domain, this pressure pulse is a unit load uniformly distributed across all frequencies.

```
structuralBoundaryLoad(fmodel,'Face',11,'Pressure',1);
```

Now specify a frequency-dependent pressure load, for example, $p=e^{-(\omega-1000)^{2} / 100000}$.

```
pLoad = @(location,state) exp(-(state.frequency-1E3).^2/1E5);
```

structuralBoundaryLoad(fmodel,'Face',12,'Pressure', pLoad);

## Specify Nonconstant Pressure For Transient Model by Using Function Handle

Use a function handle to specify a harmonically varying pressure at the center of a thin 3-D plate.
Create a transient dynamic model for a 3-D problem.
structuralmodel = createpde('structural','transient-solid');
Create a geometry consisting of a thin 3-D plate with a small plate at the center. Include the geometry in the model and plot it.

```
gm = multicuboid([5,0.05],[5,0.05],0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
```



Zoom in to see the face labels on the small plate at the center.
figure
pdegplot(structuralmodel,' FaceLabels','on', 'FaceAlpha', 0.25)
axis([-0.2 0.2 -0.2 0.2 -0.1 0.1])


Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);
```

Specify that all faces on the periphery of the thin 3-D plate are fixed boundaries.

```
structuralBC(structuralmodel,'Constraint','fixed','Face',5:8);
```

Apply a harmonically varying pressure load on the small face at the center of the plate.

```
plungerLoad = @(location,state)5E7.*sin(25.*state.time);
structuralBoundaryLoad(structuralmodel,'Face',12,'Pressure',plungerLoad)
```

ans =
StructuralBC with properties:
RegionType: 'Face'
RegionID: 12
Vectorized: 'off'
Boundary Constraints and Enforced Displacements
Displacement: []
XDisplacement: []
YDisplacement: []
ZDisplacement: []
Constraint: []

```
 Radius: []
 Reference: []
Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: @(location,state)5E7.*sin(25.*state.time)
TranslationalStiffness: []
Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: []
 EndTime: []
 RiseTime: []
 FallTime: []
Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []
```


## Apply Sinusoidal Pressure by Specifying Frequency

Specify a harmonically varying pressure at the center of a thin 3-D plate by specifying its frequency.
Create a transient dynamic model for a 3-D problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create a geometry consisting of a thin 3-D plate with a small plate at the center. Include the geometry in the model and plot it.

```
gm = multicuboid([5,0.05],[5,0.05],0.01);
structuralmodel.Geometry=gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
```



Zoom in to see the face labels on the small plate at the center.
figure
pdegplot(structuralmodel,' FaceLabels', 'on', 'FaceAlpha', 0.25)
axis([-0.2 0.2 -0.2 0.2 -0.1 0.1])


Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);
```

Specify that all faces on the periphery of the thin 3-D plate are fixed boundaries.

```
structuralBC(structuralmodel,'Constraint','fixed','Face',5:8);
```

Apply a harmonically varying pressure load on the small face at the center of the plate.

```
structuralBoundaryLoad(structuralmodel,'Face',12,'Pressure',5E7,'Frequency',25)
ans =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: 12
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
```

```
 Reference: []
Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: 50000000
 TranslationalStiffness: []
Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: []
 EndTime: []
 RiseTime: []
 FallTime: []
Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: 25
 Phase: []
```


## Apply Rectangular Pressure Pulse on Boundary

Create a transient structural model.
structuralModel = createpde('structural','transient-solid');
Import and plot the geometry.
importGeometry(structuralModel,'BracketWithHole.stl'); pdegplot(structuralModel,'FaceLabels','on') view (-20,10)


Specify the Young's modulus and Poisson's ratio.

```
structuralProperties(structuralModel,'YoungsModulus',200e9, ...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);
```

Specify that face 4 is a fixed boundary.

```
structuralBC(structuralModel,'Face',4,'Constraint','fixed');
```

Apply a rectangular pressure pulse on face 7 in the direction normal to the face.
structuralBoundaryLoad(structuralModel, 'Face',7,'Pressure',10^5,... 'StartTime',0.1,'EndTime',0.5)
ans =
StructuralBC with properties:
RegionType: 'Face'
RegionID: 7
Vectorized: 'off'
Boundary Constraints and Enforced Displacements
Displacement: []
XDisplacement: []
YDisplacement: []
ZDisplacement: []
Constraint: []

```
 Radius: []
 Reference: []
Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: 100000
TranslationalStiffness: []
Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: 0.1000
 EndTime: 0.5000
 RiseTime: []
 FallTime: []
Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []
```


## Apply Rectangular Force Pulse at Point

Specify a short concentrated force pulse at a vertex of a geometry.
Create a structural model for static analysis of a solid (3-D) problem.

```
structuralmodel = createpde('structural','transient-solid');
```

Create the geometry, which consists of two cuboids stacked on top of each other.
gm = multicuboid(0.2,0.01,[0.01 0.01],'Zoffset',[0 0.01]);
Include the geometry in the structural model.
structuralmodel.Geometry = gm;
Plot the geometry and display the face labels. Rotate the geometry so that you can see the face labels on the left side.

```
figure
pdegplot(structuralmodel,'FaceLabels','on');
view([-67 5])
```



Plot the geometry and display the vertex labels. Rotate the geometry so that you can see the vertex labels on the right side.

```
figure
pdegplot(structuralmodel,'VertexLabels','on','FaceAlpha',0.5)
xlim([-0.01 0.1])
zlim([-0.01 0.02])
view([60 5])
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',201E9, ...
```

'PoissonsRatio',0.3, ...
'MassDensity',7800);
Specify that faces 5 and 10 are fixed boundaries.

```
structuralBC(structuralmodel,'Face',[5 10],'Constraint','fixed');
```

Specify a short concentrated force pulse at vertex 6.
structuralBoundaryLoad(structuralmodel,'Vertex',6,'Force',[0;1000;0], ...
'StartTime', 1, 'EndTime',1.05)
ans =
StructuralBC with properties:
RegionType: 'Vertex'
RegionID: 6
Vectorized: 'off'
Boundary Constraints and Enforced Displacements
Displacement: []
XDisplacement: []
YDisplacement: []
ZDisplacement: []
Constraint: []

```
 Radius: []
 Reference: []
Boundary Loads
 Force: [3×1 double]
 SurfaceTraction: []
 Pressure: []
TranslationalStiffness: []
Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: 1
 EndTime: 1.0500
 RiseTime: []
 FallTime: []
Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []
```

Specify zero initial displacement and velocity.

```
structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0])
ans =
 GeometricStructuralICs with properties:
 RegionType: 'Cell
 RegionID: [1 2]
 InitialDisplacement: [3\times1 double]
 InitialVelocity: [3\times1 double]
```

Generate a fine mesh.
generateMesh(structuralmodel,'Hmax',0.02);
Because the load is zero for the initial time span and is applied for only a short time, solve the model for two time spans. Use the first time span to find the solution before the force pulse.

```
structuralresults1 = solve(structuralmodel,0:1E-2:1);
```

Use the second time span to find the solution during and after the force pulse.
structuralIC(structuralmodel, structuralresults1)
ans $=$
NodalStructuralICs with properties:
InitialDisplacement: [511×3 double]
InitialVelocity: [511×3 double]
structuralresults2 = solve(structuralmodel,[1.001:0.001:1.01 1.02:1E-2:2]);
Plot the displacement value at the node corresponding to vertex 6, where you applied the concentrated force pulse.
loadedNd = findNodes(structuralmodel.Mesh,'region','Vertex',6);
plot(structuralresults2.SolutionTimes,structuralresults2.Displacement.uy(loadedNd,:))


## Input Arguments

## structuralmodel - Structural model

StructuralModel object
Structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.
Example: structuralmodel = createpde('structural','transient-solid')

## RegionType - Geometric region type

'Edge' for a 2-D model | 'Face' for a 3-D model
Geometric region type, specified as 'Edge' for a 2-D model or 'Face' for a 3-D model.
Example: structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'SurfaceTraction', [0, 0, 100])

Data Types: char|string

## RegionID - Geometric region ID

positive integer | vector of positive integers

Geometric region ID, specified as a positive integer or vector of positive integers. Find the region IDs by using pdegplot.
Example: structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'SurfaceTraction', [0,0,100])
Data Types: double
VertexID - Vertex ID
positive integer | vector of positive integers
Vertex ID, specified as a positive integer or vector of positive integers. Find the vertex IDs using pdegplot.
Example: structuralBoundaryLoad(structuralmodel,' 'Vertex', 6, 'Force', [0;10^4;0])
Data Types: double

## STval - Distributed normal and tangential forces on boundary

numeric vector | function handle
Distributed normal and tangential forces on the boundary, resolved along the global Cartesian coordinate system, specified as a numeric vector or function handle. A numeric vector must contain two elements for a 2-D model and three elements for a 3-D model.

The function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix must correspond to the surface traction vector at the boundary coordinates provided by the solver. In case of a transient or frequency response analysis, STval also can be a function of time or frequency, respectively. For details, see "More About" on page 5-1078.

Example: structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'SurfaceTraction', [0;0;100])
Data Types: double | function_handle

## Pval - Pressure normal to boundary

number | function handle
Pressure normal to the boundary, specified as a number or function handle. A positive-value pressure acts into the boundary (for example, compression), while a negative-value pressure acts away from the boundary (for example, suction).

If you specify Pval as a function handle, the function must return a row vector where each column corresponds to the value of pressure at the boundary coordinates provided by the solver. In case of a transient structural model, Pval also can be a function of time. In case of a frequency response structural model, Pval can be a function of frequency (when specified as a function handle) or a constant pressure with the same magnitude for a broad frequency spectrum. For details, see "More About" on page 5-1078.

Example: structuralBoundaryLoad(structuralmodel,' Face', [2,5],'Pressure',10^5)
Data Types: double | function_handle

## TSval - Distributed spring stiffness

numeric vector | function handle
Distributed spring stiffness for each translational direction used to model elastic foundation, specified as a numeric vector or function handle. A numeric vector must contain two elements for a 2-D model
and three elements for a 3-D model. The custom function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of this matrix corresponds to the stiffness vector at the boundary coordinates provided by the solver. In case of a transient or frequency response analysis, TSval also can be a function of time or frequency, respectively. For details, see "More About" on page 5-1078.
Example: structuralBoundaryLoad(structuralmodel, 'Edge', [2,5],'TranslationalStiffness', [0;5500])
Data Types: double | function_handle

## Fval - Concentrated force

numeric vector | function handle
Concentrated force at a vertex, specified as a numeric vector or function handle. Use a function handle to specify concentrated force that depends time or frequency. For details, see "More About" on page 5-1078.

Example: structuralBoundaryLoad(structuralmodel, 'Vertex', 5, 'Force', [0;0;10])
Data Types: double | function_handle

## Name-Value Pair Arguments

Use one or more of the name-value pair arguments to specify the form and duration of the pressure or concentrated force pulse and harmonic excitation for a transient structural model only. Specify the pressure or force value using the Pval or Fval argument, respectively.

You can model rectangular, triangular, and trapezoidal pressure or concentrated force pulses. If the start time is 0 , you can omit specifying it.

- For a rectangular pulse, specify the start and end times.
- For a triangular pulse, specify the start time and any two of the following times: rise time, fall time, and end time. You also can specify all three times, but they must be consistent.
- For a trapezoidal pulse, specify all four times.


You can model a harmonic pressure or concentrated force load by specifying its frequency and initial phase. If the initial phase is 0 , you can omit specifying it.


Example: structuralBoundaryLoad(structuralmodel, 'Face',
[2,5],'Pressure',10^5,'RiseTime', 0.5,'FallTime', 0.5,'EndTime' , 3)

## Rectangular, Triangular, or Trapezoidal Pulse

## StartTime - Start time for pressure or concentrated force load <br> nonnegative number

Start time for pressure or concentrated force load, specified as a nonnegative number. Specify this argument only for transient structural models.

```
Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'StartTime',1,'EndTime',3)
```

Data Types: double
EndTime - End time for pressure or concentrated force load
nonnegative number
End time for pressure or concentrated force load, specified as a nonnegative number equal or greater than the start time value. Specify this argument only for transient structural models.

```
Example: structuralBoundaryLoad(structuralmodel,' Face',
[2,5],'Pressure',10^5,'StartTime',1,'EndTime',3)
```

Data Types: double

## RiseTime - Rise time for pressure or concentrated force load

nonnegative number
Rise time for pressure or concentrated force load, specified as a nonnegative number. Specify this argument only for transient structural models.

```
Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)
```

Data Types: double
FallTime - Fall time for pressure or concentrated force load
nonnegative number
Fall time for pressure or concentrated force load, specified as a nonnegative number. Specify this argument only for transient structural models.

```
Example: structuralBoundaryLoad(structuralmodel,' Face',
[2,5],'Pressure',10^5,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)
```

Data Types: double

## Harmonic Pressure or Force

Frequency - Frequency of sinusoidal pressure or concentrated force
positive number
Frequency of sinusoidal pressure or concentrated force, specified as a positive number, in radians per unit of time. Specify this argument only for transient structural models.
Example: structuralBoundaryLoad(structuralmodel, 'Face', [2,5],'Pressure',10^5,' Frequency' , 25)

Data Types: double

## Phase - Phase of sinusoidal pressure or concentrated force <br> nonnegative number

Phase of sinusoidal pressure or concentrated force, specified as a nonnegative number, in radians. Specify this argument only for transient structural models.

```
Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'Frequency',25,'Phase',pi/6)
Data Types: double
```


## Output Arguments

## boundaryLoad - Handle to boundary load

StructuralBC object
Handle to boundary load, returned as a StructuralBC object. See StructuralBC Properties.

## More About

## Specifying Nonconstant Parameters of a Structural Model

Use a function handle to specify the following structural parameters when they depend on space and, depending of the type of structural analysis, either time or frequency:

- Surface traction on the boundary
- Pressure normal to the boundary
- Concentrated force at a vertex
- Distributed spring stiffness for each translational direction used to model elastic foundation
- Enforced displacement and its components
- Initial displacement and velocity

For example, use function handles to specify the pressure load, $x$-component of the enforced displacement, and the initial displacement for this model.

```
structuralBoundaryLoad(model,'Face',12,'Pressure',@myfun)
structuralBC(model,'Face',2,'XDisplacement',@myfun)
structuralIC(model,'Face',12,'Displacement',@myfun)
```

The function must be of the form:

```
function structuralVal = myfun(location,state)
```

The solver passes the location and state data to your function.

- location - A structure containing these fields:
- location. $x$ - The $x$-coordinate of the point or points
- location. y - The $y$-coordinate of the point or points
- location.z - For a 3-D or an axisymmetric geometry, the $z$-coordinate of the point or points
- location. r-For an axisymmetric geometry, the $r$-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

- location. $\mathrm{nx}-x$-component of the normal vector at the evaluation point or points
- location.ny - $y$-component of the normal vector at the evaluation point or points
- location.nz - For a 3-D or an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- location.nz - For an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- state - A structure containing these fields for dynamic structural problems:
- state. time contains the time at evaluation points.
- state. frequency contains the frequency at evaluation points.
state.time and state.frequency are scalars.
Boundary constraints and loads get these data from the solver:
- location. x, location.y, location.z, location. r
- location.nx, location.ny, location.nz, location.nr
- state.time or state.frequency (depending of the type of structural analysis)

Initial conditions get these data from the solver:

- location.x, location.y, location.z, location.r
- Subdomain ID

If a parameter represents a vector value, such as surface traction, spring stiffness, force, or displacement, your function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix corresponds to the parameter value (a vector) at the boundary coordinates provided by the solver.

If a parameter represents a scalar value, such as pressure or a displacement component, your function must return a row vector where each element corresponds to the parameter value (a scalar) at the boundary coordinates provided by the solver.

If boundary conditions depend on state.time or state.frequency, ensure that your function returns a matrix of NaN of the correct size when state.frequency or state. time are NaN. Solvers check whether a problem is nonlinear or time dependent by passing NaN state values and looking for returned NaN values.

## See Also

StructuralBC Properties | StructuralModel| structuralBC| structuralBodyLoad| structuralDamping|structuralProperties

## Introduced in R2017b

## StructuralModel

Structural model object

## Description

A StructuralModel object contains information about a structural analysis problem: the geometry, material properties, damping parameters, body loads, boundary loads, boundary constraints, superelement interfaces, initial displacement and velocity, and mesh.

## Creation

To create a StructuralModel object, use createpde and specify 'structural' as its first argument .

## Properties

```
AnalysisType - Type of structural analysis
'static-solid'| 'static-planestress'| 'static-planestrain'| 'static-
axisymmetric'|'transient-solid'|'transient-planestress'|'transient-
planestrain'|'transient-axisymmetric'|'modal-solid'|'modal-planestress' |
'modal-planestrain'|'modal-axisymmetric'|'frequency-solid'|'frequency-
planestress'|'frequency-planestrain'|'frequency-axisymmetric'
```

Type of structural analysis, returned as one of these values.
Static analysis:

- 'static-solid' for static structural analysis of a solid (3-D) problem
- 'static-planestress' for static structural analysis of a plane-stress problem
- 'static-planestrain' for static structural analysis of a plane-strain problem
- 'static-axisymmetric' for static structural analysis of an axisymmetric (2-D) problem

Transient analysis:

- 'transient-solid ' for transient structural analysis of a solid (3-D) problem
- 'transient-planestress' for transient structural analysis of a plane-stress problem
- 'transient-planestrain' for transient structural analysis of a plane-strain problem
- 'transient-axisymmetric' for transient structural analysis of an axisymmetric (2-D) problem

Modal analysis:

- 'modal-solid' for modal analysis of a solid (3-D) problem
- 'modal-planestress' for modal analysis of a plane-stress problem
- 'modal-planestrain' for modal analysis of a plane-strain problem
- 'modal-axisymmetric' for modal analysis of an axisymmetric (2-D) problem

Frequency response analysis:

- ' frequency-solid ' for frequency response analysis of a solid (3-D) problem
- 'frequency-planestress' for frequency response analysis of a plane-stress problem
- 'frequency-planestrain' for frequency response analysis of a plane-strain problem
- 'frequency-axisymmetric' for frequency response analysis of an axisymmetric (2-D) problem

Example: model = createpde('structural','static-solid')
Data Types: char

## Geometry - Geometry description

AnalyticGeometry|DiscreteGeometry
Geometry description, returned as AnalyticGeometry for a 2-D geometry or DiscreteGeometry for a 2-D or 3-D geometry.

- Create AnalyticGeometry using the geometryFromEdges function. For details, see AnalyticGeometry.
- Create DiscreteGeometry using the importGeometry function or the geometryFromMesh function. For details, see DiscreteGeometry.


## MaterialProperties - Material properties

StructuralMaterialAssignment object containing material property assignments
Material properties within the domain, returned as a StructuralMaterialAssignment object containing the material property assignments. For details, see StructuralMaterialAssignment Properties.

To create the material properties assignments for your structural analysis model, use the structuralProperties function.

## BodyLoads - Loads acting on domain or subdomain

BodyLoadAssignment object containing body load assignments
Loads acting on the domain or subdomain, returned as a BodyLoadAssignment object containing body load assignments. For details, see BodyLoadAssignment Properties.

To create body load assignments for your structural analysis model, use the structuralBodyLoad function.

## BoundaryConditions - Structural loads and boundary conditions

StructuralBC object containing boundary condition assignments
Structural loads and boundary conditions applied to the geometry, returned as a StructuralBC object containing the boundary condition assignments. For details, see StructuralBC Properties.

To specify boundary conditions for your model, use the structuralBC function. To specify boundary loads, use structuralBoundaryLoad.

## DampingModels - Damping model for transient dynamic analysis

StructuralDampingAssignment object containing damping assignments

Damping model for transient dynamic analysis, returned as a StructuralDampingAssignment object containing damping assignments. For details, see StructuralDampingAssignment Properties.

To set damping parameters for your structural model, use the structuralDamping function.

## ReferenceTemperature - Reference temperature for thermal load

0 (default) | number
Reference temperature for a thermal load, specified as a number. The reference temperature corresponds to state of zero thermal stress of the model. The default value 0 implies that the thermal load is specified in terms of the temperature change and its derivatives.

To specify the reference temperature for a thermal load in your static structural model, assign the property value directly, for example, structuralmodel.ReferenceTemperature $=10$. To specify the thermal load itself, use the structuralBodyLoad function.

Data Types: double

## InitialConditions - Initial displacement and velocity <br> GeometricStructuralICs object | NodalSt ructuralICs object

Initial displacement and velocity, returned as a GeometricStructuralICs or NodalStructuralICs object. For details, see GeometricStructuralICs Properties and NodalStructuralICs Properties.

To set initial conditions for your transient structural model, use the structuralIC function.

## SuperelementInterfaces - Superelement interfaces for component mode synthesis <br> StructuralSEIAssignment object containing superelement interfaces assignments

Superelement interfaces for the component mode synthesis, returned as a
StructuralSEIAssignment object containing superelement interface assignments. For details, see StructuralSEIAssignment Properties.

To specify superelement interfaces for your frequency response structural model, use the structuralSEInterface function.

## Mesh - Mesh for solution

FEMesh object
Mesh for solution, returned as a FEMesh object. For property details, see FEMesh.
To create the mesh, use the generateMesh function.

## SolverOptions - Algorithm options for PDE solvers <br> PDESolverOptions object

Algorithm options for the PDE solvers, returned as a PDESolverOptions object. The properties of PDESolverOptions include absolute and relative tolerances for internal ODE solvers, maximum solver iterations, and so on.

## Object Functions

geometryFromEdges
geometryFromMesh
Create 2-D geometry from decomposed geometry matrix
Create 2-D or 3-D geometry from mesh

importGeometry	Import 2-D or 3-D geometry from STL data
structuralBC	Specify boundary conditions for structural model
structuralSEInterface	Specify structural superelement interface for component mode synthesis
structuralBodyLoad	Specify body load for structural model
structuralBoundaryLoad	Specify boundary loads for structural model
structuralIC	Set initial conditions for a transient structural model
structuralProperties	Assign structural properties of material for structural model
solve	Solve heat transfer, structural analysis, or electromagnetic analysis
	problem
reduce	Reduce structural model

## Examples

## Create and Populate Structural Analysis Model

Create a static structural model for solving a solid (3-D) problem.

```
structuralModel = createpde('structural','static-solid')
structuralModel =
 StructuralModel with properties:
 AnalysisType: 'static-solid'
 Geometry: []
 MaterialProperties: []
 BodyLoads: []
 BoundaryConditions: []
 ReferenceTemperature: []
 SuperelementInterfaces: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Create and plot the geometry.

```
gm = multicuboid(0.5,0.1,0.1);
structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceAlpha',0.5)
```



Specify the Young's modulus, Poisson's ratio, and mass density.

```
structuralProperties(structuralModel,'Cell',1,'YoungsModulus',210E3, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2.7E-6)
ans =
 StructuralMaterialAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 210000
 PoissonsRatio: 0.3000
 MassDensity: 2.7000e-06
 CTE: []
```

Specify the gravity load on the rod.

```
structuralBodyLoad(structuralModel,'GravitationalAcceleration',[0;0;-9.8])
ans =
 BodyLoadAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 GravitationalAcceleration: [3x1 double]
 AngularVelocity: []
```

Temperature: []
TimeStep: []

Specify that face 6 is a fixed boundary.

```
structuralBC(structuralModel,'Face',6,'Constraint','fixed')
ans =
 StructuralBC with properties:
 RegionType: 'Face'
 RegionID: 6
 Vectorized: 'off'
 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "fixed"
 Radius: []
 Reference: []
 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
```

Specify the surface traction for face 5.

```
structuralBoundaryLoad(structuralModel,'Face',5,'SurfaceTraction',[0;0;100])
```

ans $=$
StructuralBC with properties:
RegionType: 'Face'
RegionID: 5
Vectorized: 'off'
Boundary Constraints and Enforced Displacements
Displacement: []
XDisplacement: []
YDisplacement: []
ZDisplacement: []
Constraint: []
Radius: []
Reference: []
Boundary Loads
Force: []
SurfaceTraction: [3x1 double]
Pressure: []
TranslationalStiffness: []

Generate a mesh.

```
generateMesh(structuralModel)
ans =
 FEMesh with properties:
 Nodes: [3\times7800 double]
 Elements: [10x4857 double]
 MaxElementSize: 0.0208
 MinElementSize: 0.0104
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'
```

View the properties of structuralModel.

```
structuralModel
```

structuralModel =
StructuralModel with properties:
AnalysisType: 'static-solid'
Geometry: [1x1 DiscreteGeometry]
MaterialProperties: [1x1 StructuralMaterialAssignmentRecords]
BodyLoads: [1x1 BodyLoadAssignmentRecords]
BoundaryConditions: [1x1 StructuralBCRecords]
ReferenceTemperature: []
SuperelementInterfaces: []
Mesh: [1x1 FEMesh]
SolverOptions: [1×1 pde.PDESolverOptions]

## See Also

createpde | generateMesh | geometryFromEdges | geometryFromMesh | importGeometry | pdegplot | pdeplot | pdeplot3D| reduce | solve | structuralBC| structuralBodyLoad | structuralBoundaryLoad|structuralProperties|structuralSEInterface

## Introduced in R2017b

## structuralProperties

Package: pde
Assign structural properties of material for structural model

## Syntax

```
structuralProperties(structuralmodel,'YoungsModulus',YMval,'PoissonsRatio',
PRval)
structuralProperties(___,'MassDensity',MDval)
structuralProperties(
```

$\qquad$

``` ,'CTE',CTEval)
structuralProperties(__, RegionType,RegionID)
mtl = structuralProperties(
```

$\qquad$

``` )
```


## Description

structuralProperties(structuralmodel,'YoungsModulus',YMval,'PoissonsRatio', PRval) assigns the Young's modulus and Poisson's ratio for the entire geometry. Use this syntax if your model is static and does not account for gravitational and thermal effects.

Tip A structural model supports only homogeneous isotropic materials. Therefore, all material properties must be numeric scalars.
structuralProperties( $\qquad$ ,'MassDensity',MDval) assigns the mass density of the material for the entire geometry, and can include any of the arguments used in the previous syntax. Specify the mass density of the material if your model is transient or modal, or if it accounts for gravitational effects.
structuralProperties( $\qquad$ , 'CTE ' , CTEval) assigns the coefficient of thermal expansion for a thermal stress analysis. Use this syntax if your model is static and accounts for thermal effects.
structuralProperties( $\qquad$ ,RegionType, RegionID) assigns material properties for the specified geometry region.
mtl = structuralProperties( $\qquad$ ) returns the material properties object.

## Examples

## Structural Material Properties for Static Model Accounting for Gravity

Create a structural model.

```
structuralModel = createpde('structural','static-solid');
```

Import and plot the geometry.

```
importGeometry(structuralModel,'BracketWithHole.stl');
```

pdegplot(structuralModel,'FaceAlpha', 0.5)


Specify the Young's modulus, Poisson's ratio, and mass density.

```
structuralProperties(structuralModel,'YoungsModulus',200e9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800)
ans =
 StructuralMaterialAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 2.0000e+11
 PoissonsRatio: 0.3000
 MassDensity: 7800
 CTE: []
```


## Structural Material Properties for Modal Analysis

Create a structural model for modal analysis.
structuralModel = createpde('structural','modal-solid');
Create and plot the geometry.

```
gm = multicuboid(0.5,0.1,0.1);
structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceAlpha',0.5)
```



Specify the Young's modulus, Poisson's ratio, and mass density.

```
structuralProperties(structuralModel,'YoungsModulus',210E3, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2.7E-6)
ans =
 StructuralMaterialAssignment with properties:
 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 210000
 PoissonsRatio: 0.3000
 MassDensity: 2.7000e-06
 CTE: []
```


## Structural Material Properties for Thermal Stress Analysis

Specify the coefficients of thermal expansion for a bimetallic cantilever beam. The bottom layer is steel. The top layer is copper.

Create a static structural model.
structuralmodel = createpde('structural','static-solid');
Create and plot the geometry.
gm = multicuboid(0.5,0.04,[0.03,0.03], 'Zoffset',[0,0.03]);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'CellLabels','on')


Specify the Young's modulus, Poisson's ratio, and coefficient of thermal expansion for the bottom cell C1.

```
structuralProperties(structuralmodel,'Cell',1','YoungsModulus',210e9, ...
```

                        'PoissonsRatio',0.28, ...
                        'CTE',1.3e-5)
    ans $=$
StructuralMaterialAssignment with properties:
RegionType: 'Cell'
RegionID: 1
YoungsModulus: 2.1000e+11
PoissonsRatio: 0.2800
MassDensity: []
CTE: 1.3000e-05

Specify the Young's modulus, Poisson's ratio, and coefficient of thermal expansion for the top cell C2.

```
structuralProperties(structuralmodel,'Cell',2','YoungsModulus',110e9, ...
 'PoissonsRatio',0.37, ...
 'CTE',2.4e-5)
ans =
 StructuralMaterialAssignment with properties:
 RegionType: 'Cell'
 RegionID: 2
 YoungsModulus: 1.1000e+11
 PoissonsRatio: 0.3700
 MassDensity: []
 CTE: 2.4000e-05
```


## Structural Material Properties for Each Geometric Region

Create a structural model.

```
structuralModel = createpde('structural','static-solid');
```

Create nested cylinders to model a bimetallic cable.
gm = multicylinder([0.01,0.015],0.05);
Assign the geometry to the structural model and plot the geometry.
structuralModel.Geometry = gm;
pdegplot(structuralModel,'CellLabels','on','FaceAlpha', 0.4)


Specify the Young's modulus and Poisson's ratio for each metal.
structuralProperties(structuralModel,'Cell',1,'YoungsModulus',110E9, ...
'PoissonsRatio',0.28)
ans =
StructuralMaterialAssignment with properties:
RegionType: 'Cell'
RegionID: 1
YoungsModulus: 1.1000e+11
PoissonsRatio: 0.2800
MassDensity: []
CTE: []
structuralProperties(structuralModel,'Cell',2,'YoungsModulus',210E9, ...
'PoissonsRatio',0.3)
ans =
StructuralMaterialAssignment with properties:
RegionType: 'Cell'
RegionID: 2
YoungsModulus: 2.1000e+11 PoissonsRatio: 0.3000

MassDensity: []

CTE: []

## Input Arguments

```
structuralmodel - Structural model
```

StructuralModel object
Structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.

Example: structuralmodel = createpde('structural','transient-solid')

## YMval - Young's modulus

positive number
Young's modulus of the material, specified as a positive number.
Example:
structuralProperties(structuralmodel,'YoungsModulus',210e3,'PoissonsRatio', 0. 3 )

Data Types: double

## PRval - Poisson's ratio

number greater than 0 and less than 0.5
Poisson's ratio of the material, specified as a number greater than 0 and less than 0.5 .
Example:
structuralProperties(structuralmodel,'YoungsModulus',210e3,'PoissonsRatio',0. 3 )

Data Types: double

## MDval - Mass density

positive number
Mass density of the material, specified as a positive number. This argument is required for transient and modal models. MDval is also required when modeling gravitational effects.

Example:
structuralProperties(structuralmodel,'YoungsModulus',210e3,'PoissonsRatio',0.
3,'MassDensity',11.7e-6)
Data Types: double

## CTEval - Coefficient of thermal expansion

real number
Coefficient of thermal expansion, specified as a real number. This argument is required for thermal stress analysis. Thermal stress analysis requires the structural model to be static.

```
Example:
structuralProperties(structuralmodel,'YoungsModulus',210e3,'PoissonsRatio',0.
3,'MassDensity',2.7e-6,'CTE',11.7e-6)
```


## Data Types: double

## RegionType - Geometric region type

'Face' for a 2-D model | 'Cell' for a 3-D model
Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Example:
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9,'Poissons Ratio', 0.3)
Data Types: char|string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs using pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example:
structuralProperties(structuralmodel,'Cell',1:3,'YoungsModulus',110E9,'Poisso nsRatio',0.3)

Data Types: double

## Output Arguments

mtl - Handle to material properties
StructuralMaterialAssignment object
Handle to material properties, returned as a StructuralMaterialAssignment object. See StructuralMaterialAssignment Properties.
mtl associates the material properties with the geometric region.

## See Also

StructuralMaterialAssignment Properties | StructuralModel | createpde | structuralBC | structuralBodyLoad| structuralBoundaryLoad| structuralDamping

Introduced in R2017b

## structuralSEInterface

Package: pde
Specify structural superelement interface for component mode synthesis

## Syntax

structuralSEInterface(structuralmodel,RegionType,RegionID) sei = structuralSEInterface( $\qquad$ )

## Description

structuralSEInterface(structuralmodel,RegionType, RegionID) defines the specified geometric region RegionType, RegionID as a superelement interface for component mode synthesis. For better performance, specify geometric regions with a minimal number of nodes. For example, use a set of edges instead of a face, or a set of vertices instead of an edge.

If you intend to use a reduced-order model in Simscape Multibody, use structuralBC instead of structuralSEInterface.
sei = structuralSEInterface( $\qquad$ ) returns the superelement interface assignment object using the previous syntax.

## Examples

## Superelement Interfaces for Component Mode Synthesis

Define the two ends of the beam as structural superelement interfaces. The reduced-order modeling technique retains the degrees of freedom on these boundaries while condensing all other degrees of freedom.

Create a structural model for modal analysis of a 3-D problem.
structuralmodel = createpde('structural','modal-solid');
Create a geometry and include it in the model. Plot the geometry.

```
gm = multicuboid(0.1,0.01,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'EdgeLabels','on','FaceAlpha',0.5)
```



Specify the Young's modulus, Poisson's ratio, and mass density of the material.

```
structuralProperties(structuralmodel,'YoungsModulus',70E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2700);
```

Generate a mesh.
generateMesh(structuralmodel);
Specify the ends of the beam as structural superelement interfaces. For better performance, use the set of edges bounding each side of the beam instead of using the entire face.
structuralSEInterface(structuralmodel,'Edge', [4, 6, 9, 10]);
structuralSEInterface(structuralmodel,' Edge',[2,8,11,12]);
Reduce the model to all modes in the frequency range [ - Inf , 500000] and the interface degrees of freedom.

```
R = reduce(structuralmodel,'FrequencyRange',[-Inf,500000])
```

$\mathrm{R}=$
ReducedStructuralModel with properties:

```
 K: [166x166 double]
 M: [166x166 double]
 NumModes: 22
 RetainedDoF: [144x1 double]
```

ReferenceLocations: []
Mesh: [1x1 FEMesh]

## Input Arguments

## structuralmodel - Structural model

StructuralModel object
Structural model, specified as a StructuralModel object. The model contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary conditions.
Example: structuralmodel = createpde('structural','transient-solid')

## RegionType - Geometric region type

'Vertex' | 'Edge ' | 'Face' (for a 3-D model only)
Geometric region type, specified as 'Vertex', 'Edge', or, for a 3-D model, 'Face'.
Example: structuralSEInterface(structuralmodel, 'Face', [2,5])
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.

Example: structuralSEInterface(structuralmodel, 'Face', [2,5])
Data Types: double

## Output Arguments

sei - Handle to superelement interface
StructuralSEIAssignment object
Superelement interface assignment, returned as a StructuralSEIAssignment object. See StructuralSEIAssignment Properties.

## See Also

ReducedStructuralModel|StructuralModel | StructuralSEIAssignment Properties | reconstructSolution| reduce|solve| structuralBC

Introduced in R2019b

## StructuralSEIAssignment Properties

Superelement interface assignment for structural model

## Description

A StructuralSEIAssignment object contains a description of the superelement interfaces for a structural analysis model. A StructuralModel container has a vector of StructuralSEIAssignment objects in its SuperelementInterfaces.StructuralSEIAssignments property.

## Properties

Properties of StructuralSEIAssignment

## RegionType - Region type

'Vertex' | 'Edge' | 'Face' (for a 3-D model only)
Region type, returned as 'Vertex', 'Edge', or, for a 3-D model, 'Face'.
Data Types: char | string
RegionID - Region ID
positive integer
Geometric region ID, returned as a positive integer. Find the region IDs by using pdegplot.
Data Types: double

## See Also

ReducedStructuralModel | StructuralBC Properties | StructuralModel | reconstructSolution | reduce | solve | structuralBC| structuralSEInterface

Introduced in R2019b

## StationaryResults

Time-independent PDE solution and derived quantities

## Description

A StationaryResults object contains the solution of a PDE and its gradients in a form convenient for plotting and postprocessing.

- A StationaryResults object contains the solution and its gradient calculated at the nodes of the triangular or tetrahedral mesh, generated by generateMesh.
- Solution values at the nodes appear in the NodalSolution property.
- The three components of the gradient of the solution values at the nodes appear in the XGradients, YGradients, and ZGradients properties.
- The array dimensions of NodalSolution, XGradients, YGradients, and ZGradients enable you to extract solution and gradient values for specified equation indices in a PDE system.

To interpolate the solution or its gradient to a custom grid (for example, specified by meshgrid), use interpolateSolution or evaluateGradient.

## Creation

There are several ways to create a StationaryResults object:

- Solve a time-independent problem using the solvepde function. This function returns a PDE solution as a StationaryResults object. This is the recommended approach.
- Solve a time-independent problem using the assempde or pdenonlin function. Then use the createPDEResults function to obtain a StationaryResults object from a PDE solution returned by assempde or pdenonlin. Note that assempde and pdenonlin are legacy functions. They are not recommended for solving PDE problems.


## Properties

## Mesh - Finite element mesh

FEMesh object
Finite element mesh, returned as a FEMesh object.

## NodalSolution - Solution values at the nodes

vector | array
Solution values at the nodes, returned as a vector or array. For details about the dimensions of NodalSolution, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.
Data Types: double
XGradients - x-component of gradient at the nodes
vector | array
x-component of the gradient at the nodes, returned as a vector or array. For details about the dimensions of XGradients, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

Data Types: double

## YGradients - $\boldsymbol{y}$-component of gradient at the nodes

vector | array
$y$-component of the gradient at the nodes, returned as a vector or array. For details about the dimensions of YGradients, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.
Data Types: double

## ZGradients - z-component of gradient at the nodes

vector | array
$z$-component of the gradient at the nodes, returned as a vector or array. For details about the dimensions of ZGradients, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

Data Types: double

## Object Functions

evaluateCGradient Evaluate flux of PDE solution
evaluateGradient Evaluate gradients of PDE solutions at arbitrary points
interpolateSolution Interpolate PDE solution to arbitrary points

## Examples

## Obtain a StationaryResults Object from solvepde

Create a PDE model for a system of three equations. Import the geometry of a bracket and plot the face labels.

```
model = createpde(3);
importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')
```


## Bracket with Face Labels


figure
pdegplot(model,' FaceLabels', 'on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

## Bracket with Face Labels, Rear View



Set boundary conditions such that face 4 is immobile, and face 8 has a force in the negative $z$ direction.
applyBoundaryCondition(model,'dirichlet','Face',4,'u',[0,0,0]);
applyBoundaryCondition(model,'neumann','Face', 8,'g',[0,0,-1e4]);
Set coefficients that represent the equations of linear elasticity. See "Linear Elasticity Equations" on page 3-125.

E = 200e9;
nu = 0.3;
specifyCoefficients(model,'m', 0,...
'd', 0,...
'c',elasticityC3D(E,nu),...
'a',0,...
'f', [0;0;0]);
Create a mesh.
generateMesh(model,'Hmax',1e-2);
Solve the PDE.

```
results = solvepde(model)
results =
 StationaryResults with properties:
```

```
NodalSolution: [14002x3 double]
 XGradients: [14002x3 double]
 YGradients: [14002\times3 double]
 ZGradients: [14002x3 double]
 Mesh: [1x1 FEMesh]
```

Access the solution at the nodal locations.
u = results.NodalSolution;
Plot the solution for the $z$-component, which is component 3.
pdeplot3D(model,'ColorMapData',u(:,3))


## Results from createPDEResults

Obtain a StationaryResults object from a legacy solver together with createPDEResults.
Create a PDE model for a system of three equations. Import the geometry of a bracket and plot the face labels.
model = createpde(3);
importGeometry(model,'BracketWithHole.stl');

```
figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')
```

Bracket with Face Labels

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

## Bracket with Face Labels, Rear View



Set boundary conditions such that F4 is immobile, and F8 has a force in the negative z direction.

```
applyBoundaryCondition(model,'dirichlet','Face',4,'u',[0,0,0]);
```

applyBoundaryCondition(model,'neumann','Face', 8,'g',[0,0,-1e4]);

Set coefficients for a legacy solver that represent the equations of linear elasticity. See "Linear Elasticity Equations" on page 3-125.

```
E = 200e9;
nu = 0.3;
c = elasticityC3D(E,nu);
a = 0;
f = [0;0;0];
```

Create a mesh.

```
generateMesh(model,'Hmax',1e-2);
```

Solve the problem using a legacy solver.
u = assempde(model, c, a,f);
Create a StationaryResults object from the solution.

```
results = createPDEResults(model,u)
results =
 StationaryResults with properties:
```

```
NodalSolution: [14002x3 double]
 XGradients: [14002x3 double]
 YGradients: [14002x3 double]
 ZGradients: [14002x3 double]
 Mesh: [1x1 FEMesh]
```

Access the solution at the nodal locations.

```
u = results.NodalSolution;
```

Plot the solution for the $z$-component, which is component 3.

```
pdeplot3D(model,'ColorMapData',u(:,3))
```



## See Also

EigenResults | TimeDependentResults | evaluateCGradient |evaluateGradient | interpolateSolution | solvepde

## Topics

"Poisson's Equation on Unit Disk" on page 3-184
"Minimal Electric Potential" on page 3-196
"Solve Problems Using PDEModel Objects" on page 2-2

Introduced in R2016a

5-1107

## SteadyStateThermalResults

Steady-state thermal solution and derived quantities

## Description

A SteadyStateThermalResults object contains the temperature and temperature gradient values in a form convenient for plotting and postprocessing.

The temperature and its gradients are calculated at the nodes of the triangular or tetrahedral mesh generated by generateMesh. Temperature values at the nodes appear in the Temperature property. The three components of the temperature gradient at the nodes appear in the XGradients, YGradients, and ZGradients properties.

To interpolate the temperature or its gradients to a custom grid (for example, specified by meshgrid), use interpolateTemperature or evaluateTemperatureGradient.

To evaluate heat flux of a thermal solution at nodal or arbitrary spatial locations, use evaluateHeatFlux. To evaluate integrated heat flow rate normal to a specified boundary, use evaluateHeatRate.

## Creation

Solve a steady-state thermal problem using the solve function. This function returns a steady-state thermal solution as a SteadyStateThermalResults object.

## Properties

## All Steady-State Thermal Models

Mesh - Finite element mesh
FEMesh object
Finite element mesh, returned as an FEMesh object.

## Temperature - Temperature values at nodes

vector
Temperature values at nodes, returned as a vector.
Data Types: double
Non-Axisymmetric Steady-State Thermal Models
XGradients - x-component of temperature gradient at nodes
vector
$x$-component of the temperature gradient at nodes, returned as a vector.
Data Types: double

## YGradients - $\boldsymbol{y}$-component of temperature gradient at nodes vector

$y$-component of the temperature gradient at nodes, returned as a vector.
Data Types: double

## ZGradients - z-component of temperature gradient at nodes

 vector$z$-component of the temperature gradient at nodes, returned as a vector.
Data Types: double
Axisymmetric Steady-State Thermal Models

## RGradients - r-component of temperature gradient at nodes

 vector$r$-component of the temperature gradient at nodes, returned as a vector.
Data Types: double

## ZGradients - z-component of temperature gradient at nodes for axisymmetric model vector

$z$-component of the temperature gradient at nodes, returned as a vector.
Data Types: double

## Object Functions

evaluateHeatFlux
Evaluate heat flux of a thermal solution at nodal or arbitrary spatial locations
evaluateHeatRate Evaluate integrated heat flow rate normal to specified boundary evaluateTemperatureGradient Evaluate temperature gradient of a thermal solution at arbitrary spatial locations
interpolateTemperature Interpolate temperature in a thermal result at arbitrary spatial locations

## Examples

## Solution to Steady-State Thermal Model

Solve a 3-D steady-state thermal problem.
Create a thermal model for this problem.

```
thermalmodel = createpde('thermal');
```

Import and plot the block geometry.

```
importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabel','on',' FaceAlpha',0.5)
axis equal
```



Assign material properties.
thermalProperties(thermalmodel,'ThermalConductivity',80);
Apply a constant temperature of $100^{\circ} \mathrm{C}$ to the left side of the block (face 1 ) and a constant temperature of $300^{\circ} \mathrm{C}$ to the right side of the block (face 3). All other faces are insulated by default.
thermalBC(thermalmodel, 'Face',1,'Temperature',100);
thermalBC(thermalmodel,' Face',3,'Temperature',300);
Mesh the geometry and solve the problem.

```
generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)
thermalresults =
 SteadyStateThermalResults with properties:
```

```
 Temperature: [12691x1 double]
```

        Temperature: [12691x1 double]
        XGradients: [12691x1 double]
        XGradients: [12691x1 double]
        YGradients: [12691x1 double]
        YGradients: [12691x1 double]
        ZGradients: [12691x1 double]
        ZGradients: [12691x1 double]
            Mesh: [1x1 FEMesh]
    ```
 Mesh: [1x1 FEMesh]
```

The solver finds the temperatures and temperature gradients at the nodal locations. To access these values, use thermal results. Temperature, thermalresults.XGradients, and so on. For example, plot temperatures at the nodal locations.

```
pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature)
```



## Solution to Steady-State Axisymmetric Thermal Model

Analyze heat transfer in a rod with a circular cross-section and internal heat generation by simplifying a 3-D axisymmetric model to a 2-D model.

Create a steady-state thermal model for solving an axisymmetric problem.
thermalmodel = createpde('thermal','steadystate-axisymmetric');
The 2-D model is a rectangular strip whose $x$-dimension extends from the axis of symmetry to the outer surface and whose $y$-dimension extends over the actual length of the rod (from -1.5 m to 1.5 $\mathrm{m})$. Create the geometry by specifying the coordinates of its four corners. For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing through $r=0$.

```
g = decsg([3 4 0 0 .2 .2 -1.5 1.5 1.5 -1.5]');
```

Include the geometry in the model.
geometryFromEdges(thermalmodel,g);
Plot the geometry with the edge labels.
figure
pdegplot(thermalmodel,'EdgeLabels','on')
axis equal


The rod is composed of a material with these thermal properties.
$\mathrm{k}=40$; \% thermal conductivity, $\mathrm{W} /\left(\mathrm{m}^{*} \mathrm{C}\right)$
$q=20000 ;$ heat source, $W / \mathrm{m}^{\wedge} 3$
For a steady-state analysis, specify the thermal conductivity of the material.
thermalProperties(thermalmodel, 'ThermalConductivity',k);
Specify the internal heat source.
internalHeatSource(thermalmodel,q);
Define the boundary conditions. There is no heat transferred in the direction normal to the axis of symmetry (edge 1). You do not need to change the default boundary condition for this edge. Edge 2 is kept at a constant temperature $T=100^{\circ} \mathrm{C}$.
thermalBC(thermalmodel,'Edge',2,'Temperature',100);
Specify the convection boundary condition on the outer boundary (edge 3). The surrounding temperature at the outer boundary is $100^{\circ} \mathrm{C}$, and the heat transfer coefficient is $50 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$.

```
thermalBC(thermalmodel,'Edge',3,...
 'ConvectionCoefficient',50,...
 'AmbientTemperature',100);
```

The heat flux at the bottom of the rod (edge 4) is $5000 \mathrm{~W} / \mathrm{m}^{2}$.
thermalBC(thermalmodel,'Edge',4,'HeatFlux',5000);
Generate the mesh.
msh = generateMesh(thermalmodel);
figure
pdeplot(thermalmodel)
axis equal


Solve the problem.

```
thermalresults = solve(thermalmodel)
thermalresults =
 SteadyStateThermalResults with properties:
 Temperature: [259x1 double]
 RGradients: [259x1 double]
 ZGradients: [259x1 double]
 Mesh: [1x1 FEMesh]
```

The solver finds the temperatures and temperature gradients at the nodal locations. To access these values, use thermalresults. Temperature, thermalresults.RGradients, and thermalresults.ZGradients. For example, plot temperatures at the nodal locations.

T = thermalresults.Temperature;
figure
pdeplot(thermalmodel,'XYData', T, 'Contour','on')
axis equal
title 'Steady-State Temperature'


## See Also

TransientThermalResults |evaluateHeatFlux |evaluateHeatRate| evaluateTemperatureGradient|interpolateTemperature

Introduced in R2017a

## ThermalBC Properties

Boundary condition for thermal model

## Description

A ThermalBC object specifies the type of PDE boundary condition on a set of geometry boundaries. A ThermalModel object contains a vector of ThermalBC objects in its BoundaryConditions.ThermalBCAssignments property.

Specify boundary conditions for your model using the thermalBC function.

## Properties

## Properties

## RegionType - Geometric region type

'Face' for 3-D geometry | 'Edge' for 2-D geometry
Geometric region type, returned as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Data Types: char | string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, returned as a vector of positive integers. Find the region IDs by using pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.

Data Types: double

## Temperature - Temperature boundary condition

number | function handle
Temperature boundary condition, returned as a number or a function handle. Use a function handle to specify spatially or temporally varying temperature.

## Data Types: double | function_handle

## HeatFlux - Heat flux boundary condition

number | function handle
Heat flux boundary condition, returned as a number or a function handle. Use a function handle to specify a spatially or temporally varying heat flux or a nonlinear heat flux.
Data Types: double | function_handle

## ConvectionCoefficient - Coefficient for convection to ambient heat transfer condition number | function handle

Convection to ambient boundary condition, returned as a number or a function handle. Use a function handle to specify a spatially or temporally varying convection coefficient or a nonlinear convection coefficient. Specify ambient temperature using the AmbientTemperature argument.

Data Types: double|function_handle

## Emissivity - Radiation emissivity coefficient <br> number in the range $(0,1)$

Radiation emissivity coefficient, returned as a number in the range $(0,1)$. Use a function handle to specify spatially or temporally varying emissivity or nonlinear emissivity. Specify ambient temperature using the AmbientTemperature argument and the Stefan-Boltzmann constant using the thermal model properties.
Data Types: double | function_handle
AmbientTemperature - Ambient temperature
number
Ambient temperature, returned as a number. The ambient temperature value is required for specifying convection and radiation boundary conditions.
Data Types: double

## Vectorized - Vectorized function evaluation

'off' (default)|'on'
Vectorized function evaluation, returned as 'on' or 'off'. This evaluation applies when you pass a function handle as an argument. To save time in function handle evaluation, specify ' on ', assuming that your function handle computes in a vectorized fashion. See "Vectorization". For details of this evaluation, see "Nonconstant Boundary Conditions" on page 2-116.

Data Types: char | string

## See Also

ThermalModel | findThermalBC | thermalBC
Introduced in R2017a

## ThermalMaterialAssignment Properties

Thermal material properties assignments

## Description

A ThermalMaterialAssignment object contains the description of a thermal model's material properties. A ThermalModel container has a vector of ThermalMaterialAssignment objects in its MaterialProperties.MaterialAssignments property.

Create material properties assignments for your thermal model using the thermalProperties function.

## Properties

Properties
RegionType - Region type
'Face'|'Cell'
Region type, returned as 'Face' for a 2-D region, or 'Cell' for a 3-D region.
Data Types: char | string

## RegionID - Region ID

vector of positive integers
Region ID, returned as a vector of positive integers. To determine which ID corresponds to which portion of the geometry, use the pdegplot function. Set the 'FaceLabels ' name-value pair to 'on'.
Data Types: double

## ThermalConductivity - Thermal conductivity of the material <br> nonnegative number | function handle

Thermal conductivity of the material, returned as a nonnegative number or a function handle.
Data Types: double | function_handle
MassDensity - Mass density of the material
nonnegative number | function handle
Mass density of the material, returned as a nonnegative number or a function handle.
Data Types: double | function_handle
SpecificHeat - Specific heat of the material
nonnegative number | function handle
Specific heat of the material, returned as a nonnegative number or a function handle.
Data Types: double | function_handle

## Tips

- When there are multiple assignments to the same geometric region, the toolbox uses the last applied setting.
- To avoid assigning material properties to a wrong region, ensure that you are using the correct geometric region IDs by plotting and visually inspecting the geometry.


## See Also

findThermalProperties|thermalProperties
Introduced in R2017a

## ThermalModel

Thermal model object

## Description

A ThermalModel object contains information about a heat transfer problem: the geometry, material properties, internal heat sources, temperature on the boundaries, heat fluxes through the boundaries, mesh, and initial conditions.

## Creation

Create a ThermalModel object using createpde with the first argument 'thermal'.

## Properties

## AnalysisType - Type of thermal analysis

```
'steadystate'|'transient'|'steadystate-axisymmetric'|'transient-
axisymmetric'
```

Type of thermal analysis, returned as 'steadystate', 'transient', 'steadystateaxisymmetric', or 'transient-axisymmetric'.

## Geometry - Geometry description

AnalyticGeometry | DiscreteGeometry
Geometry description, returned as AnalyticGeometry for a 2-D geometry or DiscreteGeometry for a 2-D or 3-D geometry.

- Create AnalyticGeometry using the geometryFromEdges function. For details, see AnalyticGeometry.
- Create DiscreteGeometry using the importGeometry function or the geometryFromMesh function. For details, see DiscreteGeometry.


## MaterialProperties - Material properties within the domain

object containing material property assignments
Material properties within the domain, returned as an object containing the material property assignments.

## HeatSources - Heat source within the domain or subdomain

object containing heat source assignments
Heat source within the domain or subdomain, returned as an object containing heat source assignments.

## BoundaryConditions - Boundary conditions applied to the geometry

object containing boundary condition assignments

Boundary conditions applied to the geometry, returned as an object containing the boundary condition assignments.

## InitialConditions - Initial temperature or initial guess

object containing the initial temperature assignments within the geometric domain
Initial temperature or initial guess, returned as an object containing the initial temperature assignments within the geometric domain.

## Mesh - Mesh for solution

FEMesh object
Mesh for solution, returned as a FEMesh object. You create the mesh using the generateMesh function.

## StefanBoltzmannConstant - Constant of proportionality in Stefan-Boltzmann law governing radiation heat transfer

number
Constant of proportionality in Stefan-Boltzmann law governing radiation heat transfer, returned as a number. This value must be consistent with the units of the model. Values of the Stefan-Boltzmann constant in commonly used system of units are:

- SI - 5.670367e-8 W/(m². $\left.\mathrm{K}^{4}\right)$
- CGS - $5.6704 \mathrm{e}-5 \mathrm{erg} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}^{4}\right)$
- US customary - 1.714e-9 BTU/(hr•ft $\left.\cdot \mathrm{R}^{4}\right)$


## SolverOptions - Algorithm options for PDE solvers <br> PDESolverOptions object

Algorithm options for the PDE solvers, returned as a PDESolverOptions object. The properties of PDESolverOptions include absolute and relative tolerances for internal ODE solvers, maximum solver iterations, and so on.

## Object Functions

geometryFromEdges Create 2-D geometry from decomposed geometry matrix
geometryFromMesh Create 2-D or 3-D geometry from mesh
importGeometry Import 2-D or 3-D geometry from STL data
thermalProperties Assign thermal properties of a material for a thermal model
internalHeatSource
thermalBC
thermaliC
generateMesh
solve

Specify internal heat source for a thermal model
Specify boundary conditions for a thermal model
Set initial conditions or initial guess for a thermal model
Create triangular or tetrahedral mesh
Solve heat transfer, structural analysis, or electromagnetic analysis problem

## Examples

## Create and Populate a Thermal Model

Create a transient thermal model container.

```
thermalmodel = createpde('thermal','transient')
```

```
thermalmodel =
 ThermalModel with properties:
 AnalysisType: "transient"
 Geometry: []
 MaterialProperties: []
 HeatSources: []
 StefanBoltzmannConstant: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]
```

Create the geometry and include it in the model.

```
g = @squareg;
geometryFromEdges(thermalmodel,g)
ans =
 AnalyticGeometry with properties:
 NumCells: 0
 NumFaces: 1
 NumEdges: 4
 NumVertices: 4
 Vertices: [4\times2 double]
```

Assign material properties.

```
thermalProperties(thermalmodel,'ThermalConductivity',79.5,...
 'MassDensity',7850,...
 'SpecificHeat',450,...
 'Face',1)
ans =
 ThermalMaterialAssignment with properties:
 RegionType: 'face'
 RegionID: 1
 ThermalConductivity: 79.5000
 MassDensity: 7850
 SpecificHeat: 450
```

Specify that the entire geometry generates heat at the rate $25 \mathrm{~W} / \mathrm{m}^{\wedge} 3$.
internalHeatSource(thermalmodel,25)
ans $=$
HeatSourceAssignment with properties:
RegionType: 'face'
RegionID: 1
HeatSource: 25

Apply insulated boundary conditions on three edges and the free convection boundary condition on the right edge.

```
thermalBC(thermalmodel,'Edge',[1,3,4],'HeatFlux',0);
thermalBC(thermalmodel,'Edge',2,...
 'ConvectionCoefficient',5000,...
 'AmbientTemperature',25)
ans =
 ThermalBC with properties:
 RegionType: 'Edge'
 RegionID: 2
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: 5000
 Emissivity: []
 AmbientTemperature: 25
 Vectorized: 'off'
```

Set the initial conditions: uniform room temperature across domain and higher temperature on the left edge.

```
thermalIC(thermalmodel,25);
thermalIC(thermalmodel,100,'Edge',4)
ans =
 GeometricThermalICs with properties:
 RegionType: 'edge'
 RegionID: 4
 InitialTemperature: 100
```

Specify the Stefan-Boltzmann constant.
thermalmodel.StefanBoltzmannConstant $=5.670367 \mathrm{e}-8$;

Generate mesh.
generateMesh(thermalmodel)
ans =
FEMesh with properties:

Nodes: [2x1541 double]
Elements: [6x734 double]
MaxElementSize: 0.1131
MinElementSize: 0.0566
MeshGradation: 1.5000 Geometric0rder: 'quadratic'
thermalmodel now contains the following properties.
thermalmodel
thermalmodel =
ThermalModel with properties:

```
 AnalysisType: "transient"
 Geometry: [1x1 AnalyticGeometry]
 MaterialProperties: [1x1 MaterialAssignmentRecords]
 HeatSources: [1x1 HeatSourceAssignmentRecords]
StefanBoltzmannConstant: 5.6704e-08
 BoundaryConditions: [1x1 ThermalBCRecords]
 InitialConditions: [1x1 ThermalICRecords]
 Mesh: [1x1 FEMesh]
 SolverOptions: [1x1 pde.PDESolverOptions]
```


## See Also

createpde | generateMesh | geometryFromEdges | geometryFromMesh | importGeometry | internalHeatSource | pdegplot | pdeplot | pdeplot3D| thermalBC| thermalIC | thermalProperties

Introduced in R2017a

## thermalProperties

Package: pde
Assign thermal properties of a material for a thermal model

## Syntax

thermalProperties(thermalmodel,'ThermalConductivity',TCval,'MassDensity', MDval,'SpecificHeat',SHval) thermalProperties ( $\qquad$ , RegionType, RegionID) mtl = thermalProperties( $\qquad$ )

## Description

thermalProperties(thermalmodel,'ThermalConductivity',TCval, 'MassDensity', MDval, 'SpecificHeat', SHval) assigns material properties, such as thermal conductivity, mass density, and specific heat. For transient analysis, specify all three properties. For steady-state analysis, specifying thermal conductivity is enough. This syntax sets material properties for the entire geometry.

For a nonconstant or nonlinear material, specify TCval, MDval, and SHval as function handles.
thermalProperties( $\qquad$ ,RegionType, RegionID) assigns material properties for a specified geometry region.
mtl = thermalProperties( $\qquad$ ) returns the material properties object.

## Examples

## Assign Thermal Conductivity

Assign material properties for a steady-state thermal model.

```
model = createpde('thermal','steadystate');
gm = importGeometry(model,'SquareBeam.STL');
thermalProperties(model,'ThermalConductivity',0.08)
ans =
 ThermalMaterialAssignment with properties:
 RegionType: 'cell'
 RegionID: 1
 ThermalConductivity: 0.0800
 MassDensity: []
 SpecificHeat: []
```


## Assign Thermal Conductivity, Mass Density, and Specific Heat

Assign material properties for transient analysis.

```
thermalmodel = createpde('thermal','transient');
gm = importGeometry(thermalmodel,'SquareBeam.STL');
thermalProperties(thermalmodel,'ThermalConductivity',0.2,...
 'MassDensity',2.7*10^(-6),...
 'SpecificHeat',920)
ans =
 ThermalMaterialAssignment with properties:
 RegionType: 'cell'
 RegionID: 1
 ThermalConductivity: 0.2000
 MassDensity: 2.7000e-06
 SpecificHeat: 920
```


## Assign Thermal Conductivities for Each Geometric Region

Create a steady-state thermal model.
thermalModel = createpde('thermal');
Create nested cylinders to model a two-layered insulated pipe section, consisting of inner metal pipe surrounded by insulated material.

```
gm = multicylinder([20,25,35],20,'Void',[1,0,0]);
```

Assign geometry to the thermal model and plot the geometry.

```
thermalModel.Geometry = gm;
pdegplot(thermalModel,'CellLabels','on','FaceAlpha',0.5)
```



Specify thermal conductivities for metal and insulation.

```
thermalProperties(thermalModel,'Cell',1,'ThermalConductivity',0.4)
```

ans =
ThermalMaterialAssignment with properties:
RegionType: 'cell'
RegionID: 1
ThermalConductivity: 0.4000
MassDensity: []
SpecificHeat: []
thermalProperties(thermalModel,'Cell',2,'ThermalConductivity',0.0015)
ans $=$
ThermalMaterialAssignment with properties:
RegionType: 'cell'
RegionID: 2
ThermalConductivity: 0.0015
MassDensity: []
SpecificHeat: []

## Specify Nonconstant Thermal Properties

Use function handles to specify a thermal conductivity that depends on temperature and specific heat that depends on coordinates.

Create a thermal model for transient analysis and include the geometry. The geometry is a rod with a circular cross section. The 2-D model is a rectangular strip whose $y$-dimension extends from the axis of symmetry to the outer surface, and whose $x$-dimension extends over the actual length of the rod.

```
thermalmodel = createpde('thermal','transient');
```

$\mathrm{g}=\operatorname{decsg}\left(\left[\begin{array}{lllllllll}3 & 4 & -1.5 & 1.5 & 1.5 & -1.5 & 0 & 0 & .2\end{array}\right.\right.$. $\left.^{\prime}\right)$;
geometryFromEdges(thermalmodel,g);
Specify the thermal conductivity as a linear function of temperature, $k=40+0.003 T$.

```
k = @(location,state)40 + 0.003*state.u;
```

Specify the specific heat as a linear function of the $y$-coordinate, $c p=500 y$.
$c p=@\left(\right.$ location, state) $500^{*}$ location.y;
Specify the thermal conductivity, mass density, and specific heat of the material.

```
thermalProperties(thermalmodel,'ThermalConductivity',k,...
 'MassDensity',2.7*10^(-6),...
 'SpecificHeat',cp)
ans =
 ThermalMaterialAssignment with properties:
 RegionType: 'face'
 RegionID: 1
 ThermalConductivity: @(location,state)40+0.003*state.u
 MassDensity: 2.7000e-06
 SpecificHeat: @(location,state)500*location.y
```


## Input Arguments

## thermalmodel - Thermal model

ThermalModel object
Thermal model, specified as a ThermalModel object. The model contains the geometry, mesh, thermal properties of the material, internal heat source, boundary conditions, and initial conditions.
Example: thermalmodel = createpde('thermal','steadystate')

## RegionType - Geometric region type

'Face' for a 2-D model | 'Cell' for a 3-D model
Geometric region type, specified as 'Face' or 'Cell'.
Example: thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity', 100)
Data Types: char|string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.
Example: thermalProperties(thermalmodel, 'Cell', 1:3,'ThermalConductivity',100)
Data Types: double

## TCval - Thermal conductivity of the material

positive number | matrix | function handle
Thermal conductivity of the material, specified as a positive number, a matrix, or a function handle. You can specify thermal conductivity for a steady-state or transient model. In case of orthotropic thermal conductivity, use a thermal conductivity matrix.

Use a function handle to specify the thermal conductivity that depends on space, time, or temperature. For details, see "More About" on page 5-1129.
Example: thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity',100) or thermalProperties(thermalmodel, 'ThermalConductivity', $[80 ; 10 ; 80]$ ) for orthotropic thermal conductivity
Data Types: double | function_handle

## MDval - Mass density of the material

positive number | function handle
Mass density of the material, specified as a positive number or a function handle. Specify this property for a transient thermal conduction analysis model.

Use a function handle to specify the mass density that depends on space, time, or temperature. For details, see "More About" on page 5-1129.

```
Example:
thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity',100,'MassDensit
y',2730e-9,'SpecificHeat',910)
Data Types: double | function_handle
```


## SHval - Specific heat of the material

positive number | function handle
Specific heat of the material, specified as a positive number or a function handle. Specify this property for a transient thermal conduction analysis model.

Use a function handle to specify the specific heat that depends on space, time, or temperature. For details, see "More About" on page 5-1129.

```
Example:
thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity',100,'MassDensit
y',2730e-9,'SpecificHeat',910)
Data Types: double | function_handle
```


## Output Arguments

## mtl - Handle to material properties

ThermalMaterialAssignment object
Handle to material properties, returned as a ThermalMaterialAssignment object. See ThermalMaterialAssignment Properties.
$m t l$ associates material properties with the geometric region.

## More About

## Specifying Nonconstant Parameters of a Thermal Model

Use a function handle to specify these thermal parameters when they depend on space, temperature, and time:

- Thermal conductivity of the material
- Mass density of the material
- Specific heat of the material
- Internal heat source
- Temperature on the boundary
- Heat flux through the boundary
- Convection coefficient on the boundary
- Radiation emissivity coefficient on the boundary
- Initial temperature

For example, use function handles to specify the thermal conductivity, internal heat source, convection coefficient, and initial temperature for this model.

```
thermalProperties(model,'ThermalConductivity',@myfun)
internalHeatSource(model,'Face',2,@myfun)
thermalBC(model,'Edge',[3,4], ...
 'ConvectionCoefficient',@myfun, ...
 'AmbientTemperature',27)
thermalIC(model,@myfun)
```

The function must be of the form:

```
function thermalVal = myfun(location,state)
```

The solver passes the location and state data to your function:

- location - A structure containing these fields:
- location. $x$ - The $x$-coordinate of the point or points
- location. y - The $y$-coordinate of the point or points
- location.z - For a 3-D or an axisymmetric geometry, the $z$-coordinate of the point or points
- location. r - For an axisymmetric geometry, the $r$-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

- location. $\mathrm{nx}-x$-component of the normal vector at the evaluation point or points
- location.ny - $y$-component of the normal vector at the evaluation point or points
- location.nz - For a 3-D or an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- location.nz - For an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- state - A structure containing these fields for transient or nonlinear problems:
- state.u- Temperatures at the corresponding points of the location structure
- state.ux - Estimates of the $x$-component of temperature gradients at the corresponding points of the location structure
- state. uy - Estimates of the $y$-component of temperature gradients at the corresponding points of the location structure
- state. uz - For a 3-D or an axisymmetric geometry, estimates of the $z$-component of temperature gradients at the corresponding points of the location structure
- state. ur - For an axisymmetric geometry, estimates of the $r$-component of temperature gradients at the corresponding points of the location structure
- state. time - Time at evaluation points

Thermal material properties (thermal conductivity, mass density, and specific heat) and internal heat source get these data from the solver:

- location.x, location.y,location.z,location.r
- Subdomain ID
- state.u, state.ux, state.uy, state.uz, state.r, state.time

Boundary conditions (temperature on the boundary, heat flux, convection coefficient, and radiation emissivity coefficient) get these data from the solver:

- location.x, location.y, location.z, location.r
- location.nx, location.ny, location.nz, location.nr
- state.u, state.time

Initial temperature gets the following data from the solver:

- location.x, location.y, location.z, location.r
- Subdomain ID

For all thermal parameters, except for thermal conductivity, your function must return a row vector thermalVal with the number of columns equal to the number of evaluation points, for example, $\mathrm{M}=$ length(location.y).

For thermal conductivity, your function must return a matrix thermalVal with number of rows equal to 1 , Ndim, Ndim* (Ndim+1)/2, or Ndim*Ndim, where Ndim is 2 for 2-D problems and 3 for 3-D problems. The number of columns must equal the number of evaluation points, for example, $\mathrm{M}=$ length(location.y). For details about dimensions of the matrix, see "c Coefficient for specifyCoefficients" on page 2-76.

If properties depend on the time or temperature, ensure that your function returns a matrix of NaN of the correct size when state. u or state. time are NaN. Solvers check whether a problem is time dependent by passing NaN state values and looking for returned NaN values.

## See Also

ThermalMaterialAssignment Properties | internalHeatSource | specifyCoefficients

## Topics

"Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux" on page 3-223

## Introduced in R2017a

## translate

Package: pde
Translate geometry

## Syntax

translate(g,s)
h = translate(g,s)

## Description

translate $(\mathrm{g}, \mathrm{s})$ translates the geometry g by the distance s .
$\mathrm{h}=$ translate $(\mathrm{g}, \mathrm{s})$ returns a handle h to the resulting geometry object g . If the original geometry is a DiscreteGeometry object, then the function modifies the original geometry and returns the handle h to the modified DiscreteGeometry geometry object. If the original geometry is an AnalyticGeometry object, then h is a handle to a new DiscreteGeometry geometry object. In this case, the original geometry remains unchanged.

## Examples

## Move 2-D Geometry Along Coordinate Axes

Translate a geometry by different distances along the $x$ - and $y$-axes.
Create a model.
model = createpde;
Import and plot a geometry.

```
g = importGeometry(model,'PlateHolePlanar.stl');
pdegplot(g)
```



Mesh the geometry and plot the mesh.
generateMesh(model);
figure
pdemesh(model)


Translate the 2-D geometry by 1 along the $x$-axis and by 2 along the $y$-axis. Plot the result. translate(g,[1 2]); pdegplot(g)


Plot the geometry and mesh. The translate function modifies a geometry, but it does not modify a mesh.

```
figure
pdegplot(g)
hold on
pdemesh(model)
```



After modifying the geometry, always regenerate the mesh.

```
generateMesh(model);
```

figure
pdegplot(g)
hold on
pdemesh(model)


## Input Arguments

## g - Geometry

DiscreteGeometry object | AnalyticGeometry object
Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

## s-Translation distance

vector of two or three nonzero real numbers
Translation distance, specified as a vector of two or three real numbers. The distance is a vector of two elements for a 2-D geometry or three elements for a 3-D geometry. The elements specify the distance along the $x$-, $y$-, and, for a 3-D geometry, $z$-axes.

## Output Arguments

## h - Resulting geometry

handle
Resulting geometry, returned as a handle. If the original geometry g is a DiscreteGeometry object, then h is a handle to the modified DiscreteGeometry geometry object g . If g is an AnalyticGeomet ry object, then h is a handle to a new DiscreteGeometry geometry object. In this case, the original geometry $g$ remains unchanged.

## Tips

- translate modifies a geometry, but it does not modify a mesh. After modifying a geometry, regenerate the mesh to ensure a proper mesh association with the new geometry.
- If g is an AnalyticGeometry object, and you want to replace it with the resulting discrete geometry, assign the output to the original geometry, for example, $g=$ translate $\left(g,\left[\begin{array}{ll}1 & 2\end{array}\right]\right.$ ).


## See Also

AnalyticGeometry Properties | DiscreteGeometry Properties | generateMesh | geometryFromMesh | importGeometry | pdegplot | rotate | scale

Introduced in R2020a

## TimeDependentResults

Time-dependent PDE solution and derived quantities

## Description

A TimeDependentResults object contains the solution of a PDE and its gradients in a form convenient for plotting and postprocessing.

- A TimeDependentResults object contains the solution and its gradient calculated at the nodes of the triangular or tetrahedral mesh, generated by generateMesh.
- Solution values at the nodes appear in the NodalSolution property.
- The solution times appear in the SolutionTimes property.
- The three components of the gradient of the solution values at the nodes appear in the XGradients, YGradients, and ZGradients properties.
- The array dimensions of NodalSolution, XGradients, YGradients, and ZGradients enable you to extract solution and gradient values for specified time indices, and for the equation indices in a PDE system.

To interpolate the solution or its gradient to a custom grid (for example, specified by meshgrid), use interpolateSolution or evaluateGradient.

## Creation

There are several ways to create a TimeDependentResults object:

- Solve a time-dependent problem using the solvepde function. This function returns a PDE solution as a TimeDependentResults object. This is the recommended approach.
- Solve a time-dependent problem using the parabolic or hyperbolic function. Then use the createPDEResults function to obtain a TimeDependentResults object from a PDE solution returned by parabolic or hyperbolic. Note that parabolic and hyperbolic are legacy functions. They are not recommended for solving PDE problems.


## Properties

## Mesh - Finite element mesh

FEMesh object
Finite element mesh, returned as a FEMesh object.

## NodalSolution - Solution values at the nodes

vector | array
Solution values at the nodes, returned as a vector or array. For details about the dimensions of NodalSolution, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.
Data Types: double
Complex Number Support: Yes

## SolutionTimes - Solution times

real vector
Solution times, returned as a real vector. SolutionTimes is the same as the tlist input to solvepde, or the tlist input to the legacy parabolic or hyperbolic solvers.
Data Types: double

## XGradients - x-component of gradient at the nodes <br> vector | array

$x$-component of the gradient at the nodes, returned as a vector or array. For details about the dimensions of XGradients, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.

## Data Types: double

Complex Number Support: Yes

## YGradients $\boldsymbol{-} \boldsymbol{y}$-component of gradient at the nodes

vector | array
$y$-component of the gradient at the nodes, returned as a vector or array. For details about the dimensions of YGradients, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.
Data Types: double
Complex Number Support: Yes

## ZGradients - z-component of gradient at the nodes <br> vector | array

$z$-component of the gradient at the nodes, returned as a vector or array. For details about the dimensions of ZGradients, see "Dimensions of Solutions, Gradients, and Fluxes" on page 3-309.
Data Types: double

## Object Functions

evaluateCGradient Evaluate flux of PDE solution
evaluateGradient Evaluate gradients of PDE solutions at arbitrary points
interpolateSolution Interpolate PDE solution to arbitrary points

## Examples

## Solution of a Parabolic Problem

Solve a parabolic problem with 2-D geometry.
Create and view the geometry: a square with a circular subdomain.

```
% Square centered at (1,1)
rect1 = [3;4;0;2;2;0;0;0;2;2];
% Circle centered at (1.5,0.5)
circ1 = [1;1.5;.75;0.25];
% Append extra zeros to the circle
circ1 = [circl;zeros(length(rect1)-length(circ1),1)];
gd = [rect1,circl];
ns = char('rect1','circ1');
```

```
ns = ns';
sf = 'rect1+circl';
[dl,bt] = decsg(gd,sf,ns);
pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
axis equal
ylim([-0.1,2.1])
```



Include the geometry in a PDE model.

```
model = createpde();
geometryFromEdges(model,dl);
```

Set boundary conditions that the upper and left edges are at temperature 10.
applyBoundaryCondition(model,'dirichlet','Edge',[2,3],'u',10);
Set initial conditions that the square region is at temperature 0 , and the circle is at temperature 100 .

```
setInitialConditions(model,0);
setInitialConditions(model,100,'Face',2);
```

Define the model coefficients.
specifyCoefficients(model,'m',0,'d',1,'c',1,'a',0,'f',0);
Solve the problem for times 0 through $1 / 2$ in steps of 0.01 .

```
generateMesh(model,'Hmax',0.05);
tlist = 0:0.01:0.5;
results = solvepde(model,tlist);
```

Plot the solution for times $0.02,0.04,0.1$, and 0.5 .

```
sol = results.NodalSolution;
subplot(2,2,1)
pdeplot(model,'XYData',sol(:,3))
title('Time 0.02')
subplot(2,2,2)
pdeplot(model,'XYData',sol(:,5))
title('Time 0.04')
subplot(2,2,3)
pdeplot(model,'XYData',sol(:,11))
title('Time 0.1')
subplot(2,2,4)
pdeplot(model,'XYData',sol(:,51))
title('Time 0.5')
```



Time 0.5


## See Also

EigenResults | StationaryResults |evaluateCGradient | evaluateGradient | interpolateSolution

## Topics

"Heat Transfer in Block with Cavity" on page 3-211
"Wave Equation on Square Domain" on page 3-251
"Solve Problems Using PDEModel Objects" on page 2-2
Introduced in R2016a

## TransientThermalResults

Transient thermal solution and derived quantities

## Description

A TransientThermalResults object contains the temperature and gradient values in a form convenient for plotting and postprocessing.

The temperature and its gradient are calculated at the nodes of the triangular or tetrahedral mesh generated by generateMesh. Temperature values at the nodes appear in the Temperature property. The solution times appear in the SolutionTimes property. The three components of the temperature gradient at the nodes appear in the XGradients, YGradients, and ZGradients properties. You can extract solution and gradient values for specified time indices from Temperature, XGradients, YGradients, and ZGradients.

To interpolate the temperature or its gradient to a custom grid (for example, specified by meshgrid), use interpolateTemperature or evaluateTemperatureGradient.

To evaluate heat flux of a thermal solution at nodal or arbitrary spatial locations, use evaluateHeatFlux. To evaluate integrated heat flow rate normal to a specified boundary, use evaluateHeatRate.

## Creation

Solve a transient thermal problem using the solve function. This function returns a transient thermal solution as a TransientThermalResults object.

## Properties

## All Transient Thermal Models

Mesh - Finite element mesh
FEMesh object
Finite element mesh, returned as an FEMesh object.

## Temperature - Temperature values at nodes

vector | matrix
Temperature values at nodes, returned as a vector or matrix.
Data Types: double

## SolutionTimes - Solution times

real vector
Solution times, returned as a real vector. SolutionTimes is the same as the tlist input to solve.
Data Types: double

## Non-Axisymmetric Models

XGradients - x-component of temperature gradient at nodes vector | matrix
$x$-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double
YGradients - $\boldsymbol{y}$-component of temperature gradient at nodes vector | matrix
$y$-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double
ZGradients - z-component of temperature gradient at nodes vector | matrix
$z$-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double

## Axisymmetric Models

RGradients - r-component of temperature gradient at nodes vector | matrix
$r$-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double
ZGradients - z-component of temperature gradient at nodes for axisymmetric model vector|matrix
$z$-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double

## Object Functions

evaluateHeatFlux
evaluateHeatRate evaluateTemperatureGradient

Evaluate heat flux of a thermal solution at nodal or arbitrary spatial locations
Evaluate integrated heat flow rate normal to specified boundary Evaluate temperature gradient of a thermal solution at arbitrary spatial locations
interpolateTemperature Interpolate temperature in a thermal result at arbitrary spatial locations

## Examples

## Solution to Transient Thermal Model

Solve a 2-D transient thermal problem.
Create a transient thermal model for this problem.

```
thermalmodel = createpde('thermal','transient');
```

Create the geometry and include it in the model.

```
SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);
geometryFromEdges(thermalmodel,dl);
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5 4.5])
ylim([-0.5 3.5])
axis equal
```



For the square region, assign these thermal properties:

- Thermal conductivity is $10 \mathrm{~W} /\left(\mathrm{m}{ }^{\circ} \mathrm{C}\right)$
- Mass density is $2 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat is $0.1 \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$

```
thermalProperties(thermalmodel,'ThermalConductivity',10, ...
 'MassDensity',2, ...
 'SpecificHeat',0.1, ...
 'Face',1);
```

For the diamond region, assign these thermal properties:

- Thermal conductivity is $2 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$
- Mass density is $1 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat is $0.1 \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$
thermalProperties(thermalmodel,'ThermalConductivity',2, ...
'MassDensity',1, ...
'SpecificHeat',0.1, ...
'Face',2);
Assume that the diamond-shaped region is a heat source with a density of $4 \mathrm{~W} / \mathrm{m}^{2}$.
internalHeatSource(thermalmodel,4, 'Face', 2);
Apply a constant temperature of $0{ }^{\circ} \mathrm{C}$ to the sides of the square plate.

```
thermalBC(thermalmodel,'Temperature',0,'Edge',[1 2 7 8]);
```

Set the initial temperature to $0^{\circ} \mathrm{C}$.
thermalIC(thermalmodel,0);
Generate the mesh.
generateMesh(thermalmodel);
The dynamics for this problem are very fast. The temperature reaches a steady state in about 0.1 seconds. To capture the interesting part of the dynamics, set the solution time to logspace (-2,-1,10). This command returns 10 logarithmically spaced solution times between 0.01 and 0.1 .

```
tlist = logspace(-2,-1,10);
```

Solve the equation.

```
thermalresults = solve(thermalmodel,tlist)
thermalresults =
 TransientThermalResults with properties:
 Temperature: [1481x10 double]
 SolutionTimes: [1x10 double]
 XGradients: [1481x10 double]
 YGradients: [1481x10 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

Plot the solution with isothermal lines by using a contour plot.

```
T = thermalresults.Temperature;
pdeplot(thermalmodel,'XYData',T(:,10),'Contour','on','ColorMap','hot')
```



## Solution to Transient Axisymmetric Model

Analyze heat transfer in a rod with a circular cross-section and internal heat generation by simplifying a 3-D axisymmetric model to a 2-D model.

Create a transient thermal model for solving an axisymmetric problem.
thermalmodel = createpde('thermal','transient-axisymmetric');
The 2-D model is a rectangular strip whose $x$-dimension extends from the axis of symmetry to the outer surface and whose $y$-dimension extends over the actual length of the rod (from -1.5 m to 1.5 m ). Create the geometry by specifying the coordinates of its four corners. For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing through $r=0$.

Include the geometry in the model.
geometryFromEdges(thermalmodel,g);
Plot the geometry with the edge labels.

```
figure
pdegplot(thermalmodel,'EdgeLabels','on')
axis equal
```



The rod is composed of a material with these thermal properties.

```
k = 40; % thermal conductivity, W/(m*C)
rho = 7800; % density, kg/m^3
cp = 500; % specific heat, W*s/(kg*C)
q = 20000; % heat source, W/m^3
```

Specify the thermal conductivity, mass density, and specific heat of the material.

```
thermalProperties(thermalmodel,'ThermalConductivity',k,...
 'MassDensity',rho,...
 'SpecificHeat',cp);
```

Specify internal heat source and boundary conditions.
internalHeatSource(thermalmodel,q);
Define the boundary conditions. There is no heat transferred in the direction normal to the axis of symmetry (edge 1). You do not need to change the default boundary condition for this edge. Edge 2 is kept at a constant temperature $T=100^{\circ} \mathrm{C}$.

```
thermalBC(thermalmodel,'Edge',2,'Temperature',100);
```

Specify the convection boundary condition on the outer boundary (edge 3). The surrounding temperature at the outer boundary is $100^{\circ} \mathrm{C}$, and the heat transfer coefficient is $50 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$.

```
thermalBC(thermalmodel,'Edge',3,...
 'ConvectionCoefficient',50,...
 'AmbientTemperature',100);
```

The heat flux at the bottom of the rod (edge 4) is $5000 \mathrm{~W} / \mathrm{m}^{2}$.
thermalBC(thermalmodel,'Edge',4,'HeatFlux',5000);
Specify that the Initial temperature in the rod is zero.

```
thermalIC(thermalmodel,0);
```

Generate the mesh.
generateMesh(thermalmodel);
Compute the transient solution for solution times from $t=0$ to $t=50000$ seconds.
tfinal $=50000$;
tlist = 0:100:tfinal;
result = solve(thermalmodel,tlist)
result =
TransientThermalResults with properties:

$$
\begin{array}{r}
\text { Temperature: }[259 \times 501 \text { double] } \\
\text { SolutionTimes: }[1 \times 501 \text { double] } \\
\text { RGradients: }[259 \times 501 \text { double] } \\
\text { ZGradients: }[259 \times 501 \text { double] } \\
\text { Mesh: }[1 \times 1 \text { FEMesh] }
\end{array}
$$

Plot the temperature distribution at $\mathrm{t}=50000$ seconds.
T = result. Temperature;

```
figure
pdeplot(thermalmodel,'XYData',T(:,end),'Contour','on')
axis equal
title(sprintf('Transient Temperature at Final Time (%g seconds)',tfinal))
```



## See Also

SteadyStateThermalResults|evaluateHeatFlux | evaluateHeatRate | evaluateTemperatureGradient|interpolateTemperature

Introduced in R2017a

## thermalBC

Package: pde
Specify boundary conditions for a thermal model

## Syntax

thermalBC(thermalmodel, RegionType, RegionID, 'Temperature', Tval)
thermalBC(thermalmodel, RegionType, RegionID, 'HeatFlux', HFval)
thermalBC(thermalmodel, RegionType, RegionID, 'ConvectionCoefficient',
CCval,'AmbientTemperature', ATval)
thermalBC(thermalmodel, RegionType, RegionID, 'Emissivity',
REval,'AmbientTemperature',ATval)
thermalBC = thermalBC(

## Description

thermalBC(thermalmodel, RegionType, RegionID, 'Temperature', Tval) adds a temperature boundary condition to thermalmodel. The boundary condition applies to regions of type RegionType with ID numbers in RegionID.
thermalBC(thermalmodel, RegionType,RegionID,'HeatFlux',HFval) adds a heat flux boundary condition to thermalmodel. The boundary condition applies to regions of type RegionType with ID numbers in RegionID.

Note Use thermalBC with the HeatFlux parameter to specify a heat flux to or from an external source. To specify internal heat generation, that is, heat sources that belong to the geometry of the model, use internalHeatSource.
thermalBC(thermalmodel, RegionType, RegionID, 'ConvectionCoefficient',
CCval,' AmbientTemperature', ATval) adds a convection boundary condition to thermalmodel. The boundary condition applies to regions of type RegionType with ID numbers in RegionID.
thermalBC(thermalmodel, RegionType,RegionID, 'Emissivity',
REval,'AmbientTemperature', ATval) adds a radiation boundary condition to thermalmodel. The boundary condition applies to regions of type RegionType with ID numbers in RegionID.
thermalBC $=$ thermalBC( $\qquad$ ) returns the thermal boundary condition object.

## Examples

## Specify Temperature on the Boundary

Apply temperature boundary condition on two edges of a square.

```
thermalmodel = createpde('thermal');
geometryFromEdges(thermalmodel,@squareg);
thermalBC(thermalmodel,'Edge',[1,3],'Temperature',100)
```

```
ans =
 ThermalBC with properties:
 RegionType: 'Edge'
 RegionID: [1 3]
 Temperature: 100
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
```


## Specify Heat Coming Through the Boundary

Apply heat flux boundary condition on two faces of a block.

```
thermalmodel = createpde('thermal','transient');
gm = importGeometry(thermalmodel,'Block.stl');
thermalBC(thermalmodel,'Face',[1,3],'HeatFlux', 20)
ans =
 ThermalBC with properties:
 RegionType: 'Face'
 RegionID: [1 3]
 Temperature: []
 HeatFlux: 20
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
```


## Specify Convection on the Boundary

Apply convection boundary condition on four faces of a block.

```
thermalModel = createpde('thermal','transient');
gm = importGeometry(thermalModel,'Block.stl');
thermalBC(thermalModel,'Face',[2 4 5 6], ...
 'ConvectionCoefficient',5, ...
 'AmbientTemperature',27)
ans =
 ThermalBC with properties:
 RegionType: 'Face'
 RegionID: [2 4 5 6]
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: 5
 Emissivity: []
```


## Specify Radiation Through the Boundary

Apply radiation boundary condition on four faces of a block.

```
thermalmodel = createpde('thermal','transient');
gm = importGeometry(thermalmodel,'Block.stl');
thermalmodel.StefanBoltzmannConstant = 5.670373E-8;
thermalBC(thermalmodel,'Face',[2,4,5,6],...
 'Emissivity',0.1,...
 'AmbientTemperature',300)
ans =
 ThermalBC with properties:
 RegionType: 'Face'
 RegionID: [2 4 5 6]
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: 0.1000
 AmbientTemperature: 300
 Vectorized: 'off'
```


## Specify Nonconstant Thermal Boundary Conditions

Use function handles to specify thermal boundary conditions that depend on coordinates.
Create a thermal model for transient analysis and include the geometry. The geometry is a rod with a circular cross section. The 2-D model is a rectangular strip whose $y$-dimension extends from the axis of symmetry to the outer surface, and whose $x$-dimension extends over the actual length of the rod.

```
thermalmodel = createpde('thermal','transient');
g = decsg([3 4 -1.5 1.5 1.5 -1.5 0 0 .2 .2]');
geometryFromEdges(thermalmodel,g);
```

Plot the geometry.
figure
pdegplot(thermalmodel,'EdgeLabels','on');
$x \lim \left(\left[\begin{array}{ll}-2 & 2]) \text {; }\end{array}\right.\right.$
ylim([-2 2]);
title 'Rod Section Geometry with Edge Labels';


Assume that there is a heat source at the left end of the rod and a fixed temperature at the right end. The outer surface of the rod exchanges heat with the environment due to convection.

Define the boundary conditions for the model. The edge at $y=0$ (edge 1 ) is along the axis of symmetry. No heat is transferred in the direction normal to this edge. This boundary is modeled as an insulated boundary, by default.

The temperature at the right end of the rod (edge 2) is a fixed temperature, $\mathrm{T}=100 \mathrm{C}$. Specify the boundary condition for edge 2 as follows.

```
thermalBC(thermalmodel,'Edge',2,'Temperature',100)
ans =
 ThermalBC with properties:
 RegionType: 'Edge'
 RegionID: 2
 Temperature: 100
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
```

The convection coefficient for the outer surface of the rod (edge 3) depends on the $y$-coordinate, $50 y$. Specify the boundary condition for this edge as follows.

```
outerCC = @(location,~) 50*location.y;
thermalBC(thermalmodel,'Edge',3,...
 'ConvectionCoefficient',outerCC,...
 'AmbientTemperature',100)
ans =
 ThermalBC with properties:
 RegionType: 'Edge'
 RegionID: 3
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: @(location,~)50*location.y
 Emissivity: []
 AmbientTemperature: 100
 Vectorized: 'off'
```

The heat flux at the left end of the rod (edge 4) is also a function of the $y$-coordinate, $5000 y$. Specify the boundary condition for this edge as follows.

```
leftHF = @(location,~) 5000*location.y;
thermalBC(thermalmodel,'Edge',4,'HeatFlux',leftHF)
ans =
 ThermalBC with properties:
 RegionType: 'Edge'
 RegionID: 4
 Temperature: []
 HeatFlux: @(location,~)5000*location.y
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
```


## Input Arguments

## thermalmodel - Thermal model

ThermalModel object
Thermal model, specified as a ThermalModel object. The model contains the geometry, mesh, thermal properties of the material, internal heat source, boundary conditions, and initial conditions.

```
Example: thermalmodel = createpde('thermal','steadystate')
```


## RegionType - Geometric region type

'Edge' for a 2-D model | 'Face' for a 3-D model
Geometric region type, specified as 'Edge' or 'Face'.
Example: thermalBC(thermalmodel, 'Face',1,'Temperature', 72)
Data Types: char

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example: thermalBC(thermalmodel,'Edge', 2:5,'Temperature', 72)
Data Types: double

## Tval - Temperature boundary condition

number | function handle
Temperature boundary condition, specified as a number or a function handle. Use a function handle to specify the temperature that depends on space and time. For details, see "More About" on page 51158.

Example: thermalBC(thermalmodel, 'Face', 1, 'Temperature', 72)
Data Types: double | function_handle

## HFval - Heat flux boundary condition

number | function handle
Heat flux boundary condition, specified as a number or a function handle. Use a function handle to specify the heat flux that depends on space and time. For details, see "More About" on page 5-1158.

Example: thermalBC(thermalmodel, 'Face' , [1, 3], 'HeatFlux', 20)
Data Types: double | function_handle

## CCval - Coefficient for convection to ambient heat transfer condition

number | function handle
Convection to ambient boundary condition, specified as a number or a function handle. Use a function handle to specify the convection coefficient that depends on space and time. For details, see "More About" on page 5-1158.

Specify ambient temperature using the AmbientTemperature argument. The value of ConvectionCoefficient is positive for heat convection into the ambient environment.

Example: thermalBC(thermalmodel, 'Edge',
[2,4],'ConvectionCoefficient',5,'AmbientTemperature',60)
Data Types: double | function_handle

## REval - Radiation emissivity coefficient

number in the range $(0,1)$
Radiation emissivity coefficient, specified as a number in the range $(0,1)$. Use a function handle to specify the radiation emissivity that depends on space and time. For details, see "More About" on page 5-1158.

Specify ambient temperature using the AmbientTemperature argument and the Stefan-Boltzmann constant using the thermal model properties. The value of Emissivity is positive for heat radiation into the ambient environment.

Example: thermalmodel.StefanBoltzmannConstant $=5.670373 \mathrm{E}-8$;
thermalBC(thermalmodel,'Edge',
[2,4,5,6],'Emissivity', 0.1,'AmbientTemperature', 300)
Data Types: double | function_handle

## ATval - Ambient temperature

number
Ambient temperature, specified as a number. The ambient temperature value is required for specifying convection and radiation boundary conditions.
Example: thermalBC(thermalmodel, 'Edge',
[2,4],'ConvectionCoefficient',5,'AmbientTemperature',60)
Data Types: double

## Output Arguments

## thermalBC - Handle to thermal boundary condition

ThermalBC object
Handle to thermal boundary condition, returned as a ThermalBC object. See ThermalBC Properties.
thermalBC associates the thermal boundary condition with the geometric region.

## More About

## Specifying Nonconstant Parameters of a Thermal Model

Use a function handle to specify these thermal parameters when they depend on space, temperature, and time:

- Thermal conductivity of the material
- Mass density of the material
- Specific heat of the material
- Internal heat source
- Temperature on the boundary
- Heat flux through the boundary
- Convection coefficient on the boundary
- Radiation emissivity coefficient on the boundary
- Initial temperature

For example, use function handles to specify the thermal conductivity, internal heat source, convection coefficient, and initial temperature for this model.

```
thermalProperties(model,'ThermalConductivity',@myfun)
internalHeatSource(model,'Face',2,@myfun)
thermalBC(model,'Edge',[3,4], ...
 'ConvectionCoefficient',@myfun, ...
 'AmbientTemperature', 27)
thermalIC(model,@myfun)
```

The function must be of the form:

```
function thermalVal = myfun(location,state)
```

The solver passes the location and state data to your function:

- location - A structure containing these fields:
- location. $x$ - The $x$-coordinate of the point or points
- location. y - The $y$-coordinate of the point or points
- location. z - For a 3-D or an axisymmetric geometry, the $z$-coordinate of the point or points
- location. r - For an axisymmetric geometry, the $r$-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

- location. $\mathrm{nx}-x$-component of the normal vector at the evaluation point or points
- location.ny - y-component of the normal vector at the evaluation point or points
- location.nz - For a 3-D or an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- location.nz - For an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- state - A structure containing these fields for transient or nonlinear problems:
- state.u-Temperatures at the corresponding points of the location structure
- state.ux - Estimates of the $x$-component of temperature gradients at the corresponding points of the location structure
- state. uy - Estimates of the $y$-component of temperature gradients at the corresponding points of the location structure
- state. uz - For a 3-D or an axisymmetric geometry, estimates of the $z$-component of temperature gradients at the corresponding points of the location structure
- state. ur - For an axisymmetric geometry, estimates of the $r$-component of temperature gradients at the corresponding points of the location structure
- state. time - Time at evaluation points

Thermal material properties (thermal conductivity, mass density, and specific heat) and internal heat source get these data from the solver:

- location.x, location.y, location.z, location.r
- Subdomain ID
- state.u, state.ux, state.uy, state.uz, state.r, state.time

Boundary conditions (temperature on the boundary, heat flux, convection coefficient, and radiation emissivity coefficient) get these data from the solver:

- location.x, location.y, location.z, location.r
- location.nx, location.ny, location.nz, location.nr
- state.u, state.time

Initial temperature gets the following data from the solver:

- location.x, location.y, location.z, location.r
- Subdomain ID

For all thermal parameters, except for thermal conductivity, your function must return a row vector thermalVal with the number of columns equal to the number of evaluation points, for example, $\mathrm{M}=$ length(location.y).

For thermal conductivity, your function must return a matrix thermalVal with number of rows equal to 1 , Ndim, Ndim* (Ndim+1) /2, or Ndim*Ndim, where Ndim is 2 for 2-D problems and 3 for 3-D problems. The number of columns must equal the number of evaluation points, for example, $M=$ length(location.y). For details about dimensions of the matrix, see "c Coefficient for specifyCoefficients" on page 2-76.

If properties depend on the time or temperature, ensure that your function returns a matrix of NaN of the correct size when state. u or state. time are NaN. Solvers check whether a problem is time dependent by passing NaN state values and looking for returned NaN values.

## See Also

ThermalBC Properties | applyBoundaryCondition | internalHeatSource | thermalIC | thermalProperties

## Topics

"Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux" on page 3-223

## Introduced in R2017a

## thermalIC

Package: pde
Set initial conditions or initial guess for a thermal model

## Syntax

```
thermalIC(thermalmodel,T0)
thermalIC(thermalmodel,T0,RegionType,RegionID)
thermalIC(thermalmodel,Tresults)
thermalIC(thermalmodel,Tresults,iT)
thermalIC = thermalIC(
```

$\qquad$

## Description

thermalIC (thermalmodel, T0) sets initial temperature or initial guess for temperature to the entire geometry.
thermalIC(thermalmodel, T0,RegionType,RegionID) sets initial temperature or initial guess for temperature to a particular geometry region.
thermalIC(thermalmodel,Tresults) sets initial temperature or initial guess for temperature using the solution Tresults from a previous thermal analysis on the same geometry and mesh. If Tresults is obtained by solving a transient thermal problem, thermalIC uses the solution Tresults for the last time-step.
thermalIC(thermalmodel, Tresults,iT) sets initial temperature or initial guess for temperature using the solution Tresults for the time-step iT from a previous thermal analysis on the same geometry and mesh.
thermalIC = thermalIC( $\qquad$ ), for any previous syntax, returns a handle to the thermal initial conditions object.

## Examples

## Constant Initial Temperature

Create a thermal model, import geometry, and set the initial temperature to 0 on the entire geometry.

```
thermalModel = createpde('thermal','transient');
geometryFromEdges(thermalModel,@lshapeg);
thermalIC(thermalModel,0)
ans =
 GeometricThermalICs with properties:
 RegionType: 'face'
 RegionID: [1 2 3]
 InitialTemperature: 0
```


## Different Initial Temperatures on Subdomains

Set different initial conditions on each portion of the L-shaped membrane geometry.
Create a model and include a 2-D geometry.
thermalModel = createpde('thermal','transient');
geometryFromEdges (thermalModel,@lshapeg) ;
pdegplot(thermalModel,'FaceLabels','on')
axis equal
ylim([-1.1 1.1])


Set initial conditions.
thermalIC(thermalModel, 0, 'Face',1)
ans =
GeometricThermalICs with properties:
RegionType: 'face'
RegionID: 1
InitialTemperature: 0
thermalIC(thermalModel,10,'Face', 2)

```
ans =
 GeometricThermalICs with properties:
 RegionType: 'face'
 RegionID: 2
 InitialTemperature: 10
thermalIC(thermalModel,75,'Face',3)
ans =
 GeometricThermalICs with properties:
 RegionType: 'face'
 RegionID: 3
 InitialTemperature: 75
```


## Nonconstant Initial Temperature

Use a function handle to specify an initial temperature that depends on coordinates.
Create a thermal model for transient analysis and include the geometry. The geometry is a rod with a circular cross section. The 2-D model is a rectangular strip whose $y$-dimension extends from the axis of symmetry to the outer surface, and whose $x$-dimension extends over the actual length of the rod.

```
thermalmodel = createpde('thermal','transient');
g = decsg([3 4 -1.5 1.5 1.5 -1.5 0 0 .2 .2]');
geometryFromEdges(thermalmodel,g);
```

Set the initial temperature in the rod to be dependent on the $y$-coordinate, for example,
$10^{3}\left(0.2-y^{2}\right)$.
T0 = @(location)10^3*(0.2 - location.y.^2);
thermalic (thermalmodel,T0)
ans =
GeometricThermalICs with properties:
RegionType: 'face'
RegionID: 1
InitialTemperature: @(location)10^3*(0.2-location.y.^2)

## Initial Condition as Previously Obtained Solution

Create a thermal model and include a square geometry.

```
thermalmodel = createpde('thermal','transient');
geometryFromEdges(thermalmodel,@squareg);
pdegplot(thermalmodel,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal
```



Specify material properties and internal heat source, and set boundary conditions and initial conditions.

```
thermalProperties(thermalmodel,'ThermalConductivity',500,...
 'MassDensity',200,...
 'SpecificHeat',100);
internalHeatSource(thermalmodel,2);
thermalBC(thermalmodel,'Edge',[1,3],'Temperature',100);
thermalIC(thermalmodel,0);
```

Generate mesh, solve the problem, and plot the solution.

```
generateMesh(thermalmodel);
tlist = 0:0.5:10;
result1 = solve(thermalmodel,tlist)
result1 =
 TransientThermalResults with properties:
 Temperature: [1541x21 double]
 SolutionTimes: [1x21 double]
 XGradients: [1541x21 double]
 YGradients: [1541x21 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
```

```
pdeplot(thermalmodel,'XYData',result1.Temperature(:,end))
```



Now, resume the analysis and solve the problem for times from 10 to 15 seconds. Use the previously obtained solution for 10 seconds as an initial condition. Since 10 seconds is the last element in tlist , you do not need to specify the solution time index. By default, thermalIC uses the last solution index.

```
thermalIC(thermalmodel,result1)
ans =
 NodalThermalICs with properties:
 InitialTemperature: [1541x1 double]
```

Solve the problem and plot the solution.

```
result2 = solve(thermalmodel,10:0.5:15)
result2 =
 TransientThermalResults with properties:
 Temperature: [1541\times11 double]
 SolutionTimes: [10 10.5000 11 11.5000 12 12.5000 13 13.5000 14 14.5000 15]
 XGradients: [1541x11 double]
 YGradients: [1541x11 double]
 ZGradients: []
```

Mesh: [1x1 FEMesh]
pdeplot(thermalmodel,'XYData', result2.Temperature(: end))


To use the previously obtained solution for a particular solution time instead of the last one, specify the solution time index as a third parameter of thermalIC. For example, use the solution at time 5 seconds, which is the 11th element in tlist.

```
tlist(11)
ans = 5
thermalIC(thermalmodel,result1,11);
result2 = solve(thermalmodel,5:0.5:15)
result2 =
 TransientThermalResults with properties:
 Temperature: [1541x21 double]
 SolutionTimes: [1x21 double]
 XGradients: [1541\times21 double]
 YGradients: [1541x21 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]
pdeplot(thermalmodel,'XYData',result2.Temperature(:,end))
```



## Input Arguments

## thermalmodel - Thermal model

ThermalModel object
Thermal model, specified as a ThermalModel object. The model contains the geometry, mesh, thermal properties of the material, internal heat source, boundary conditions, and initial conditions.

Example: thermalmodel = createpde('thermal','steadystate')

## T0 - Initial temperature or initial guess for temperature

number | function handle
Initial temperature or initial guess for temperature, specified as a number or a function handle. Use a function handle to specify spatially varying initial temperature. For details, see "More About" on page 5-1168.

Data Types: double | function_handle

## RegionType - Geometric region type

'Vertex'| 'Edge' | 'Face' | 'Cell' for a 3-D model only
Geometric region type, specified as 'Vertex', 'Edge', 'Face', or 'Cell' for a 3-D model. For a 2D model, use 'Vertex', 'Edge', or 'Face'.
Example: thermalIC(thermalmodel, 10, 'Face',1)

Data Types: char|string

## RegionID - Geometric region ID

vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the region IDs by using pdegplot.

Example: thermalIC(thermalmodel, 10,'Edge', 2:5)
Data Types: double
Tresults - Thermal model solution
ThermalResults object
Thermal model solution, specified as a ThermalResults object. Create Tresults by using solve.

## iT - Time index

positive integer
Time index, specified as a positive integer.
Example: thermalIC(thermalmodel,Tresults,21)
Data Types: double

## Output Arguments

## thermalIC - Handle to initial condition <br> GeometricThermalICs object | NodalThermalICs object

Handle to initial condition, returned as a GeometricThermalICs or NodalThermalICs object. See GeometricThermalICs Properties and NodalThermalICs Properties.
thermal IC associates the thermal initial condition with the geometric region in the case of a geometric assignment, or the nodes in the case of a results-based assignment.

## More About

## Specifying Nonconstant Parameters of a Thermal Model

Use a function handle to specify these thermal parameters when they depend on space, temperature, and time:

- Thermal conductivity of the material
- Mass density of the material
- Specific heat of the material
- Internal heat source
- Temperature on the boundary
- Heat flux through the boundary
- Convection coefficient on the boundary
- Radiation emissivity coefficient on the boundary
- Initial temperature

For example, use function handles to specify the thermal conductivity, internal heat source, convection coefficient, and initial temperature for this model.

```
thermalProperties(model,'ThermalConductivity',@myfun)
internalHeatSource(model,'Face',2,@myfun)
thermalBC(model,'Edge',[3,4], ...
 'ConvectionCoefficient',@myfun, ...
 'AmbientTemperature',27)
thermalIC(model,@myfun)
```

The function must be of the form:

```
function thermalVal = myfun(location,state)
```

The solver passes the location and state data to your function:

- location - A structure containing these fields:
- location. $x$ - The $x$-coordinate of the point or points
- location. y - The $y$-coordinate of the point or points
- location.z - For a 3-D or an axisymmetric geometry, the $z$-coordinate of the point or points
- location. r - For an axisymmetric geometry, the $r$-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

- location. $\mathrm{nx}-x$-component of the normal vector at the evaluation point or points
- location.ny - $y$-component of the normal vector at the evaluation point or points
- location.nz - For a 3-D or an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- location.nz - For an axisymmetric geometry, $z$-component of the normal vector at the evaluation point or points
- state - A structure containing these fields for transient or nonlinear problems:
- state.u-Temperatures at the corresponding points of the location structure
- state.ux - Estimates of the $x$-component of temperature gradients at the corresponding points of the location structure
- state. uy - Estimates of the $y$-component of temperature gradients at the corresponding points of the location structure
- state. uz - For a 3-D or an axisymmetric geometry, estimates of the $z$-component of temperature gradients at the corresponding points of the location structure
- state. ur - For an axisymmetric geometry, estimates of the $r$-component of temperature gradients at the corresponding points of the location structure
- state. time - Time at evaluation points

Thermal material properties (thermal conductivity, mass density, and specific heat) and internal heat source get these data from the solver:

- location.x, location.y,location.z,location.r
- Subdomain ID
- state. u, state. ux, state.uy, state. uz, state. r, state.time

Boundary conditions (temperature on the boundary, heat flux, convection coefficient, and radiation emissivity coefficient) get these data from the solver:

- location.x, location.y, location.z, location.r
- location.nx, location.ny, location.nz, location.nr
- state.u, state.time

Initial temperature gets the following data from the solver:

- location.x, location.y, location.z, location.r
- Subdomain ID

For all thermal parameters, except for thermal conductivity, your function must return a row vector thermalVal with the number of columns equal to the number of evaluation points, for example, $\mathrm{M}=$ length(location.y).

For thermal conductivity, your function must return a matrix thermalVal with number of rows equal to 1 , Ndim, Ndim* (Ndim+1) /2, or Ndim*Ndim, where Ndim is 2 for 2-D problems and 3 for 3-D problems. The number of columns must equal the number of evaluation points, for example, $\mathrm{M}=$ length(location.y). For details about dimensions of the matrix, see "c Coefficient for specifyCoefficients" on page 2-76.

If properties depend on the time or temperature, ensure that your function returns a matrix of NaN of the correct size when state. u or state. time are NaN. Solvers check whether a problem is time dependent by passing NaN state values and looking for returned NaN values.

## See Also

GeometricThermalICs Properties | NodalThermalICs Properties | internalHeatSource | setInitialConditions | thermalBC| thermalProperties

## Introduced in R2017a

## tri2grid

(Not recommended) Interpolate from PDE triangular mesh to rectangular grid

Note tri2grid is not recommended. Use interpolateSolution instead.

## Syntax

$u x y=t r i 2 g r i d(p, t, u, x, y)$
[uxy,tn, a2, a3] = tri2grid $(p, t, u, x, y)$
$u x y=$ tri2grid( $p, t, u, t n, a 2, a 3)$

## Description

$u x y=\operatorname{tri2grid}(p, t, u, x, y)$ computes the function values uxy over the grid defined by the vectors $x$ and $y$, from the function $u$ with values on the triangular mesh defined by $p$ and $t$. Values are computed using linear interpolation in the triangle containing the grid point. The vectors $x$ and $y$ must be increasing. u must be a vector. For systems of equations, uxy interpolates only the first component. For solutions returned by hyperbolic or parabolic, pass $u$ as the vector of values at one time, $u(:, k)$.
[uxy,tn, a2, a3] = tri2grid ( $\mathrm{p}, \mathrm{t}, \mathrm{u}, \mathrm{x}, \mathrm{y}$ ) additionally lists the index tn of the triangle containing each grid point, and interpolation coefficients a2 and a3.
$u x y=\operatorname{tri2grid}(p, t, u, t n, a 2, a 3)$ with $t n, a 2$, and a3 computed in an earlier call to tri2grid, interpolates using the same grid as in the earlier call. This variant is, however, much faster if several functions have to be interpolated using the same grid, such as interpolating hyperbolic or parabolic solutions at multiple times.

All tri2grid output arguments are ny-by-nx matrices, where $n x$ and ny are the lengths of the vectors $x$ and $y$ respectively. At grid points outside of the triangular mesh, all tri2grid output arguments are NaN .

## See Also

interpolateSolution | solvepde
Introduced before R2006a

## volume

Package: pde
Volume of 3-D mesh elements

## Syntax

V = volume(mesh)
[V,VE] = volume(mesh)
V = volume(mesh,elements)

## Description

$\mathrm{V}=$ volume(mesh) returns the volume V of the entire mesh.
[V,VE] = volume(mesh) also returns a row vector VE containing volumes of each individual element of the mesh.
$\mathrm{V}=$ volume(mesh,elements) returns the combined volume of the specified elements of the mesh.

## Examples

Volume of 3-D Mesh
Generate a 3-D mesh and find its volume.
Create a PDE model.
model = createpde;
Import and plot the geometry.
importGeometry(model,'BracketWithHole.stl'); pdegplot (model)


Generate a mesh and plot it.
mesh = generateMesh(model);
figure
pdemesh(model)


Compute the volume of the entire mesh.
mv = volume(mesh)
$m v=8.0295 e-04$

## Volume of Individual Elements of 3-D Mesh

Generate a 3-D mesh and find the volume of each element.
Create a PDE model.
model = createpde;
Import and plot the geometry.
importGeometry(model, 'BracketWithHole.stl'); pdegplot(model)


Generate a mesh and plot it.
mesh = generateMesh(model);
figure
pdemesh(model)


Compute the volume of the entire mesh and the volume of each individual element of the mesh. Display the volumes of the first 5 elements.

```
[va,vi] = volume(mesh);
vi(1:5)
ans = 1\times5
10-6 x
```

0.5427
0.2243
0.4379
0.2740
0.4541

## Total Volume of Group of Elements

Find the combined volume of a group of elements of a 3-D mesh.
Create a PDE model.
model = createpde;
Import and plot the geometry.
importGeometry(model,'BracketWithHole.stl');
pdegplot(model)


Generate a mesh and plot it.
mesh = generateMesh(model);
figure
pdemesh(model)


Evaluate the shape quality of the mesh elements and find the elements with the quality values less than 0.5.

Q = meshQuality(mesh);
elemIDs = find( $0<0.5$ );
Compute the total volume of these elements.

```
mv05 = volume(mesh,elemIDs)
mv05 = 4.2568e-06
```

Find how much of the total mesh volume belongs to these elements. Return the result as a percentage.

```
mv05_percent = mv05/volume(mesh)*100
mv05_percent = 0.5301
```


## Input Arguments

## mesh - Mesh object

Mesh property of a PDEModel object | output of generateMesh
Mesh object, specified as the Mesh property of a PDEModel object or as the output of generateMesh.

Example: model.Mesh

## elements - Element IDs

positive integer | matrix of positive integers
Element IDs, specified as a positive integer or a matrix of positive integers.
Example: [10 $\left.\begin{array}{llllllll}10 & 68 & 81 & 97 & 113 & 130 & 136 & 164\end{array}\right]$

## Output Arguments

v - Volume
positive number
Volume of the entire mesh or the combined volume of the specified elements of the mesh, returned as a positive number.

## VE - Volume of individual elements

row vector of positive numbers
Volume of individual elements, returned as a row vector of positive numbers.

## See Also

FEMesh Properties | area|findElements | findNodes | meshQuality
Topics
"Finite Element Method Basics" on page 1-11

Introduced in R2018a

## wbound

(Not recommended) Write boundary condition specification file

Note wbound is not recommended. Use applyBoundaryCondition instead.

## Syntax

fid $=$ wbound $(b l, m n)$

## Description

fid $=$ wbound $(b l, m n)$ writes a Boundary file with the name $\left[\mathrm{mn},{ }^{\prime} . \mathrm{m}^{\prime}\right]$. The Boundary file is equivalent to the Boundary Condition matrix bl. The output fid is -1 if the file could not be written.
bl describes the boundary conditions of the PDE problem. bl is a Boundary Condition matrix.
The output file [ $\mathrm{mn}, \mathrm{I} \cdot \mathrm{m}$ '] is the name of a Boundary file.

## See Also

decsg|wgeom
Introduced before R2006a

## wgeom

Write geometry specification function

Note This page describes the legacy workflow. New features might not be compatible with the legacy workflow.

## Syntax

fid $=$ wgeom(dl,mn)

## Description

fid $=$ wgeom ( $\mathrm{dl}, \mathrm{mn}$ ) writes a Geometry file with the name [mn, '. $\mathrm{m}^{\prime}$ ]. The Geometry file is equivalent to the Decomposed Geometry matrix $d l$. fid returns - 1 if the file could not be written.
dl is a Decomposed Geometry matrix. For a description of the format of the Decomposed Geometry matrix, see "Decomposed Geometry Data Structure" on page 2-8.

The output file [mn, '.m'] is the name of a Geometry file. For a description of the Geometry file format, see "Parametrized Function for 2-D Geometry Creation" on page 2-10.

## See Also

decsg
Introduced before R2006a

